
Zowe Version 2.17 Documentation

Table of contents:
Zowe announcements
Zowe announcements

New delivery date for Zowe Version 3.0​
Zowe Version 3.0 technical preview​
Future Zowe Version 2.0 releases​
Archiving Zowe Version 1.0​

Release Notes
Release Notes

Accessing older release notes​
Version 2.17.0 (July 2024)
Version 2.17.0 (July 2024)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​

Zlux App Server​
Zlux Server Framework​
Zowe Common C​
ZSS​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Bug fixes​
Zowe installation and packaging​
Zowe Application Framework​

Zlux Server Framework​
Zowe Common C​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​
Version 2.16.0 (May 2024)
Version 2.16.0 (May 2024)

New features and enhancements​

Zowe Install Packaging​
Zowe Application Framework​

Zowe Common C​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe Explorer​

Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Bug fixes​
Zowe Install Packaging​
Zowe Application Framework​

Zluz App Server​
ZSS​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
DB2 Plug-in for Zowe CLI​
FTP Plug-in for Zowe CLI​

Zowe Explorer​
Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​
Version 2.15.0 (March 2024)
Version 2.15.0 (March 2024)

New features and enhancements​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​
IMS Plug-in for Zowe CLI​
z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​
Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Bug fixes​
Zowe installation and packaging​
Zowe Application Framework​

Zowe Common C​
Zlux Server Framework​

Zowe API Mediation Layer​

Zowe CLI​
Zowe CLI (Core)​
Zowe CLI Imperative Framework​
IMS Plug-in for Zowe CLI​
z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​
Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​
Version 2.14.0 (January 2024)
Version 2.14.0 (January 2024)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​

Zlux App Server​
Zowe API Mediation Layer​
Zowe Explorer​

Zowe Explorer (Core)​
Explorer API​
Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Bug fixes​
Zowe installation and packaging​
Zowe Application Framework​

Zlux Server Framework​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​
DB2 Plug-in for Zowe CLI​

Zowe Explorer​
Zowe Explorer (Core)​
Explorer API​
Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​
Version 2.13.0 (December 2023)
Version 2.13.0 (December 2023)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​

ZLUX App Server​
ZLUX Server Framework​
Zowe Common C​
ZSS​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​
Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Bug fixes​
Zowe installation and packaging​
Zowe API Mediation Layer​

ZSS​
Zowe CLI​

Zowe CLI Imperative Framework​
Zowe CLI Imperative Framework​
DB2 Plug-in for Zowe CLI​
z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​
Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​
Version 2.12.0 (October 2023)
Version 2.12.0 (October 2023)

New features and enhancements​
Zowe Application Framework​

Zlux App Server​
ZLUX Server Framework​
ZSS​

Zowe API Mediation Layer​
Zowe Explorer​

Zowe Explorer (Core)​
Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Bug fixes​
Zowe Installation and packaging​
Zowe Application Framework​

ZLUX App Server​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Zowe Explorer (Core)​

Zowe Explorer API​
Zowe Explorer FTP Extension​
Zowe Explorer ESLint Plug-in​

Vulnerabilities fixed​
Version 2.11.0 (September 2023)
Version 2.11.0 (September 2023)

New features and enhancements​
Zowe Installation and Packaging​
Zowe Application Framework​

Zowe Common C​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Bug fixes​
Zowe Installation and Packaging​
Zowe Application Framework​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Vulnerabilities fixed​
Version 2.10.0 (July 2023)
Version 2.10.0 (July 2023)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​
Zowe API Mediation Layer​

Zlux App Server​
Zlux Server Framework​
Zowe Common C​

Zowe CLI​
Zowe CLI Imperative Framework​

Bug fixes​
Zowe Application Framework​

Zlux App Server​
Zlux App Manager​
ZSS​
Zowe Common C​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Vulnerabilities fixed​
Version 2.9.0 (June 2023)
Version 2.9.0 (June 2023)

New features and enhancements​

Zowe installation and packaging​
Zowe Application Framework​

Zlux Server Framework​
Zowe Common C​

Zowe API Mediation Layer​
Imperative CLI Framework​
Zowe CLI​
Zowe Explorer​

Bug fixes​
Zowe Application Framework​

ZLux App Server​
Zowe API Mediation Layer​
Imperative CLI Framework​
Zowe CLI​
IBM Db2 Database Plug-in for Zowe CLI​
Zowe Explorer​
Vulnerabilities fixed​

Version 2.8.0 (April 2023)
Version 2.8.0 (April 2023)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​

ZSS​
Zowe Common C​
Zlux App Manager​
Zlux Server Framework​
Zlux Editor​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Imperative CLI Framework​
z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​
Bug fixes​

Zowe installation and packaging​
Zowe Application Framework​

ZSS​
Zowe Common C​
Zlux App Manager​
Zlux Editor​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
CICS Plug-in for Zowe CLI​
MQ Plug-in for Zowe CLI​

Zowe Explorer​
Vulnerabilities fixed​

Version 2.7.0 (March 2023)
Version 2.7.0 (March 2023)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​

ZSS​
Zlux Editor​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Bug fixes​

Zowe installation and packaging​
Zowe Application Framework​

Zlux App Server​
ZSS​
Zlux Editor​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Vulnerabilities fixed​

Version 2.6.1 (February 2023)
Version 2.6.1 (February 2023)
Version 2.6.0 (January 2023)
Version 2.6.0 (January 2023)

New features and enhancements​
Zowe API Mediation Layer​
Zowe Explorer​

Bug fixes​
Zowe installation and packaging​
Zowe Application Framework​

zLUX Editor​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​
z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​
Vulnerabilities fixed​

Version 2.5.0 (December 2022)
Version 2.5.0 (December 2022)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​

ZSS​
zLUX Editor​
Zowe Common C​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Bug fixes​

Zowe installation and packaging​
Zowe Application Framework​

ZSS​
zLUX Editor​
Zowe Common C​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Vulnerabilities fixed​

Version 2.4.0 (October 2022)
Version 2.4.0 (October 2022)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​

ZSS​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​
Zowe Explorer FTP Extension​

Bug fixes​
Zowe Application Framework​

Zowe App Server​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Vulnerabilities fixed​

Version 2.3.1 (September 2022)
Version 2.3.1 (September 2022)
Version 2.3.0 (September 2022)
Version 2.3.0 (September 2022)

New features and enhancements​
Zowe installation and packaging​

Zowe Application Framework​
Zowe App Server​
Zowe Common C​
ZSS​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Explorer​
Extensibility API for Zowe Explorer​

Bug fixes​
Zowe installation and packaging​
Zowe Application Framework​

Zowe App Server​
Zowe Common C​
ZSS​

Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​
Db2 Plug-in for Zowe CLI​

Zowe Explorer​
Zowe Explorer Extension for FTP​
Extensibility API for Zowe Explorer​

Vulnerabilities fixed​
Version 2.2.0 (July 2022)
Version 2.2.0 (July 2022)

New features and enhancements​
Zowe installation and packaging​
Zowe Application Framework​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe Explorer​

Bug fixes​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​
z/OS FTP Plug-in for Zowe CLI​

Zowe Explorer​
Version 2.1.0 (June 2022)
Version 2.1.0 (June 2022)

New features and enhancements​
Zowe API Mediation Layer​
Zowe Application Framework​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Bug fixes​
Zowe API Mediation Layer​
Zowe CLI​

Zowe CLI (Core)​
Zowe CLI Imperative Framework​

Zowe Application Framework​
Zowe Explorer​

Version 2.0.0 (April 2022)
Version 2.0.0 (April 2022)

Breaking changes​
Zowe installation​
API Mediation Layer​
Zowe Application Framework​
Zowe CLI​

New features and enhancements​
Zowe installation​
Zowe API Mediation Layer​
Zowe Application Framework​
Zowe CLI​

Zowe CLI Plug-ins​
Imperative CLI Framework​
Nodejs SDK​

Zowe Explorer​
Bug fixes​

Zowe API Mediation Layer​
Zowe Application Framework​

Conformance and release compatibility​
Backward compatibility​
Forward compatibility​
Conformance compatibility​

Breaking Changes and Important Updates in Zowe v3
Breaking Changes and Important Updates in Zowe v3

API Mediation Layer (API ML)​
Breaking Changes to API ML​
Important updates​

Application Framework​
Breaking changes​

CLI​
Breaking changes​
Pre-release availability​

Explorer for Intellij​
Important updates​

Explorer for Visual Studio Code​
Breaking changes​
Important updates​

Pre-release availability​
Installation and Packaging​

Breaking changes​
Important updates​

ZSS​
Breaking changes​

Zowe V3 Office Hours
Zowe V3 Office Hours

Consumer focused Office Hours​
Upcoming Consumer focused Office Hours​
Past Consumer focused Office Hours​

Past Extender focused Office Hours​
Office Hours video series for Extenders​

Zowe V3 conformance criteria
Zowe V3 conformance criteria

Zowe API Mediation Layer​
Zowe CLI​
Zowe Explorer​
Zowe Application Framework​
Support providers​

Zowe V3 Frequently Asked Questions
Zowe V3 Frequently Asked Questions

General questions​
Extender questions​

API Mediation Layer​
Zowe Explorer for Visual Studio Code​
Zowe Application Framework, ZSS​
Zowe System Installation and Configuration​

User questions​
Zowe API Mediation Layer​

Zowe overview
Zowe overview

Zowe demo video​
Component overview​

Zowe Launcher​
API Mediation Layer​

Key features​
API Mediation Layer structural architecture​
Components​
Onboarding APIs​

Zowe Application Framework​
Zowe CLI​

Zowe CLI capabilities​
Zowe Explorer​
Zowe Client Software Development Kits (SDKs)​
Zowe Chat (Technical Preview)​

Zowe Chat key features​

Zowe Chat architecture​
ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator​
Zowe IntelliJ Plug-in​

Zowe Bill of Materials​
Zowe architecture
Zowe architecture

Zowe architecture with high availability enablement on Sysplex​
Zowe architecture when running in Kubernetes cluster​
App Server​
ZSS​
ZIS​
API Gateway​
API Catalog​
API Discovery​
Caching service​
Desktop Apps​

File API and JES API​
Zowe Security Overview
Zowe Security Overview

Digital certificates​
Digital certificates usage​

User Authentication​
Access Authorization​

SAF resource check​
Additional resources​

Glossary of Zowe Security terminology
Glossary of Zowe Security terminology

Certificate concepts​
Keystore​
Truststore​
PKCS12​
z/OS Key Ring​
Server certificate​
Client certificate​
Self-signed certificates​

Certificate verification​
DISABLED verification​
NON-STRICT verification​
STRICT verification​

Zowe certificate requirements​
Extended key usage​
Hostname validity​
z/OSMF access​

Certificate setup types​
File-based (PKCS12) certificate setup​
z/OS key ring-based certificate setup​

Zowe Certificates overview

Zowe Certificates overview
Digital certificates definition​
Digital certificates usage​
Public key infrastructure​
Transport Layer Security​
Digital certificates types​
Certificates storage​

Keystore and Truststore​
Keystores​
Truststores​

SAF Keyring​
Zowe User Authentication
Zowe User Authentication

Authentication with JSON Web Tokens(JWT)​
Authentication with client certificates​
Authentication with Personal Access Token (PAT)​
Authentication with SAF Identity Tokens​
Multi-factor authentication (MFA)​
Certificate Authority Advanced Authentication Mainframe (CA AAM)​

High Availability
High Availability

Sysplex architecture and configuration​
Caching service setup and configuration​

Glossary of Zowe terminology
Glossary of Zowe terminology

Core Zowe Projects​
Zowe API Mediation Layer (API ML)​

API Catalog​
API Discovery Service​
API Gateway ​
Caching Service​

Zowe Application Framework​
Zowe CLI​
Zowe client projects​
Zowe Client SDKs​
Zowe Explorer​
Zowe server components​

Zowe Systems Services Server (ZSS)​
Architecture and other components​

Configuration Manager​
Core component​
Explorer​
Extension​
Imperative CLI Framework​
Plug-in​
Secure credential store​
Service​

Team configuration​
Web Explorers​
ZIS (Zowe Interprocess Services)​
zLUX (V1 only) ​
Zowe App Server​
Zowe Chat​
Zowe Component​
Zowe Desktop​
Zowe Embedded Browser for RMF/SMF and APIs (ZEBRA)​
Zowe install packaging ​
Zowe IntelliJ Plug-in​
Zowe Launcher​

Community​
Open Mainframe Project (OMP)​
Squad​
Technical Steering Committee (TSC)​
Zowe Conformance Program​

Installation and configuration​
Base profile​
Convenience build​
Extension directory​
Instance.env (V1 only)​
Log directory​
OMVS​
Runtime directory​
Service profile​
SMP/E​
SMP/E with z/OSMF workflow​
Started task (STC)​
Workspace directory​
Zowe configuration file​
Zowe instance directory (V1 only)​
Zowe runtime​
Sample library​
ZWEADMIN​
ZWESIUSR​
ZWESVUSR​

Plug-ins and extensions​
API Mediation Layer​

API Catalog​
Zowe Application Framework​

3270 Terminal​
File Tree​
IP Explorer​
JES Explorer​
MVS (Multiple Virtual Storage) Explorer​
USS Explorer​

Virtual (VT) Terminal​
Zowe Editor​

Zowe CLI Extensions​
IBM® CICS® Plug-in for Zowe CLI​
IBM® Db2® Plug-in for Zowe CLI​

Use and development​
API Mediation Layer​

Micronaut Enabler​
Node.js Enabler​
Plain Java Enabler (PJE)​
Sprint Boot Enablers​

Zowe Application Framework​
Accessing the Desktop​
App2App​
Config Service​

Zowe FAQ
Zowe FAQ

Zowe FAQ​
What is Zowe?​
Who is the target audience for using Zowe?​
What language is Zowe written in?​
What is the licensing for Zowe?​
Why is Zowe licensed using EPL2.0?​
What are some examples of how Zowe technology might be used by z/OS products and applications?​
What is the best way to get started with Zowe?​
What are the prerequisites for Zowe?​
What's the difference between using Zowe with or without Docker?​
Is the Zowe CLI packaged within the Zowe Docker download?​
Does ZOWE support z/OS ZIIP processors?​
How is access security managed on z/OS?​
How is access to the Zowe open source managed?​
How do I get involved in the open source development?​
Where can I submit an idea for a future enhancement to Zowe?​
When will Zowe be completed?​
Can I try Zowe without a z/OS instance?​

Zowe CLI FAQ​
Why might I use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?​
With what tools is Zowe CLI compatible?​
Where can I use the CLI?​
Which method should I use to install Zowe CLI?​
How can I get Zowe CLI to run faster?​
How can I manage profiles for my projects and teams?​
Does Zowe CLI support multi-factor authentication (MFA)?​
How can I get help with using Zowe CLI?​
How can I use Zowe CLI to automate mainframe actions?​
How can I contribute to Zowe CLI?​

Zowe Explorer FAQ​

Why might I use Zowe Explorer versus a traditional ISPF interface to perform mainframe tasks?​
How can I get started with Zowe Explorer?​
Where can I use Zowe Explorer?​
How do I get help with using Zowe Explorer?​
How can I use Secure Credential Storage for Zowe Explorer?​
What if Secure Credential Storage does not work in my environment?​
What if I do not want Zowe Explorer to store my credentials?​
What types of profiles can I create for Zowe Explorer?​
Does Zowe Explorer support multi-factor authentication (MFA)?​
Is it possible to change the detected language of a file or data set opened in Zowe Explorer?​
How can I use FTP as my back-end service for Zowe Explorer?​
How can I contribute to Zowe Explorer?​

Zowe IntelliJ plug-in FAQ​
Why might I use Zowe IntelliJ plug-in versus a traditional ISPF interface to perform mainframe tasks?​
How can I get started with Zowe IntelliJ plug-in?​
Where can I use Zowe IntelliJ plug-in?​
How do I get help with using Zowe IntelliJ plug-in?​
How can I create, edit and delete z/OSMF connection?​
How can I contribute to Zowe IntelliJ plug-in?​

Zowe V2 FAQ
Zowe V2 FAQ

Where can I find the V1 and V2 LTS conformance criteria?​
Whats the difference between "server.json" and "example-zowe.yaml"?​
What are the new default ports?​
How do I access Zowe through the API Mediation Layer in V2?​
What new frameworks are supported in V2?​
Why aren't the explorers appearing on my desktop anymore?​

Zowe V2 office hours videos
Zowe V2 office hours videos

Office hours for Zowe extenders​
General information​
Zowe component updates​
Installation and V2 conformance​

Office hours for Zowe consumers​
Zowe component updates​

Zowe CLI quick start
Zowe CLI quick start

Installing​
Software Requirements​
Installing Zowe CLI core from public npm​
Installing CLI plug-ins​

Issuing your first commands​
Listing all data sets under a high-level qualifier (HLQ)​
Downloading a partitioned data-set (PDS) member to local file​

Team profiles​
Using profiles​

Profile types​

Creating zosmf profiles​
Using zosmf profiles​

Writing scripts​
Example:​

Next steps​
Migrating Zowe server component from V1 to V2
Migrating Zowe server component from V1 to V2

Component manifest​
Lifecycle scripts​
Environment variables​
Packaging one component deliverable for both Zowe v1 and v2​

Zowe learning resources
Zowe learning resources

Blogs​
Videos​
Webinars​
Community​
Training​

Installing Zowe
Installing Zowe
Zowe server-side installation overview
Zowe server-side installation overview

Zowe runtime​
The Zowe Cross Memory Server (ZIS)​
Roles and responsibilities for server-side component installation​

Security administrator​
Storage administrator​
Network administrator​
System programmer​

End-to-end installation​
Stage 1: Prepare for installation​
Stage 2: Installing the Zowe z/OS runtime​
Stage 3: Configuring the Zowe z/OS runtime​
Stage 4: (Optional) Customizing the configuration​
Stage 5: (Optional) Installing and managing extensions​
How to troubleshoot problems with the installation​
Next step​

Preparing for installation
Preparing for installation

Key concepts in Zowe server-side installation​
z/OS UNIX System Services (USS)​
Runtime directory​

Topology of the Zowe z/OS launch process​
Runtime directory​
zwe command​
Zowe started tasks​
z/OS Data sets used by Zowe​

Zowe configuration file (zowe.yaml)​
Workspace directory​
Log directory​
Keystore directory​
Extension directory​

Next step​
Zowe z/OS components installation checklist
Zowe z/OS components installation checklist

Preparing for installation​
Installing the Zowe z/OS runtime​
Configuring Zowe z/OS Components​
Configuring security​
Configuring certificates​
Configuring the Zowe cross memory server (ZIS)​
Configuring High Availability (optional)​
Starting and Stopping Zowe​
Verifying Zowe installation on z/OS​

Addressing z/OS requirements
Addressing z/OS requirements

z/OS system requirements​
z/OS​
Mainframe Resources Consumption​

Resource consumption during Zowe startup​
Resource consumption when Zowe is idling​

Node.js​
Java​
z/OSMF (Optional)​

Addressing Node.js requirements
Addressing Node.js requirements

Supported Node.js versions​
How to obtain IBM SDK for Node.js - z/OS​
Hardware and software prerequisites​
Installing the PAX edition of Node.js - z/OS​
Installing the SMP/E edition of Node.js - z/OS​

Addressing security requirements
Addressing security requirements

Tasks performed by your security administrator​
Assign security permissions to users​

(Recommended) Addressing authentication requirements
(Recommended) Addressing authentication requirements

Multi-Factor Authentication (MFA)​
Single Sign On (SSO)​
API Mediation Layer OIDC Authentication​

Addressing UNIX System Services (USS) Requirements
Addressing UNIX System Services (USS) Requirements

What is USS?​
Setting up USS for the first time​

Language environment​
OMVS segment​
Address space region size​
Temporary files management​

How to customize temporary files​
Customizing temporary files in STC​
Customizing temporary files in zowe.yaml​

Addressing storage requirements
Addressing storage requirements

Installing with SMP/E​
Installing Zowe runtime from a convenience build​

Memory requirements for API Mediation Layer​
Addressing network requirements
Addressing network requirements
Addressing browser requirements
Addressing browser requirements

Zowe Desktop requirements (client PC)​
Browser limitations in API Catalog​

Installing Zowe via Zowe Server Install Wizard
Installing Zowe via Zowe Server Install Wizard

Benefits of Wizard installation​
Prerequisites of the Wizard​
Downloading the Wizard​
Installing Zowe server-side components​

Connecting the Wizard to z/OS​
Setting z/OSMF Attributes (optional)​

Choosing the Server Installation Type​
Configuring the Zowe Server​
Final Review​
Troubleshooting​

Failure to establish a TLS connection​
Unable to continue with Wizard installation​
Unable to save setting to zowe.yaml via the Wizard's UI or editor​

Installing Zowe SMP/E overview
Installing Zowe SMP/E overview

End-to-end installation diagram​
Zowe FMIDs​

Program materials​
Basic machine-readable material​
Program source materials​
Publications useful during installation​

Program support​
Statement of support procedures​

Program and service level information​
Program level information​
Service level information​

Installation requirements and considerations​

Driving system requirements​
Driving system machine requirements​
Driving system programming requirements​

Target system requirements​
Target system machine requirements​
Target system programming requirements​
DASD storage requirements​

FMIDs deleted​
Installing Zowe via SMP/E instructions
Installing Zowe via SMP/E instructions

SMP/E considerations for installing Zowe​
SMP/E options subentry values​
Overview of the installation steps​
Download and unzip the Zowe SMP/E package​
Allocate the file system to hold the download package​
Upload the download package to the host​
Extract and expand the compressed SMPMCS and RELFILEs​

GIMUNZIP​
Customize sample installation jobs​

ZWE2RCVE​
ZWE1SMPE and ZWE4ZFS​
ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD​

Create SMP/E environment (Optional)​
Perform SMP/E RECEIVE​
Allocate SMP/E target and distributions libraries​
Allocate, create and mount ZSF files (Optional)​
Allocate z/OS UNIX paths​
Create DDDEF entries​
Perform SMP/E APPLY​

Sample APPLY commands​
Perform SMP/E ACCEPT​
Run REPORT CROSSZONE​
Cleaning up obsolete data sets, paths, and DDDEFs​

Activating Zowe​
File system execution​

Zowe customization​
Installing Zowe via z/OSMF from PSWI and SMP/E workflow
Installing Zowe via z/OSMF from PSWI and SMP/E workflow

z/OS requirements for z/OSMF configuration​
Addressing z/OSMF requirements
Addressing z/OSMF requirements

Configure z/OSMF​
Configure z/OSMF security​
Confirm that the installer has read, create, update, and execute privileges in z/OS​
Address USS requirements​
Configure SMP/E Internet Service Retrieval​

Configuring z/OSMF

Configuring z/OSMF
z/OSMF REST services for the Zowe CLI​
Configuring z/OSMF to properly work with API ML​

Configuring z/OSMF Lite (for non-production use)
Configuring z/OSMF Lite (for non-production use)

Introduction​
Assumptions​
Software Requirements​

Minimum Java level​
WebSphere® Liberty profile (z/OSMF V2R3 and later)​
System settings​
Web browser​

Creating a z/OSMF nucleus on your system​
Running job IZUNUSEC to create security​

Before you begin​
Procedure​
Results​
Common errors​

Running job IZUMKFS to create the z/OSMF user file system​
Before you begin​
Procedure​
Results​
Common errors​

Copying the IBM procedures into JES PROCLIB​
Before you begin​
Procedure​
Results​
Common errors​

Starting the z/OSMF server​
Before you begin​
Procedure​
Results​

Accessing the z/OSMF Welcome page​
Before you begin​
Procedure​
Results​
Common errors​

Mounting the z/OSMF user file system at IPL time​
Before you begin​
Procedure​
Results​

Adding the required REST services​
Enabling the z/OSMF JOB REST services​

Procedure​
Results​
Common errors​

Enabling the TSO REST services​

Before you begin​
Procedure​
IZUTSSEC​
Results​

Enabling the z/OSMF data set and file REST services​
Before you begin​
Procedure​
Results​
Common errors​

Enabling the z/OSMF Workflow REST services and Workflows task UI​
Before you begin​
Procedure​
Results​

Troubleshooting problems​
Common problems and scenarios​

System setup requirements not met​
Tools and techniques for troubleshooting​

Common messages​
Appendix A. Creating an IZUPRMxx parmlib member​
Appendix B. Modifying IZUSVR1 settings​
Appendix C. Adding more users to z/OSMF​

Before you Begin​
Procedure​
Results​

Installing Zowe from a Portable Software Instance
Installing Zowe from a Portable Software Instance

End-to-end installation diagram​
Prerequisites​
Procedure​

Acquiring a z/OSMF Portable Software Instance
Acquiring a z/OSMF Portable Software Instance

Download the Portable Software Instance from Zowe Downloads​
Register Portable Software Instance in z/OSMF​

Installing Product Software Using z/OSMF Deployments
Installing Product Software Using z/OSMF Deployments

Installing process​
Installing Zowe SMP/E build with z/OSMF workflow
Installing Zowe SMP/E build with z/OSMF workflow

Activating Zowe​
File system execution​

Zowe customization​
Installing Zowe via a convenience build (PAX file)
Installing Zowe via a convenience build (PAX file)

Introduction​
End-to-end installation diagram​
Step 1: Obtain the convenience build​
Step 2: Transfer the convenience build to USS and expand it​

Step 3: (Optional) Add the zwe command to your PATH​
Step 4: Copy the zowe.yaml configuration file to preferred location​
Step 5: Install the MVS data sets​

About the MVS data sets​
Procedure​

Next steps​
Installing Zowe via a containerization build (PAX file)
Installing Zowe via a containerization build (PAX file)

End-to-end container installation​
Stage 1: Plan and prepare for the installation​
Stage 2: Download Zowe containers​
Stage 3 & 4: Install and configure Zowe containers​
Stage 5: Start Zowe containers​
(Optional) Stage 6: Monitor Zowe containers​

Known limitations​
Preparing for Zowe server containers installation
Preparing for Zowe server containers installation

Kubernetes cluster​
kubectl tool​

Downloading and installing Zowe containers
Downloading and installing Zowe containers

Downloading​
Downloading configuration samples​
Downloading container images​

Installing​
Upgrading​

Configuring Zowe containers
Configuring Zowe containers

1. Create namespace and service account​
Verification​

2. Create Persistent Volume Claim (PVC)​
Verification​

3. Create and modify ConfigMaps and Secrets​
Verification​

4. Expose API Mediation Layer components​
4a. Create service​

Defining api-catalog service​
Applying Gateway Service​
Applying Discovery service​

4b. Create Ingress (Bare-metal)​
4c. Create Route (OpenShift)​

Customizing or manually creating ConfigMaps and Secrets​
PodDisruptionBudget​
HorizontalPodAutoscaler​
Kubernetes v1.21+​

Starting, stopping, and monitoring Zowe containers
Starting, stopping, and monitoring Zowe containers

Starting Zowe containers​
Port forwarding (for minikube only)​

Verifying Zowe containers​
Monitoring Zowe containers​

Monitoring Zowe containers via UI​
Monitoring Zowe containers via CLI​

Stopping, pausing or removing Zowe containers​
Configuring Overview
Configuring Overview

Configuring Zowe runtime​
Configuring the z/OS system for Zowe​
Assigning security permissions​
Configuring the Zowe cross memory server (ZWESISTC)​

Initializing Zowe z/OS runtime
Initializing Zowe z/OS runtime

Initialize Zowe maunually using zwe init command group​
Configure Zowe with z/OSMF workflows​

Configuring Zowe with zwe init
Configuring Zowe with zwe init

About the zwe init command​
zwe init arguments​
Zowe initilization command​
Next step​

zwe init subcommand overview
zwe init subcommand overview

Initializing Zowe custom data sets (zwe init mvs)​
Procedure to initialize Zowe custom data sets​

Initializing Zowe security configurations (zwe init security)​
Performing APF authorization of load libraries (zwe init apfauth)​
Configuring Zowe to use TLS certificates (zwe init certificate)​
Creating VSAM caching service datasets (zwe init vsam)​
Installing Zowe main started tasks (zwe init stc)​
Next steps​

Configuring Zowe with z/OSMF Workflows
Configuring Zowe with z/OSMF Workflows

Configure the Zowe instance directory​
Execute the configuration workflow​

Execute workflow from PSWI​
Execute workflow from software instance​

Register and execute workflow in the z/OSMF web interface​
Next step​

Configuring security
Configuring security

Validate and re-run zwe init commands​
Initialize Zowe security configurations​
Perform APF authorization of load libraries​
Configure the z/OS system for Zowe​

Assign security permissions to users​
Zowe Feature specific configuration tasks​
Next step​

Initializing Zowe security configurations
Initializing Zowe security configurations

Configuring with zwe init security command​
Using security-dry-run​

Configuring with ZWESECUR JCL​
Undo security configurations​

Next step​
Performing APF authorization of load libraries
Performing APF authorization of load libraries

Making APF auth be part of the IPL​
Addressing z/OS requirements for Zowe
Addressing z/OS requirements for Zowe

z/OS prerequisites​
Settings specific configuration requirements ​

Configure an ICSF cryptographic services environment​
Configure security environment switching​
Configure address space job naming​
Configure multi-user address space (for TSS only)​
Configure user IDs and groups for the Zowe started tasks​
Configure ZWESLSTC to run Zowe high availability instances under ZWESVUSR user ID​
Configure the cross memory server for SAF​
Configure main Zowe server to use client certificate identity mapping​

Using RACF​
Using ACF2​
Using TSS​

Configure main Zowe server to use distributed identity mapping​
Using RACF​
Using ACF2​
Using TSS​

Configure signed SAF Identity tokens (IDT)​
Configure the main Zowe server to issue SMF records​
Multi-Factor Authentication (MFA)​
Single Sign-On (SSO)​
API Mediation Layer OIDC Authentication​

Assigning security permissions to users
Assigning security permissions to users

Overview of user categories and roles​
Security Permissions Reference Table​
Granting users permission to access z/OSMF​
Next step​

Configuring certificates
Configuring certificates

Certificate concepts​
Keystore​

Truststore​
PKCS12​
z/OS key ring​
Server certificate​
Client certificate​
Self-signed certificates​

Certificate verification​
DISABLED verification​
NON-STRICT verification​
STRICT verification​

Zowe certificate requirements​
Extended key usage​
Hostname validity​
z/OSMF access​

Certificate setup type​
File-based (PKCS12) certificate setup​
z/OS key ring-based certificate setup​

Next steps: Creating or importing certificates to Zowe​
Zowe certificates configuration questionnaire
Zowe certificates configuration questionnaire

Certificate configuration questionnaire​
Next steps​

Certificate configuration scenarios
Certificate configuration scenarios

* What is a valid certificate in Zowe?​
Considerations for certificate scenario selection​
Scenario 1: Use a file-based (PKCS12) keystore with Zowe generated certificates​
Scenario 2: Use a file-based (PKCS12) keystore and import a certificate generated by another CA​
Scenario 3: Use a z/OS keyring-based keystore with Zowe generated certificates​
Scenario 4: Use a z/OS keyring-based keystore and connect to an existing certificate​
Scenario 5: Use a z/OS keyring-based keystore and import a certificate stored in a data set​

Importing and configuring a certificate
Importing and configuring a certificate

Importing an existing PKCS12 certificate​
Importing a certificate Authority (CA)​

Manually importing a certificate authority into a web browser​
Importing a local CA certificate on Linux​

Importing an existing JCERACFKS certificate​
Importing a certificate stored in an MVS data set into a Zowe key ring​
Next steps​

Generating a certificate
Generating a certificate

Creating a PKCS12 keystore​
Configure the PKCS12 setup section in zowe.yaml​
Run the command to generate a PKCS12 keystore​
Next steps after PKCS12 setup​

Creating a JCERACFKS certificate​

Configure the JCERACFKS setup section in zowe.yaml​
Run the command to generate a JCERACFKS certificate​
Next steps after JCERACFKS setup​

Using certificates
Using certificates

Use PKCS12 certificates​
Use JCERACFKS certificates​

Use multiple certificate authorities​
Setting up Zowe certificates using workflows
Setting up Zowe certificates using workflows
Enabling AT-TLS across your Zowe environment
Enabling AT-TLS across your Zowe environment

Configuration Parameters​
Component-Specific Configuration​

Configuring the Zowe cross memory server (ZIS)
Configuring the Zowe cross memory server (ZIS)

PDS sample library and PDSE load library​
Load module​

APF authorize​
Configuring using zwe init apfauth​

Key 4 non-swappable​
PARMLIB​
PROCLIB​
SAF configuration​
Zowe auxiliary service​

Installing the auxiliary service​
Zowe Auxiliary Address space​

Summary of cross memory server installation​
Starting and stopping the cross memory server on z/OS​
Troubleshooting​
Next step​

Configuring high availability (optional)
Configuring high availability (optional)

Enable high availability when Zowe runs in Sysplex​
Known limitations​

Enable high availability when Zowe runs in Kubernetes​
Configuring Sysplex for high availability
Configuring Sysplex for high availability

Sysplex environment requirements​
Configuring Sysplex Distributor​

Configuring z/OSMF for high availability in Sysplex
Configuring z/OSMF for high availability in Sysplex

Sysplex environment requirements​
Setting up z/OSMF nucleus​

Requirements of z/OSMF HA parmlib member in Sysplex​
Configuring z/OSMF for high availability​

Configuring the Caching Service for high availability

Configuring the Caching Service for high availability
inMemory​
Infinispan​
VSAM​
redis​

Starting and stopping Zowe
Starting and stopping Zowe

Starting and stopping the cross memory server ZWESISTC on z/OS​
Starting and stopping the cross memory auxiliary server ZWESASTC on z/OS​
Starting and stopping Zowe main server ZWESLSTC on z/OS with zwe server command​
Starting and stopping Zowe main server ZWESLSTC on z/OS manually​
Stopping and starting a Zowe component without restarting Zowe main server​

Limiting started Zowe services to API Mediation Layer
Limiting started Zowe services to API Mediation Layer
Verifying Zowe installation on z/OS
Verifying Zowe installation on z/OS

Verifying Zowe Application Framework installation​
Verifying API Mediation installation​
Verifying z/OS Services installation​

Configuring Zowe Application Framework
Configuring Zowe Application Framework

Accessing the App Server​
Accessing the Desktop​

Accessing ZSS​
Configuration file​

app-server configuration​
zss configuration​

Environment variables​
Configuring the framework as a Mediation Layer client​
Setting up terminal app plugins​

Setting up the TN3270 mainframe terminal app plugin​
Setting up the VT Terminal app plugin​

Network configuration​
HTTPS​
HTTP​

Configuration Directories​
Old defaults​

App plugin configuration​
Logging configuration​

Enabling tracing​
Log files​

Retaining logs​
Controlling the logging location​

ZSS configuration​
ZSS 64 or 31 bit modes​

Verifying which ZSS mode is in use​
Verifying which ZSS mode plugins support​

Setting ZSS 64 bit or 31 bit mode​
Customizing ZSS session duration​

Using AT-TLS in the App Framework​
Creating AT-TLS certificates and keyring using RACF​
Defining the AT-TLS rule​

Using multiple ZIS instances​
Controlling access to apps​

Enabling RBAC​
Controlling app access for all users​
Controlling app access for individual users​

Controlling access to dataservices​
Defining the RACF ZOWE class​
Creating authorization profiles​
Creating generic authorization profiles​
Configuring basic authorization​
Endpoint URL length limitations​

Multi-factor authentication configuration​
Session duration and expiration​
Configuration​

Administering the servers and plugins using an API​
Managing Cluster Mode for app-server​

To turn the cluster mode on​
To turn the cluster mode off​

Using the Configuration Manager
Using the Configuration Manager

Using zwe with Configuration Manager​
Validation error reporting​

Example​
JSON-Schema validation​
Splitting configuration into multiple storage types​
Parmlib support​
Configuration templates​
Configuration Manager Unix executable​

Zowe server component and extension management
Zowe server component and extension management

Installing a component​
Enable and disable component​
Upgrading a component​
Uninstalling a component​
Searching for a component​
Manual Component management​

Zowe core components​
Zowe z/OS extensions​

Advanced API Mediation Layer Configuration
Advanced API Mediation Layer Configuration
Enabling single sign on for clients
Enabling single sign on for clients

Enabling single sign on for clients via client certificate configuration
Enabling single sign on for clients via client certificate configuration

General prerequisites​
Configure Internal API ML Mapper​
Configure ZSS​

Prerequisites for ZSS​
Enabling zowe.yaml to use a client certificate​

Enabling single sign on for clients via Personal Access Token configuration
Enabling single sign on for clients via Personal Access Token configuration

Prerequisite using the Caching Service​
Enabling Personal Access Tokens​

Enabling single sign on for clients via JWT token configuration
Enabling single sign on for clients via JWT token configuration

Using SAF as an authentication provider​
Enabling a JWT token refresh endpoint​
Authorization​
Additional customizable properties when using JWT tokens​

Enabling single sign on for extending services
Enabling single sign on for extending services
Enabling single sign on for extending services via JWT token configuration
Enabling single sign on for extending services via JWT token configuration

Adding a custom HTTP Auth header to store Zowe JWT token​
Enabling single sign on for extending services via PassTicket configuration
Enabling single sign on for extending services via PassTicket configuration

Overview of PassTickets​
Configuring Zowe to use PassTickets​

Enabling the use of PassTickets in your External Security Manager (ESM)​
Enabling PassTickets with ACF2​
Enabling PassTickets with Top Secret​
Enabling PassTickets with RACF​

Configuring security to allow Zowe API Gateway to generate PassTickets for an API service​
Generating PassTickets using ACF2​
Generating PassTickets using Top Secret​
Generating PassTickets using RACF​

Validating if the PassTicket Application is created​
Adding custom HTTP Auth headers to store user ID and PassTicket (Optional)​

Customizing routing behavior
Customizing routing behavior
Configuring routing in a multi-tenant environment
Configuring routing in a multi-tenant environment
Customizing Cross-Origin Resource Sharing (CORS)
Customizing Cross-Origin Resource Sharing (CORS)
Using encoded slashes
Using encoded slashes
Customizing Gateway retry policy
Customizing Gateway retry policy
Configuring a unique cookie name for a specific API ML instance

Configuring a unique cookie name for a specific API ML instance
Retrieving a specific service within your environment
Retrieving a specific service within your environment

Output a routed instance header​
Distributing the load balancer cache
Distributing the load balancer cache
Setting a consistent service ID
Setting a consistent service ID
Customizing management of API ML load limits
Customizing management of API ML load limits
Customizing connection limits
Customizing connection limits

TCP/IP Connection Limits​
Websocket Limits​

Customizing Gateway timeouts
Customizing Gateway timeouts
Customizing Java Heap sizes
Customizing Java Heap sizes

Recommendation​
Configuring authorization for API ML
Configuring authorization for API ML
Limiting access to information or services in the API Catalog
Limiting access to information or services in the API Catalog

Hide service information​
Configuring SAF resource checking
Configuring SAF resource checking

SAF Resource Checking Providers​
REST endpoint call​

Native​
Dummy implementation​

Configuring API Gateway Health Check Protection
Configuring API Gateway Health Check Protection

Environment Recommendations​
Configuring an authentication provider for API Mediation Layer
Configuring an authentication provider for API Mediation Layer

z/OSMF Authentication Provider​
SAF Authentication Provider​

Using Infinispan as a storage solution through the Caching service
Using Infinispan as a storage solution through the Caching service

Understanding Infinispan​
Infinispan replica instances​

Infinispan configuration​
Using VSAM as a storage solution through the Caching service
Using VSAM as a storage solution through the Caching service

Understanding VSAM​
VSAM configuration​
VSAM performance​

Using Redis as a storage solution through the Caching service
Using Redis as a storage solution through the Caching service

Understanding Redis​
Redis replica instances​
Redis Sentinel​
Redis SSL/TLS​
Redis and Lettuce​

Redis configuration​
Customizing the API Catalog UI
Customizing the API Catalog UI

API Catalog branding​
Replace or remove the Catalog with another service​

Configuring AT-TLS for API Mediation Layer
Configuring AT-TLS for API Mediation Layer

AT-TLS configuration for Zowe​
AT-TLS rules​

Inbound rules​
Outbound rules​

For z/OSMF​
For communication between API Gateway and other core services​
For communication between API Gateway and southbound services​

Ciphers​
Using AT-TLS for API ML in High Availability​
Multi-tenancy deployment​
AT-TLS Troubleshooting​

The message This combination of port requires SSL is thrown ​
AT-TLS rules are not applied​
Non matching ciphers​

Zowe CLI
Zowe CLI

Fundamentals​
Quick start​
Installing​
Configuring and updating​
Using Zowe CLI and plug-ins​
Developing a Zowe CLI plug-in​
Contributing to Zowe CLI​
Troubleshooting and support​
Community resources​

Zowe CLI System requirements
Zowe CLI System requirements

Client-side requirements​
Node.js​
npm​
Secure Credential Store​
Plug-in client requirements​

Host-side requirements​

IBM z/OSMF​
Plug-in services​
Zowe CLI on z/OS is not supported​

Free disk space​
Zowe CLI Installation checklist
Zowe CLI Installation checklist

Addressing the prerequisites​
Installing Zowe CLI​
Configuring Zowe CLI​

Installing Zowe CLI
Installing Zowe CLI

Installation guidelines​
Installation notes​

Prerequisites​
Prerequisite notes​

Install Zowe CLI from npm​
Install Zowe CLI from a local package​

Configuring Secure Credential Store on headless Linux operating systems
Configuring Secure Credential Store on headless Linux operating systems

Headless Linux requirements​
Unlocking the keyring manually​
Unlocking the keyring automatically​

Configuring z/Linux​
Configure Zowe CLI on operating systems where the Secure Credential Store is not available
Configure Zowe CLI on operating systems where the Secure Credential Store is not available

V1 profiles​
Team configuration​

Installing Zowe CLI with Node.js 16 on Windows
Installing Zowe CLI with Node.js 16 on Windows

Additional Considerations​
Install CLI from Online Registry Via Proxy
Install CLI from Online Registry Via Proxy
Updating Zowe CLI
Updating Zowe CLI

Updating to the Zowe CLI V2 Long-term Support (v2-lts) version​
Identify the currently installed version of Zowe CLI​
Identify the currently installed versions of Zowe CLI plug-ins​
Update Zowe CLI from the online registry​
Update or revert Zowe CLI to a specific version​
Update Zowe CLI from a local package​

Uninstalling Zowe CLI
Uninstalling Zowe CLI
Configuring Zowe CLI environment variables
Configuring Zowe CLI environment variables

Setting the CLI home directory​
Setting a shared plug-in directory​
Setting CLI log levels​

Setting CLI daemon mode properties​
Setting other environment variables​

Configuring an environment variables file
Configuring an environment variables file

How .zowe.env.json works​
Creating the configuration file​
Using daemon mode​

Zowe Explorer
Zowe Explorer

Fundamentals​
Installing and configuring​
Using Zowe Explorer​
Extending Zowe Explorer​
Contributing to Zowe Explorer​
Troubleshooting and support​
Community resources​

Zowe Explorer System Requirements
Zowe Explorer System Requirements

Client side requirements​
Operating systems​
Integrated development environments:​

Server side requirements​
Visual Studio Code (VS Code) Extension for Zowe
Visual Studio Code (VS Code) Extension for Zowe

Software Requirements​
Profile notes:​

Installing Zowe Explorer​
Configuring Zowe Explorer​

Modifying creation settings for data sets, USS files, and jobs​
Modifying temporary file location settings​
Modifying the Secure Credentials Enabled setting​
Setting confirmation requirements for submitting jobs​

Relevant Information​
Zowe Explorer profiles
Zowe Explorer profiles

Configuring Zowe V2 profiles​
Creating team configuration files​
Managing profiles​
Sample profile configuration​

Working with Zowe V1 profiles​
Managing Zowe V1 profiles​
Validating profiles​
Using base profiles and tokens with existing profiles​

Accessing services through API ML using SSO​
Logging in to the Authentication Service​

Zowe Chat (Technical Preview)
Zowe Chat (Technical Preview)

Deployment diagram​
System requirements
System requirements

Linux system requirements​
Node.js​
Zowe CLI (Optional)​

z/OS system requirements​
z/OSMF​

Network requirements​
Ports​
Connectivity Requirements​

Chat Tool Requirements​
Configuring chat platforms
Configuring chat platforms

Mattermost​
Microsoft Teams​
Slack​

Configuring Mattermost
Configuring Mattermost
Installing Mattermost chat platform server
Installing Mattermost chat platform server

Installing​
Next steps​

Creating administrator account and Mattermost team
Creating administrator account and Mattermost team
Creating the bot account
Creating the bot account

Next steps​
Inviting the created bot to your Mattermost team
Inviting the created bot to your Mattermost team

Next steps​
Inviting the created bot to your Mattermost channel
Inviting the created bot to your Mattermost channel
Enabling insecure outgoing connections for mouse navigation
Enabling insecure outgoing connections for mouse navigation
Configuring Microsoft Teams
Configuring Microsoft Teams
Creating Microsoft Teams bot app with Developer Portal
Creating Microsoft Teams bot app with Developer Portal
Creating a bot for Microsoft Teams bot app
Creating a bot for Microsoft Teams bot app
Creating a bot with Microsoft Bot Framework
Creating a bot with Microsoft Bot Framework
Creating a bot with Microsoft Azure
Creating a bot with Microsoft Azure
Configuring messaging endpoint for Microsoft Teams
Configuring messaging endpoint for Microsoft Teams

Configuring messaging endpoint for the Microsoft Bot Framework bot
Configuring messaging endpoint for the Microsoft Bot Framework bot
Configuring messaging endpoint for the Microsoft Azure bot
Configuring messaging endpoint for the Microsoft Azure bot
Configuring Slack
Configuring Slack
Creating a new Slack App
Creating a new Slack App
Configuring the Slack App
Configuring the Slack App
Connecting to Slack using Socket mode
Connecting to Slack using Socket mode
Connecting to Slack using public HTTP endpoint
Connecting to Slack using public HTTP endpoint
Installing the Slack App
Installing the Slack App
Adding your bot user to your Slack channel
Adding your bot user to your Slack channel

Mention your bot user directly​
Use the channel link​

Installing Zowe Chat
Installing Zowe Chat

Prerequisites​
Installing​

Configuring Zowe Chat
Configuring Zowe Chat

Zowe Chat server configuration​
Zowe Chat z/OSMF endpoint configuration​
Chat tool configuration​

Configuring Zowe Chat with Mattermost
Configuring Zowe Chat with Mattermost

Prerequisite​
Configuring Mattermost​

Configuring Zowe Chat with Microsoft Teams
Configuring Zowe Chat with Microsoft Teams

Prerequisite​
Configuring Microsoft Teams​

Configuring Zowe Chat with Slack
Configuring Zowe Chat with Slack

Prerequisite​
Configuring Slack​

Starting and stopping Zowe Chat
Starting and stopping Zowe Chat

Starting Zowe Chat​
Stopping Zowe Chat​

Uninstalling Zowe Chat
Uninstalling Zowe Chat

Zowe IntelliJ plug-in
Zowe IntelliJ plug-in

Installing​
Configuring Zowe IntelliJ plug-in
Configuring Zowe IntelliJ plug-in

Creating z/OSMF connection​
Creating the connection using the plug-in feature​
Creating the connection using Zowe Config v2​

Using Zowe
Using Zowe

Zowe server-side components​
Zowe client-side components​

Explore available plug-ins​
Incubator components​

Using Zowe Desktop
Using Zowe Desktop

Navigating the Zowe Desktop​
Accessing the Zowe Desktop​
Logging in and out of the Zowe Desktop​
Changing user password​
Updating an expired password​
Pinning applications to the task bar​
Open application in new tab​

Keyboard shortcuts​
Changing application elements size​
Personalizing the Desktop​
Changing the desktop language​

Zowe Desktop application plugins​
VT Terminal​
API Catalog​
Editor​
JES Explorer​
IP Explorer​
MVS Explorer​
USS Explorer​

Using the Editor
Using the Editor

Specifying a highlighting language​
Open a dataset​
Deleting a file or folder​
Opening a directory​
Creating a new directory​
Creating a new file​
Keyboard shortcuts​

Using API Mediation Layer
Using API Mediation Layer

API Mediation Layer Use Cases​

Using Single Sign On (SSO)​
Using multi-factor authentication​
API Routing​
Learning more about APIs​
Administrating APIs​
Using the Caching Service​
Using API Catalog​
Additional use case when usig API Mediation Layer​

Information roadmap for Zowe API Mediation Layer
Information roadmap for Zowe API Mediation Layer

Fundamentals​
Installing​
Configuring and updating​
Using Zowe API Mediation Layer​
Onboarding APIs​
Security​
Contributing to Zowe API Mediation Layer​
Troubleshooting and support​
Community resources​

Zowe API Mediation Layer Single Sign On Overview
Zowe API Mediation Layer Single Sign On Overview

Zowe API ML client​
API service accessed via Zowe API ML​
Existing services that cannot be modified​

Further resources​
Authenticating with a JWT token
Authenticating with a JWT token

JWT Token-based Login Flow and Request/Response Format​
Obtaining a JWT token​
Making an authenticated request​

Allow the API client to pass the JWT token as a cookie header​
Pass the JWT token in the Authorization: Bearer header​

Validating JWT tokens​
Refreshing the JWT token​
Token format​

Authenticating with client certificates
Authenticating with client certificates

How the Gateway resolves authentication​
Configure your z/OS system to support client certificate authentication for a specific user​
Validate the client certificate functionality​

Authenticating with a Personal Access Token
Authenticating with a Personal Access Token

User APIs​
Generate a token​
Validate a token​
Invalidate a specific token​
Invalidate all tokens​

Security Administrator APIs​
Invalidate all tokens for a user​
Invalidate all tokens for a service​
Evict non-relevant tokens and rules​

Using the Personal Access Token to authenticate​
Authenticating with OIDC
Authenticating with OIDC

Usage​
Authentication Flow​
Prerequisites​

OIDC provider prerequisites​
ESM configuration prerequisites​

Parameters in the ESM commands​
API ML OIDC configuration​
Troubleshooting​

API ML fails to validate the OIDC access token with the Distributed Identity Provider​
The access token validation fails with HTTP error​

Using multi-factor authentication (MFA)
Using multi-factor authentication (MFA)

Prerequisite​
Known Limitations and Recommendations​

Unintentional Reuse of MFA Token​
No Notification when Additional Input is Required​
Token Expiration when Stored in the Authorization Dialog in "Try it out"​

Routing requests to REST APIs
Routing requests to REST APIs

Terminology​
Basic Routing​

API ML Routing to the Versioned service​
Implementation details for routing​

Zowe architecture with high availability enablement on Sysplex​
API Versioning​

Guidelines​
Routing with WebSockets
Routing with WebSockets

Security and Authentication​
Subprotocols​
High availability​
Idle Timeout​
Diagnostics​
Limitations​

Using GraphQL APIs
Using GraphQL APIs

Difference between GraphQL APIs and traditional REST APIs​
Routing to GraphQL example​
How GraphQL Works​
Key Concepts of GraphQL​

Limitations for the API Mediation Layer​
Multitenancy Configuration
Multitenancy Configuration

Overview of Central and Domain API MLs​
Multitenancy component enablement settings​
Onboarding Domain Gateways to the Central Cloud Gateway​

Dynamic Onboarding (recommended) for Domain Gateways​
Static Onboarding for Domain Gateways (deprecated)​

Onboarding a Domain Cloud Gateway service to the Central Discovery service​
Dynamic Configurations to the Central Discovery service​

Dynamic configuration: YML​
Dynamic configuration: Environment variables​

Validating successful configuration​
Establishing a trust relationship between Domain API ML and Central API ML​

Commands to establish trust between Domain and Central API MLs​
Using the /registry endpoint in the Central Cloud Gateway​

Configuration for /registry​
Authentication for /registry​
Authorization with /registry​
Requests with /registry​
Response with /registry​
Response with /registry{apimlId}​
Response with GET /cloud-gateway/api/v1/registry/{apimlId}?apiId={apiId}&serviceId={serviceId}​

Validating successful configuration with /registry​
Gateway static definition example (deprecated)​
Troubleshooting multitenancy configuration​

ZWESG100W​
No debug messages similar to apiml1 completed with onComplete are produced​

Obtaining Information about API Services
Obtaining Information about API Services

Using API ID in API ML to locate APIs in different instances​
Protecting Service Information​
Using API Endpoints​

Obtaining Information about a Specific Service​
Obtaining Information about All Services​
Obtaining Information about All Services with a Specific API ID​
Response Format​

Using Swagger "Try it out" in the API Catalog
Using Swagger "Try it out" in the API Catalog

Make a request​
Using Swagger Code Snippets in the API Catalog
Using Swagger Code Snippets in the API Catalog

Generate the code snippets​
Using Static API services refresh in the API Catalog
Using Static API services refresh in the API Catalog
Onboarding a REST API service with the YAML Wizard
Onboarding a REST API service with the YAML Wizard

Onboarding your REST service with the Wizard​
Using the Caching Service
Using the Caching Service

Architecture​
Storage methods​

Infinispan (recommended)​
VSAM​
Redis​
InMemory​

How to start the Service​
Methods to use the Caching Service API​
Configuration properties​
Authentication​

Direct calls​
Routed calls through API Gateway​

Viewing Service Information and API Documentation in the API Catalog
Viewing Service Information and API Documentation in the API Catalog
Changing an expired password via API Catalog
Changing an expired password via API Catalog
Updating user password
Updating user password

Changing password with SAF provider​
Changing password with z/OSMF provider​

Using Metrics Service (Technical Preview)
Using Metrics Service (Technical Preview)

API Mediation Layer Metrics Service Demo Video​
View HTTP Metrics in the Metrics Service Dashboard​

SMF records
SMF records

Configure the main Zowe server to issue SMF records​
SMF record configurable parameters​

Configure rauditx parameters​
Using Zowe CLI
Using Zowe CLI

Supported CPU architectures, operating systems, and package/resource managers​
Operating systems​
Package/resource managers​

Displaying help
Displaying help

Top-level help​
Group, action, and object help​
Launch local web help​
Viewing web help​

How command precedence works
How command precedence works

Command precedence in action​
Understanding core command groups

Understanding core command groups
auth​
config​
daemon​
plugins​
profiles​
provisioning​
zos-console​
zos-files​
zos-jobs​
zos-ssh​
zos-workflows​
zos-tso​
zosmf​

Issuing your first command
Issuing your first command
Team configurations
Team configurations

Types of configuration files​
Zowe CLI profile types​
Updating secure credentials​
Benefits of team profiles​
Important information about team profiles​

Initializing team configuration
Initializing team configuration

Creating a global team configuration file​
Creating team plug-in profiles​
Connecting profiles to API Mediation Layer​

Testing connections to z/OSMF
Testing connections to z/OSMF

Without a profile​
Default profile​
Specific profile​

Team configuration for application developers
Team configuration for application developers

Initializing user configuration​
Editing team configurations​

Team configuration for team leaders
Team configuration for team leaders

Sharing team configuration files​
Profile scenarios​

Access to one or more LPARs that contain services that share the same credentials​
Access to one or more LPARs contain services that do not share the same credentials​
Access to LPARs that access services through one API Mediation Layer​
Access to LPARs that access services through one API Mediation Layer using certificate authentication​

Sharing team configuration files
Sharing team configuration files

Network drive​
Project repository and web server​

How Zowe CLI uses configurations
How Zowe CLI uses configurations

Learning the terminology​
How configuration files and profiles work together​
Using a profile found in multiple configuration files​
Using multiple properties found in multiple profiles​

Managing credential security
Managing credential security

Secure credential storage​
Configuring secure properties​
Updating secure properties​
Setting secure properties programmatically​

Storing properties automatically
Storing properties automatically
Using daemon mode
Using daemon mode

Preparing for installation​
Enable daemon mode​
Restart daemon mode​
Disable daemon mode​

Configure daemon mode on z/Linux operating systems
Configure daemon mode on z/Linux operating systems
Using V1 profiles
Using V1 profiles

Zowe CLI v1 profile types​
Tips for using Zowe CLI v1 profiles​

Displaying profile help​
Service profiles​
Base profiles​

Tips for using base profiles​
Profile best practices​
Testing connections to z/OSMF​

Without a profile​
Default profile​
Specific profile​

Integrating with API Mediation Layer
Integrating with API Mediation Layer

How token management works​
Logging in​
Logging out​
Accessing a service through API ML​

Specifying a base path with Zowe V2 profiles​
Specifying a base path with Zowe V1 profiles​

Accessing multiple services with SSO​
Accessing services through SSO and a service not through API ML​

Accessing services through SSO and a service through API ML but not SSO​
Using client certificates to authenticate to API ML​

Working with certificates
Working with certificates

Configure certificates signed by a Certificate Authority (CA)​
Extend trusted certificates on client​
Bypass certificate requirement​

Using environment variables
Using environment variables

Store credentials securely in CI/CD pipelines​
Formatting environment variables
Formatting environment variables

Examples of transformed CLI options​
Setting environment variables in an automation server
Setting environment variables in an automation server
Using the prompt feature
Using the prompt feature

Enabling a one-time prompt​
Always prompting for a particular option​

Writing scripts
Writing scripts

Sample script library​
Example: Clean up Temporary Data Sets​
Example: Submit Jobs and Save Spool Output​

Zowe CLI plug-ins
Zowe CLI plug-ins
Software requirements for Zowe CLI plug-ins
Software requirements for Zowe CLI plug-ins
Installing Zowe CLI plug-ins
Installing Zowe CLI plug-ins

Installing plug-ins from an online registry​
Installing plug-ins from a local package​
Validating plug-ins​
Updating plug-ins​

Update plug-ins from an online registry​
Update plug-ins from a local package​

Uninstall Plug-ins​
IBM® CICS® Plug-in for Zowe CLI
IBM® CICS® Plug-in for Zowe CLI

Use cases​
Commands​
Software requirements​
Installing​
Creating a user profile​

Creating plug-in profiles using a configuration file​
Creating plug-in profiles using a command​

IBM® Db2® Database Plug-in for Zowe CLI

IBM® Db2® Database Plug-in for Zowe CLI
Use cases​
Commands​
Software requirements​
Installing​

Installing from an online registry​
Installing from a local package​

Downloading the ODBC driver​
Installing Xcode on MacOS​
Installing the plug-in​

Addressing the license requirement​
Server-side license​
Client-side license​

Creating a user profile​
Creating plug-in profiles using a configuration file​
Creating plug-in profiles using a command​

M1 processor installation
M1 processor installation
IBM® z/OS FTP Plug-in for Zowe CLI
IBM® z/OS FTP Plug-in for Zowe CLI

Use cases​
Commands​
Software requirements​
Installing​
Creating a user profile​

Creating plug-in profiles using a configuration file​
Creating plug-in profiles using a command​
Issuing test commands​

IBM® IMS™ Plug-in for Zowe CLI
IBM® IMS™ Plug-in for Zowe CLI

Use cases​
Commands​
Software requirements​
Installing​
Creating user profiles​

Creating plug-in profiles using a configuration file​
Creating plug-in profiles using a command​

IBM® MQ Plug-in for Zowe CLI
IBM® MQ Plug-in for Zowe CLI

Use cases​
Using IBM MQ plug-in commands​
Software requirements​
Installing​
Creating a user profile​

Creating plug-in profiles using a configuration file​
Creating plug-in profiles using a command​

IDF Plug-in for Zowe CLI

IDF Plug-in for Zowe CLI
Use case​
Commands​
Software requirements​
Installing​
Using​

CSV Format​
Output​

Using Zowe Explorer
Using Zowe Explorer

Supported operating systems, environments, and platforms​
Operating systems​
Integrated development environments:​

Using Zowe Explorer in remote environments​
Using a specific version of Zowe Explorer​

Zowe Explorer is installed​
Preventing automatic version updates​
Installing a specific previous version​

Zowe Explorer is not installed​
Installing a previous version of Zowe Explorer​

Credentials in Zowe Explorer​
Preventing Zowe Explorer from storing credentials​
Disabling Secure Credential Storage of credentials​

Zowe Explorer v2​
Zowe Explorer v1​

Usage tips
Usage tips

Data sets, USS, and jobs persistence settings​
Identify syntax errors with a syntax highlighter​
Configure the detected language of a file or data set​
Edit a profile​
Delete a profile​
Hide a profile​
Open recent members​

Working with data sets
Working with data sets

Viewing data sets and using multiple filters​
Viewing data sets with member filters​
Refreshing the list of data sets​
Renaming data sets​
Copying data set members​
Editing and uploading a data set member​
Preventing merge conflicts​
Creating data sets and specifying parameters​
Creating data sets and data set members​
Deleting a data set member and a data set​
Viewing data set, member attributes​

Viewing and accessing multiple profiles simultaneously​
Filtering partitioned data set members​

Filtering all partitioned data set members under a specific profile​
Filtering members for a single partitioned data set​

Sorting partitioned data set members​
Sorting all partitioned data set members under a specific profile​
Sorting members for a single partitioned data set​

Submiting a JCL​
Allocate like​

Working with USS files
Working with USS files

Viewing Unix System Services (USS) files​
Refreshing the list of files​
Renaming USS files​
Downloading, editing, and uploading existing USS files​
Creating and deleting USS files and directories​

Creating a directory​
Creating a file​
Deleting a file​
Deleting a directory​

Viewing and accessing multiple USS profiles simultaneously​
Working with jobs
Working with jobs

Viewing a job​
Downloading spool content​
Sorting jobs​
Issuing MVS commands​
Issuing TSO commands​
Polling a spool file​

Defining a default interval for polling spool files​
Polling a spool file at set intervals​
Stopping spool file polling​
Polling a spool file manually​
Configuring the keyboard shortcut for manual polling​

Zowe Explorer CICS Extension
Zowe Explorer CICS Extension

Installing​
Installing from Visual Studio Code Extensions​
Installing from a VSIX file​

Uninstalling​
Using Zowe Explorer CICS Extension
Using Zowe Explorer CICS Extension

System requirements​
Client side requirements​
Server side requirements​

Features​
Creating Zowe Explorer CICS Extension profiles

Creating Zowe Explorer CICS Extension profiles
Using Zowe team configuration​

Using Zowe V1 profiles​
Updating profiles​

Updating profiles using Zowe team profiles​
Updating Zowe V1 profiles​

Hiding profiles​
Deleting profiles​

Deleting Zowe team profiles​
Deleting Zowe V1 profiles​

Using CICS resources
Using CICS resources

Showing and filtering resources in a region​
Showing and filtering resources in a plex​
Showing and filtering resources in an 'All' resource tree​
Showing attributes​
Enabling and disabling​
New copy and phase in​
Opening and closing local files​

Overriding untrusted TLS certificates
Overriding untrusted TLS certificates
Usage tips
Usage tips
Providing feedback and contributing
Providing feedback and contributing

Filing an issue​
Chatting with the community​

Zowe Explorer FTP Extension
Zowe Explorer FTP Extension

Installing​
Uninstalling​

Using Zowe Explorer FTP Extension
Using Zowe Explorer FTP Extension

System Requirements​
Using​
Creating an FTP profile with Zowe Explorer​

Supported functionality
Supported functionality

Supported data set functionalities​
Supported USS functionalities​
Supported jobs functionalities​

Providing feedback and contributing
Providing feedback and contributing

Chatting with the community​
Using Zowe Chat
Using Zowe Chat

Mouse navigation​

Interacting through commands​
Zowe Chat commands​
Zowe CLI commands​

Using Zowe IntelliJ plug-in
Using Zowe IntelliJ plug-in

Settings​
Auto-sync option​
Batch size option​

Working with Files Working Sets​
Working with z/OS PS datasets​
Working with z/OS PDS datasets​
"Allocate Like" feature​
"Submit Job" feature​
Working with USS files​
Copy/move functionality​
Cross-system copy​

Working with JES Working Sets​
TSO Command Line Interface​

Working Sets Concept
Working Sets Concept

Files Working Set​
JES Working Set​

Using Zowe SDKs
Using Zowe SDKs

SDK documentation​
Software requirements​

Java SDK​
Node.js SDK​
Python SDK​

Getting started​
Install Java SDK from an online registry​
Install Node.js from an online registry​
Install Pyhton SDK from an online registry​
Install Node.js and Python SDKs from a local package​

Using​
Using - Java​
Using - Node.js​
Using - Python​

Contributing​
Extending Zowe
Extending Zowe

Extending the server side​
Extending Zowe API Mediation Layer​
Developing for Zowe Application Framework​

Extending the client side​
Extend Zowe CLI​
Extend Zowe Explorer​

Add a plug-in to the Zowe Desktop​
Sample extensions​

Sample Zowe API and API Catalog onboarded service​
Sample Zowe Desktop extension​

Zowe Conformance Program
Zowe Conformance Program

Introduction​
How to participate​
How to suggest updates to the Zowe conformance program​

Packaging z/OS extensions
Packaging z/OS extensions

Zowe server component package format​
Zowe component manifest​
Sample manifests​

Server component schemas
Server component schemas

Requirements​
Additional information​
Example​

Example manifest​
Example schema​

Validation​
Component package registries
Component package registries

Registry examples​
Installing an extension​
Upgrading an extension​
Uninstalling extensions​
Searching for extensions​

Configuring zwe to use a registry​
Using multiple registries​
Setting up a registry​

npm​
Making your own handler​

Handler code​
Component Packaging Requirements​

npm​
Additional resources​

Zowe server component runtime lifecycle
Zowe server component runtime lifecycle

Zowe runtime lifecycle​
Zowe component runtime lifecycle​

Validate​
Configure​
Start​

Creating and adding Zowe extension containers
Creating and adding Zowe extension containers

1. Build and publish an extension image to a registry​
2. Define Deployment or Job object​
3. Start your component​

Zowe Containerization Conformance Criteria
Zowe Containerization Conformance Criteria

Image​
Base Image​
Multi-CPU Architecture​
Image Label​
Tag​
Files and Directories​
User zowe​
Multi-Stage Build​

Runtime​
General rules​
Persistent Volume(s)​
Files and Directories​
ConfigMap and Secrets​
ompzowe/zowe-launch-scripts Image and initContainers​
Command Override​
Environment Variables​

CI/CD​
Build, Test and Release​

Onboarding Overview
Onboarding Overview

Prerequisites​
Service Onboarding Guides​

Recommended guides for services using Java​
Recommended guides for services using Node.js​
Guides for Static Onboarding and Direct Call Onboarding​
Documentation for legacy enablers​

Verify successful onboarding to the API ML​
Verifying service discovery through Discovery Service​
Verifying service discovery through the API Catalog​

Sample REST API Service​
Managing certificates in Zowe API Mediation Layer
Managing certificates in Zowe API Mediation Layer

Running on localhost​
How to start API ML on localhost with full HTTPS​
Certificate management guide​
Generate a certificate for a new service on localhost​
Add a service with an existing certificate to API ML on localhost​
Service registration to Discovery Service on localhost​

Zowe runtime on z/OS​
Import the local CA certificate to your browser​
Generate a keystore and truststore for a new service on z/OS​
Add a service with an existing certificate to API ML on z/OS​

Procedure if the service is not trusted​
Truststore and keystore or SAF keyring​

API ML truststore and keystore​
API ML SAF Keyring​

Quick Start for Development
Quick Start for Development
Deploying API Mediation Layer locally
Deploying API Mediation Layer locally

General information​
Dummy Authentication Provider​

Onboarding a REST API service with the Plain Java Enabler (PJE)
Onboarding a REST API service with the Plain Java Enabler (PJE)

Introduction​
Onboarding your REST service with API ML​
Prerequisites​
Configuring your project​

Gradle build automation system​
Maven build automation system​

Configuring your service​
REST service identification​
Administrative endpoints​
API info​
API routing information​
API Catalog information​
Authentication parameters​
API Security​
SAF Keyring configuration​
Eureka Discovery Service​
Custom Metadata​

Registering your service with API ML​
Validating the discoverability of your API service by the Discovery Service​
Troubleshooting​

Log messages during registration problems​
API Mediation Layer onboarding configuration
API Mediation Layer onboarding configuration

Introduction​
Configuring a REST service for API ML onboarding​
Plain Java Enabler service onboarding API​

Automatic initialization of the onboarding configuration by a single method call​
Validating successful onboarding with the API Mediation Layer​
Loading YAML configuration files​

Loading a single YAML configuration file​
Loading and merging two YAML configuration files​

Using API Mediation Layer Message Service
Using API Mediation Layer Message Service

Message Definition​
Creating a message​

Mapping a message​
API ML Logger​

Onboarding a Spring Boot based REST API Service
Onboarding a Spring Boot based REST API Service

Outline of onboarding a REST service using Spring Boot​
Selecting a Spring Boot Enabler​
Configuring your project​

Gradle build automation system​
Maven build automation system​

Configuring your Spring Boot based service to onboard with API ML​
Sample API ML Onboarding Configuration​
Authentication properties​
API ML Onboarding Configuration Sample​
SAF Keyring configuration​
Custom Metadata​

Registering and unregistering your service with API ML​
Unregistering your service with API ML​
Basic routing​

Adding API documentation​
Validating the discoverability of your API service by the Discovery Service​
Troubleshooting​

Log messages during registration problems​
Onboarding a Micronaut based REST API service
Onboarding a Micronaut based REST API service

Set up your build automation system​
Configure the Micronaut application​

Add API ML configuration​
Add Micronaut configuration​
(Optional) Set up logging configuration​

Validate successful registration​
Onboarding a Node.js based REST API service
Onboarding a Node.js based REST API service

Introduction​
Onboarding your Node.js service with API ML​
Prerequisites​
Installing the npm dependency​
Configuring your service​
Registering your service with API ML​
Validating the discoverability of your API service by the Discovery Service​

Onboarding a REST API without code changes required
Onboarding a REST API without code changes required

Identify the APIs that you want to expose​
Define your service and API in YAML format​
Route your API​
Customize configuration parameters​
Add and validate the definition in the API Mediation Layer running on your machine​
Add a definition in the API Mediation Layer in the Zowe runtime​

(Optional) Check the log of the API Mediation Layer​
(Optional) Reload the services definition after the update when the API Mediation Layer is already started​

Customizing Metadata (optional)
Customizing Metadata (optional)
API ML Routing Overview
API ML Routing Overview

Basic Routing​
Deployments​

Making a GET call to a service through single instance of API ML​
A GET call to a service with a single version on a single instance​
A GET call to a service with multiple versions on a single instance​
GET calls to multiple instances of a service​

A GET call to a service through multiple API Mediation Layer Instances​
Same LPAR Multiple API Mediation Layer Instances​
Different LPAR Multiple API Mediation Layer Instances​

Advanced Configuration​
Implementing routing to the API Gateway
Implementing routing to the API Gateway

Basic Routing using only the service ID​
API Versioning
API Versioning

Versioning​
REST​

Data Model​
Service and instance​

API Versioning​
Routing Websocket based APIs
Routing Websocket based APIs

Configuring the service for Websockets​
Creating an Extension for API ML
Creating an Extension for API ML

Call the REST endpoint for validation​
Implementing a new SAF IDT provider
Implementing a new SAF IDT provider

How to create a SAF IDT provider​
How to integrate your extension with API ML​
How to use the SAF IDT provider​
How to use an existing SAF IDT provider​

Single Sign On Integration for Extenders
Single Sign On Integration for Extenders

Accepting JWT​
Accepting SAF IDT​
Accepting PassTickets​
Bypassing authentication​
Custom way to accept client certificates​
Accepting z/OSMF LTPA token​

ZAAS Client

ZAAS Client
Pre-requisites​
API Documentation​

Obtain a JWT token (login)​
Validate and get details from the token (query)​
Invalidate a JWT token (logout)​
Obtain a PassTicket (passTicket)​

Getting Started (Step by Step Instructions)​
Zowe Application Framework overview
Zowe Application Framework overview

How Zowe Application Framework works​
Tutorials​
Samples​

Sample Iframe App​
Sample Angular App​
Sample React App​
User Browser Workshop Starter App​

Plug-ins definition and structure
Plug-ins definition and structure

pluginDefinition.json​
Application Plugin filesystem structure​

Root files and directories​
Dev and source content​

nodeServer​
webClient​

Runtime content​
lib​
web​
Packaging applications as compressed files​

Default user configuration​
App-to-App Communication​
Documentation​

Location of Plugin files​
pluginsDir directory​

Application Dataservices​
Application Configuration Data​

Building plugin apps
Building plugin apps

Building web content​
Building app server content​
Building zss server content​
Tagging plugin files on z/OS​
Building Javascript content (*.js files)​
Installing​
Packaging​

Installing Plugins
Installing Plugins

By filesystem​
Adding/Installing​
Removing​
Upgrading​
Modifying without server restart (Exercise to the reader)​

By REST API​
Plugin management during development​

Installing​
Removing​

Embedding plugins
Embedding plugins

How to interact with embedded plugin​
How to destroy embedded plugin​
How to style a container for the embedded plugin​
Applications that use embedding​

Dataservices
Dataservices

Defining dataservices​
Schema​
Defining Java dataservices​

Prerequisites​
Defining Java dataservices​
Defining Java Application Server libraries​
Java dataservice logging​
Java dataservice limitations​

Using dataservices with RBAC​
Dataservice APIs​

Router-based dataservices​
HTTP/REST Router dataservices​
WebSocket Router dataservices​
Router dataservice context​
Router storage API​

ZSS based dataservices​
HTTP/REST ZSS dataservices​
ZSS dataservice context and structs​
ZSS storage API​

Documenting dataservices​
Authentication API
Authentication API

Handlers​
Handler installation​
Handler configuration​
Handler context​
Handler capabilities​
Examples​
High availability (HA)​

REST API​

Check status​
Authenticate​
User not authenticated or not authorized​

Not authenticated​
Not authorized​
Refresh status​
Logout​
Password changes​

Internationalizing applications
Internationalizing applications

Internationalizing Angular applications​
Internationalizing React applications​
Internationalizing application desktop titles​

Zowe Desktop and window management
Zowe Desktop and window management

Loading and presenting application plug-ins​
Plug-in management​
Application management​
Windows and Viewports​
Viewport Manager​
Injection Manager​

Plug-in definition​
Logger​
Launch Metadata​
Viewport Events​
Window Events​
Window Actions​

Framework API examples​
Configuration Dataservice
Configuration Dataservice

Resource Scope​
REST API​

REST query parameters​
REST HTTP methods​

GET​
PUT​
DELETE​

Administrative access and group​
Application API​
Internal and bootstrapping​
Packaging Defaults​
Plug-in definition​
Aggregation policies​
Examples​

URI Broker
URI Broker

Accessing the URI Broker​

Natively:​
In an iframe:​

Functions​
Accessing an application plug-in's dataservices​

HTTP Dataservice URI​
Websocket Dataservice URI​

Accessing application plug-in's configuration resources​
Standard configuration access​
Scoped configuration access​

Accessing static content​
Accessing the application plug-in's root​
Server queries​

Accessing a list of plug-ins​
Application-to-application communication
Application-to-application communication

Why use application-to-application communication?​
Actions​

Action target modes​
Action types​
Loading actions​
App2App via URL​

Samples​
Dynamically​
Saved on system​

Recognizers​
Recognition clauses​
Loading Recognizers at runtime​

Dynamically​
Saved on system​

Recognizer example​
Dispatcher​
Registry​
Pulling it all together in an example​

Configuring IFrame communication
Configuring IFrame communication
Error reporting UI
Error reporting UI

ZluxPopupManagerService​
ZluxErrorSeverity​
ErrorReportStruct​
Implementation​

Declaration​
Usage​
HTML​

Logging utility
Logging utility

Logging objects​

Logger IDs​
Accessing logger objects​

Logger​
App Server​
Web​

Component logger​
App Server​

Logger API​
Component Logger API​
Log Levels​
Logging verbosity​

Configuring logging verbosity​
Server startup logging configuration​

Using log message IDs​
Message ID logging examples​

Using Conda to make and manage packages of Application Framework Plugins
Using Conda to make and manage packages of Application Framework Plugins

Initial Conda setup​
Managing Conda channels​
Searching for packages​
Using Conda with Zowe​

Setting environment variables temporarily:​
Setting environment variables persistently​
Installing a Zowe plugin​
Zowe plugin configuration​
Zowe package structure​

Building Conda packages for Zowe​
Defining package properties​
Creating build step​
Lifecycle scripts​

Install automation​
Uninstall automation​

Adding configuration to Conda packages​
Developing for Zowe CLI
Developing for Zowe CLI

How to contribute​
Getting started​

Contribution guidelines​
Tutorials​
Plug-in development overview​
Imperative CLI Framework documentation​
Authentication mechanisms​

Setting up your development environment
Setting up your development environment

Prerequisites​
Initial setup​
Branches​

Clone zowe-cli-sample-plugin and build from source​
(Optional) Run the automated tests​

Next steps​
Creating plug-in lifecycle actions
Creating plug-in lifecycle actions

Implenting lifeycyle actions​
Installing the sample plug-in
Installing the sample plug-in

Overview​
Installing the sample plug-in to Zowe CLI​
Viewing the installed plug-in​
Using the installed plug-in​
Testing the installed plug-in​
Next steps​

Extending a plug-in
Extending a plug-in

Overview​
Creating a Typescript interface for the Typicode response data​
Creating a programmatic API​

Exporting interface and programmatic API for other Node.js applications​
Checkpoint one​
Creating a command definition​

Defining command to list group​
Creating a command handler​
Checkpoint two​

Using the installed plug-in​
Summary​
Next steps​

Developing a new Zowe CLI plug-in
Developing a new Zowe CLI plug-in

Overview​
Setting up the new sample plug-in project​
Updating package.json​
Adjusting Imperative CLI Framework configuration​
Adding third-party packages​
Creating a Node.js client-side API​
Building your plug-in source​
Creating a Zowe CLI command​
Trying your command​
Bringing together new tools!​
Next steps​

Implementing profiles in a plug-in
Implementing profiles in a plug-in
Extending Zowe Explorer
Extending Zowe Explorer
Information roadmap for Zowe Client SDKs
Information roadmap for Zowe Client SDKs

Fundamentals​
Installing​
Using Zowe Client SDKs​

Zowe Node.js SDK​
Zowe Python SDK​

Contributing to Zowe Client SDKs​
Troubleshooting and support​
Community resources​

Developing for Zowe SDKs
Developing for Zowe SDKs
Troubleshooting Zowe
Troubleshooting Zowe

How to start troubleshooting​
Known problems and solutions​

Troubleshooting Zowe server-side components​
Troubleshooting Zowe client-side components​

Verifying a Zowe release's integrity​
Understanding the Zowe release​

Understanding Zowe release versions
Understanding Zowe release versions

Zowe releases​
Major release​
Minor release​
Patch​

Checking your Zowe version release number
Checking your Zowe version release number

Server side​
Using other commands​
Using the manifest file​

Client side​
Zowe CLI​
Zowe CLI plug-ins​
Zowe Explorer for Visual Studio Code​
Zowe Explorer for Visual Studio Code Extensions​
Zowe IntelliJ Plug-in​

Gathering Information for Support or Troubleshooting
Gathering Information for Support or Troubleshooting

Describe your environment​
Tips on gathering this information​

z/OS release level​
Zowe version​

Describe your issue​
Provide the logs​

Enabling debugging and tracing​
Screenshots​

Verify Zowe runtime directory
Verify Zowe runtime directory

Troubleshooting Kubernetes environments
Troubleshooting Kubernetes environments

ISSUE: Deployment and ReplicaSet failed to create pod​
ISSUE: Failed to create services​

Diagnosing Return Codes
Diagnosing Return Codes
Troubleshooting certificate configuration
Troubleshooting certificate configuration

PKCS12 server keystore generation fails in Java 8 SR7FP15, SR7 FP16, and SR7 FP20​
Eureka request failed when using entrusted signed z/OSMF certificate​
Zowe startup fails with empty password field in the keyring setup​
Certificate error when using both an external certificate and Single Sign-On to deploy Zowe​
Browser unable to connect due to a CIPHER error​
API Components unable to handshake​
Java z/OS components of Zowe unable to read certificates from keyring​
Java z/OS components of Zowe cannot load the certificate private key pair from the keyring​
Exception thrown when reading SAF keyring {ZWED0148E}​
ZWEAM400E Error initializing SSL Context when using Java 11​
Failed to load JCERACFKS keyring when using Java 11​

Troubleshooting startup of Zowe z/OS components
Troubleshooting startup of Zowe z/OS components

How to check if ZWESLSTC startup is successful​
Check the startup of API Mediation Layer​
Check the startup of Zowe Desktop​
Check the startup of Zowe Secure Services​

Troubleshooting Zowe API Mediation Layer
Troubleshooting Zowe API Mediation Layer

Install API ML without Certificate Setup​
Enable API ML Debug Mode​
Change the Log Level of Individual Code Components​

Gather atypical debug information​
Services that are not running appear to be running​
Debug and Fix Common Problems with SSL/TLS Setup​
SDSF Job search fails​

Solution:​
Known Issues​

API ML stops accepting connections after z/OS TCP/IP stack is recycled​
SEC0002 error when logging in to API Catalog​

Connection refused​
Configure z/OSMF​
Missing z/OSMF host name in subject alternative names​
Secure fix​
Insecure fix​
Invalid z/OSMF host name in subject alternative names​
Request a new certificate​
Re-create the Zowe keystore​

API ML throws I/O error on GET request and cannot connect to other services​

Error Message Codes
Error Message Codes

API mediation utility messages​
ZWEAM000I​
ZWEAM001I​

API mediation common messages​
ZWEAO102E​
ZWEAO104W​
ZWEAO105W​
ZWEAO106W​
ZWEAO401E​

Common service core messages​
ZWEAM100E​
ZWEAM101E​
ZWEAM102E​
ZWEAM103E​
ZWEAM104E​
ZWEAG140E​
ZWEAG141E​
ZWEAM400E​
ZWEAM500W​
ZWEAM501W​
ZWEAM502E​
ZWEAM503E​
ZWEAM504E​
ZWEAM505E​
ZWEAM506E​
ZWEAM507E​
ZWEAM508E​
ZWEAM509E​
ZWEAM510E​
ZWEAM511E​
ZWEAM600W​
ZWEAM700E​
ZWEAM701E​

Security common messages​
ZWEAT100E​
ZWEAT103E​
ZWEAT403E​
ZWEAT409E​
ZWEAT410E​
ZWEAT411E​
ZWEAT412E​
ZWEAT413E​
ZWEAT414E​
ZWEAT415E​
ZWEAT416E​

ZWEAT500E​
ZWEAT501E​
ZWEAT502E​
ZWEAT503E​
ZWEAT504E​
ZWEAT505E​
ZWEAT601E​
ZWEAT602E​
ZWEAT603E​
ZWEAT604E​
ZWEAT605E​
ZWEAT606E​
ZWEAT607E​
ZWEAT608E​
ZWEAT609W​

Security client messages​
ZWEAS100E​
ZWEAS101E​
ZWEAS103E​
ZWEAS104E​
ZWEAS105E​
ZWEAS120E​
ZWEAS121E​
ZWEAS123E​
ZWEAS130E​
ZWEAS131E​

ZAAS client messages​
ZWEAS100E​
ZWEAS120E​
ZWEAS121E​
ZWEAS122E​
ZWEAS170E​
ZWEAS400E​
ZWEAS401E​
ZWEAS404E​
ZWEAS417E​
ZWEAS130E​
ZWEAS500E​
ZWEAS501E​
ZWEAS502E​
ZWEAS503E​

Discovery service messages​
ZWEAD400E​
ZWEAD401E​
ZWEAD700W​
ZWEAD701E​
ZWEAD702W​

ZWEAD703E​
ZWEAD704E​

Gateway service messages​
ZWEAG500E​
ZWEAG700E​
ZWEAG701E​
ZWEAG702E​
ZWEAG704E​
ZWEAG705E​
ZWEAG706E​
ZWEAG707E​
ZWEAG708E​
ZWEAG709E​
ZWEAG710E​
ZWEAG711E​
ZWEAG712E​
ZWEAG713E​
ZWEAG714E​
ZWEAG715E​
ZWEAG716E​
ZWEAG717E​
ZWEAG718E​
ZWEAG719I​
ZWEAG100E​
ZWEAG101E​
ZWEAG102E​
ZWEAG103E​
ZWEAG104E​
ZWEAG105E​
ZWEAG106W​
ZWEAG107W​
ZWEAG108E​
ZWEAG109E​
ZWEAG110E​
ZWEAG120E​
ZWEAG121E​
ZWEAS123E​
ZWEAG130E​
ZWEAG131E​
ZWEAG150E​
ZWEAG151E​
ZWEAG160E​
ZWEAG161E​
ZWEAG162E​
ZWEAG163E​
ZWEAG164E​
ZWEAG165E​

ZWEAG166E​
ZWEAG167E​
ZWEAG168E​
ZWEAG169E​
ZWEAG170E​
ZWEAG171E​
ZWEAT607E​
ZWEAG180E​
ZWEAG181W​
ZWEAG182E​
ZWEAG183E​
ZWEAG184E​
ZWEAG185W​
ZWEAG186E​
ZWEAG187W​
ZWEAG188W​

API Catalog messages​
ZWEAC100W​
ZWEAC101E​
ZWEAC102E​
ZWEAC103E​
ZWEAC104E​
ZWEAC700E​
ZWEAC701W​
ZWEAC702E​
ZWEAC703E​
ZWEAC704E​
ZWEAC705W​
ZWEAC706E​
ZWEAC707E​
ZWEAC708E​
ZWEAC709E​

Troubleshooting Zowe Application Framework
Troubleshooting Zowe Application Framework

Desktop apps fail to load​
NODEJSAPP disables immediately​
Cannot log in to the Zowe Desktop​

ZSS server unable to communicate with ZIS​
Application Framework unable to communicate with zssServer​
Slow performance of the VT terminal on SSH​
Application Framework unable to communicate with API Mediation Layer​

Server startup problem ret=1115​
Server error EACCESS on z/os​
Application plug-in not in Zowe Desktop​
Error: You must specify MVD_DESKTOP_DIR in your environment​
Error: Exception thrown when reading SAF keyring {ZWED0148E}​
Warning: Problem making eureka request { Error: connect ECONNREFUSED }​

Warning: Zowe extensions access to ZSS security endpoints fail​
Gathering information to troubleshoot Zowe Application Framework
Gathering information to troubleshoot Zowe Application Framework

Basic information​
Javascript console output​

Raising a Zowe Application Framework issue on GitHub
Raising a Zowe Application Framework issue on GitHub
Enabling tracing
Enabling tracing

Basic debugging​
Advanced debugging for App Server​
Advanced debugging for ZSS​

App-server Return Codes
App-server Return Codes
App-server Error Message Codes
App-server Error Message Codes

App-server informational messages​
ZWED0020I​
ZWED0021I​
ZWED0022I​
ZWED0023I​
ZWED0024I​
ZWED0025I​
ZWED0026I​
ZWED0027I​
ZWED0028I​
ZWED0029I​
ZWED0031I​
ZWED0033I​
ZWED0036I​
ZWED0037I​
ZWED0038I​
ZWED0039I​
ZWED0040I​
ZWED0041I​
ZWED0042I​
ZWED0043I​
ZWED0044I​
ZWED0045I​
ZWED0046I​
ZWED0047I​
ZWED0048I​
ZWED0049I​
ZWED0050I​
ZWED0052I​
ZWED0053I​
ZWED0054I​

ZWED0055I​
ZWED0056I​
ZWED0059I​
ZWED0062I​
ZWED0064I​
ZWED0066I​
ZWED0067I​
ZWED0070I​
ZWED0072I​
ZWED0086I​
ZWED0087I​
ZWED0090I​
ZWED0091I​
ZWED0092I​
ZWED0093I​
ZWED0094I​
ZWED0095I​
ZWED0096I​
ZWED0109I​
ZWED0110I​
ZWED0111I​
ZWED0112I​
ZWED0114I​
ZWED0115I​
ZWED0116I​
ZWED0117I​
ZWED0118I​
ZWED0119I​
ZWED0120I​
ZWED0124I​
ZWED0125I​
ZWED0129I​
ZWED0130I​
ZWED0154I​
ZWED0158I​
ZWED0159E​
ZWED0160I​
ZWED0205I​
ZWED0211I​
ZWED0212I​
ZWED0213I​
ZWED0214I​
ZWED0287I​
ZWED0290I​
ZWED0292I​
ZWED0294I​
ZWED0295I​

ZWED0299I​
ZWED0300I​
ZWED0301I​
ZWED0302I​

App-server warning messages​
ZWED0004W​
ZWED0006W​
ZWED0007W​
ZWED0008W​
ZWED0013W​
ZWED0014W​
ZWED0015W​
ZWED0016W​
ZWED0017W​
ZWED0018W​
ZWED0019W​
ZWED0020W​
ZWED0021W​
ZWED0027W​
ZWED0028W​
ZWED0029W​
ZWED0030W​
ZWED0032W​
ZWED0033W​
ZWED0034W​
ZWED0035W​
ZWED0036W​
ZWED0037W​
ZWED0038W​
ZWED0039W​
ZWED0040W​
ZWED0041W​
ZWED0042W​
ZWED0043W​
ZWED0044W​
ZWED0045W​
ZWED0046W​
ZWED0048W​
ZWED0049W"​
ZWED0051W​
ZWED0052W​
ZWED0053W​
ZWED0054W​
ZWED0055W​
ZWED0056W​
ZWED0057W​
ZWED0058W​

ZWED0059W​
ZWED0060W​
ZWED0061W​
ZWED0062W​
ZWED0063W​
ZWED0064W​
ZWED0065W​
ZWED0066W​
ZWED0068W​
ZWED0069W​
ZWED0070W​
ZWED0071W​
ZWED0072W​
ZWED0073W​
ZWED0074W​
ZWED0075W​
ZWED0076W​
ZWED0077W​
ZWED0078W​
ZWED0079W​
ZWED0080W​
ZWED0081W​
ZWED0082W​
ZWED0083W​
ZWED0084W​
ZWED0085W​
ZWED0086W​
ZWED0087W​
ZWED0146W​
ZWED0148W​
ZWED0149W​
ZWED0150W​
ZWED0151W​
ZWED0152W​
ZWED0153W​
ZWED0154W​
ZWED0155W​
ZWED0156W​
ZWED0157W​
ZWED0158W​
ZWED0159W​
ZWED0166W​
ZWED0167W​
ZWED0168W​
ZWED0169W​
ZWED0170W​
ZWED0171W​

ZWED0172W​
ZWED0173W​
ZWED0174W​
ZWED0175W​
ZWED0177W​
ZWED0178W​
ZWED0179W​

App-server error messages​
ZWED0001E​
ZWED0002E​
ZWED0003E​
ZWED0004E​
ZWED0005E​
ZWED0006E​
ZWED0007E​
ZWED0008E​
ZWED0009E​
ZWED0010E​
ZWED0011E​
ZWED0012E​
ZWED0013E​
ZWED0014E​
ZWED0015E​
ZWED0016E​
ZWED0017E​
ZWED0018E​
ZWED0019E​
ZWED0020E​
ZWED0021E​
ZWED0022E​
ZWED0023E​
ZWED0024E​
ZWED0025E​
ZWED0026E​
ZWED0027E​
ZWED0028E​
ZWED0038E​
ZWED0039E​
ZWED0040E​
ZWED0041E​
ZWED0042E​
ZWED0043E​
ZWED0044E​
ZWED0045E​
ZWED0046E​
ZWED0047E​
ZWED0049E​

ZWED0050E​
ZWED0051E​
ZWED0052E​
ZWED0053E​
ZWED0111E​
ZWED0112E​
ZWED0113E​
ZWED0114E​
ZWED0115E​
ZWED0145E​
ZWED0146E​
ZWED0147E​
ZWED0148E​
ZWED0149E​
ZWED0150E​
ZWED0151E​
ZWED0152E​
ZWED0153E​
ZWED0154E​
ZWED0155E​
ZWED0156E​
ZWED0157E​
ZWED0158E​

ZSS Error Message Codes
ZSS Error Message Codes

ZSS informational messages​
ZWES1007I​
ZWES1008I​
ZWES1010I​
ZWES1013I​
ZWES1014I​
ZWES1035I​
ZWES1038I​
ZWES1039I​
ZWES1061I​
ZWES1063I​
ZWES1064I​
ZWES1100I​
ZWES1101I​
ZWES1102I​
ZWES1600I​
ZWES1601I​

ZSS error messages​
ZWES1001E​
ZWES1002E​
ZWES1006E​
ZWES1011E​

ZWES1016E​
ZWES1017E​
ZWES1020E​
ZWES1021E​
ZWES1022E​
ZWES1034E​
ZWES1036E​
ZWES1037E​
ZWES1065E​
ZWES1500E​

ZSS warning messages​
ZWES1000W​
ZWES1004W​
ZWES1005W​
ZWES1009W​
ZWES1012W​
ZWES1060W​
ZWES1103W​
ZWES1200W​
ZWES1201W​
ZWES1202W​
ZWES1103W​
ZWES1200W​
ZWES1202W​
ZWES1400W​
ZWES1401W​
ZWES1402W​
ZWES1403W​
ZWES1404W​
ZWES1406W​
ZWES1407W​
ZWES1408W​
ZWES1409W​
ZWES1410W​
ZWES1411W​
ZWES1412W​
ZWES1413W​
ZWES1414W​
ZWES1415W​
ZWES1416W​
ZWES1417W​
ZWES1418W​
ZWES1419W​
ZWES1602W​
ZWES1603W​
ZWES1604W​
ZWES1605W​

ZWES1606W​
ZIS Error Message Codes
ZIS Error Message Codes

ZIS cross-memory server messages​
ZWES0001I​
ZWES0002I​
ZWES0003I​
ZWES0004I​
ZWES0005E​
ZWES0006E​
ZWES0007E​
ZWES0008E​
ZWES0009E​
ZWES0010E​
ZWES0011E​
ZWES0012I​
ZWES0013E​
ZWES0014E​
ZWES0015E​
ZWES0016I​
ZWES0017W​
ZWES0018W​
ZWES0019W​
ZWES0020E​
ZWES0021E​
ZWES0098I​
ZWES0099I​

ZIS Auxiliary Server messages​
ZWES0050I​
ZWES0051I​
ZWES0052I​
ZWES0053E​
ZWES0054E​
ZWES0055E​
ZWES0056E​
ZWES0057E​
ZWES0058E​
ZWES0059E​
ZWES0060E​
ZWES0061E​
ZWES0062E​
ZWES0063E​
ZWES0064W​
ZWES0065W​
ZWES0066E​
ZWES0067E​
ZWES0068W​

ZWES0069W​
ZWES0070I​
ZWES0071I​
ZWES0072I​
ZWES0073I​
ZWES0074W​
ZWES0075W​
ZWES0076W​
ZWES0077W​
ZWES0078I​
ZWES0079I​
ZWES0080I​
ZWES0081E​
ZWES0082W​

Core cross-memory server messages​
ZWES0100I​
ZWES0101I​
ZWES0102E​
ZWES0103I​
ZWES0104I​
ZWES0105I​
ZWES0106E​
ZWES0107I​
ZWES0108W​
ZWES0109I​
ZWES0110E​
ZWES0111I​
ZWES0112E​
ZWES0113I​
ZWES0114I​
ZWES0115E​
ZWES0116E​
ZWES0117E​
ZWES0118E​
ZWES0200I​
ZWES0201E​
ZWES0202E​
ZWES0203E​
ZWES0204E​
ZWES0205E​
ZWES0206E​
ZWES0207E​
ZWES0208E​
ZWES0209E​
ZWES0210W​
ZWES0211E​
ZWES0212E​

ZWES0213E​
ZWES0214E​
ZWES0215E​
ZWES0216E​
ZWES0217E​
ZWES0218E​
ZWES0219E​
ZWES0220I​
ZWES0221I​
ZWES0222I​
ZWES0223I​
ZWES0224W​
ZWES0225W​
ZWES0226W​
ZWES0227W​
ZWES0228W​
ZWES0229W​
ZWES0230W​
ZWES0231E​
ZWES0232E​
ZWES0233E​
ZWES0234E​
ZWES0235E​
ZWES0236E​
ZWES0237E​
ZWES0238E​
ZWES0239E​
ZWES0240W​
ZWES0241E​
ZWES0242W​
ZWES0243W​
ZWES0244E​
ZWES0245E​
ZWES0246E​
ZWES0247W​
ZWES0248W​
ZWES0249E​
ZWES0250E​
ZWES0251I​
ZWES0252I​
ZWES0253I​
ZWES0254W​
ZWES0255E​
ZWES0256I​
ZWES0257W​

ZIS Dynamic Linkage Base plug-in messages​
ZWES0700I​

ZWES0701I​
ZWES0702E​
ZWES0703E​
ZWES0704I​
ZWES0705I​
ZWES0706E​
ZWES0707I​
ZWES0708I​
ZWES0710I​
ZWES0711I​
ZWES0712W​
ZWES0713W​
ZWES0714E​

Troubleshooting Zowe Launcher
Troubleshooting Zowe Launcher

Enable Zowe Launcher Debug Mode​
Error Message Codes
Error Message Codes

Zowe Launcher informational messages​
ZWEL0001I​
ZWEL0002I​
ZWEL0003I​
ZWEL0004I​
ZWEL0005I​

Zowe Launcher error messages​
ZWEL0030E​
ZWEL0038E​
ZWEL0040E​
ZWEL0047E​
ZWEL0073E​

Troubleshooting Zowe CLI
Troubleshooting Zowe CLI

When there is a problem​
Applicable environments​
Reaching out for support​
Resolving the problem​

Gathering information to troubleshoot Zowe CLI
Gathering information to troubleshoot Zowe CLI

Generating a working environment report​
Finding configuration file properties and locations​
Finding configuration file locations​
Finding property values used by a Zowe command​

Using individual commands for Zowe CLI troubleshooting
Using individual commands for Zowe CLI troubleshooting

Identify the currently installed CLI version​
Identify the currently installed versions of plug-ins​
Environment variables​

Log levels​
CLI daemon mode​
Home directory​

Home directory structure​
Location of logs​
Profile configuration​

Node.js and npm​
npm configuration​
npm log files​

Using cURL to troubleshoot Zowe CLI
Using cURL to troubleshoot Zowe CLI

Installing cURL​
Understanding cURL commands​

--location​
--request <API method>​
"https://<host>:<port>/<API>"​
--header "X-CSRF-ZOSMF-HEADER;"​
--insecure​
--user "<ID>:<PASSWORD>"​

Comparing commands​
z/OSMF Info API​

Submitting the cURL command:​
Submitting the Zowe CLI command:​

z/OSMF Files API​
Submitting the cURL command:​
Submitting the Zowe CLI command:​

z/OSMF Jobs API​
Submitting the cURL command:​
Submitting the Zowe CLI command:​

z/OSMF troubleshooting
z/OSMF troubleshooting

Alternative methods​
Troubleshooting Zowe CLI credentials
Troubleshooting Zowe CLI credentials

Secure credentials​
Authentication mechanisms​
PEM certificate files​

Known Zowe CLI issues
Known Zowe CLI issues

Zowe commands fail with secure credential errors​
Chain commands fail in a batch script​
Command not found message displays when issuing npm install commands​
EACCESS error when issing npm install command​
Installation fails on Oracle Linux 6​
Node.js commands do not respond as expected​
npm install -g command fails due to an EPERM error​
npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error​

Paths converting in Git Bash​
Sudo syntax required to complete some installations​

Raising a CLI issue on GitHub
Raising a CLI issue on GitHub

Raising a bug report​
Raising an enhancement report​

Troubleshooting Zowe CLI plug-ins
Troubleshooting Zowe CLI plug-ins

When there is a problem​
Error codes​
Reaching out for support​

IBM Db2 Database Plug-in troubleshooting
IBM Db2 Database Plug-in troubleshooting

Timeout error​
Unpacking error​
Downloading the ODBC driver manually​
Fixing a failed extraction​

Troubleshooting Zowe Explorer
Troubleshooting Zowe Explorer

Before reaching out for support​
Connection issues with Zowe Explorer​
Resolving invalid profiles​
Missing write access to VS Code extensions folder​

Known Zowe Explorer issues
Known Zowe Explorer issues

Bidirectional languages​
Client certificate support​
Data Set creation error​
Opening binary files error​
Theia mainframe connection error​

Known Zowe Explorer limitations
Known Zowe Explorer limitations

Mismatched credentials when using Zowe Explorer and Zowe CLI​
Limitation​
Workaround​

Raising a Zowe Explorer issue on GitHub
Raising a Zowe Explorer issue on GitHub

Raising a bug report​
Submitting a feature request​

Troubleshooting Zowe Chat
Troubleshooting Zowe Chat

Check the chatServer.log​
Raising a Zowe Chat issue on GitHub​
Contacting support via Slack​

Troubleshooting Zowe IntelliJ plug-in
Troubleshooting Zowe IntelliJ plug-in
Contributing to Zowe

Contributing to Zowe
Report bugs and enhancements​
Fix issues​
Send a Pull Request​
Report security issues​
Contribution guidelines​
Promote Zowe​
Helpful resources​

Code categories
Code categories

Programming languages​
Component-specific guidelines and tutorials​

General code style guidelines
General code style guidelines

Whitespaces​
Naming Conventions​

Functions and methods​
Variables​

Pull requests guidelines
Pull requests guidelines
Documentation Guidelines
Documentation Guidelines

Contributing to external documentation​
Component Categories​

Server Core​
Server Security​
Microservices​
Zowe Desktop Applications​
Web Framework​
CLI Plugins​
Core CLI Imperative CLI Framework​

Programming Languages​
Typescript​
Java​
C​

UI Guidelines
UI Guidelines

Introduction​
Clear​
Consistent​
Smart​

Colors
Colors

Color palette​
Light theme​
Dark theme​

Color contrast | WCAG AA standards​

Typography
Typography

Typeface​
Font weight​
Body copy​
Line scale​
Line-height​
Embed font​
Import font​
Specify in CSS​

Grid
Grid

12 column grid​
Gutters​
Columns​
Margins​

Iconography
Iconography
Application icon
Application icon

General rules​
Shape, size, and composition​
Colors and shades​

Verify the contrast​
Use the Zowe palette​
Layer Shadows​
Use the long shadow for consistency.​

Contributing to Zowe Documentation
Contributing to Zowe Documentation

Before You Get Started​
Getting started checklist​
The Zowe documentation repository​
Sending a GitHub Pull Request​
Opening an issue for Zowe documentation​
Documentation style guide​

Headings and titles​
Use sentence-style capitalization for headings​
For tasks and procedures, use gerunds for headings​
For conceptual and reference information, use noun phrases for headings​
Use headline-style capitalization for only these items​

Technical elements​
Variables​
Message text and prompts to the user​
Code and code examples​
Command names, and names of macros, programs, and utilities that you can type as commands​
Interface controls​
Directory names​

File names, file extensions, and script names​
Search or query terms​
Citations that are not links​

Tone​
Use simple present tense rather than future or past tense, as much as possible​
Use simple past tense if past tense is needed​
Use active voice as much as possible​
Using second person such as "you" instead of first person such as "we" and "our"​
End sentences with prepositions selectively​
Avoid anthropomorphism​
Avoid complex sentences that overuse punctuation such as commas and semicolons.​

Release notes​
Word usage and punctuation​

Note headings such as Note, Important, and Tip should be formatted using the lower case and bold format​
Use of "following"​
Use a consistent style for referring to version numbers​
Avoid "may"​
Use "issue" when you want to say "run"/"enter" a command​
Use of slashes​
Punctuation in lists​
Punctuation in numbered lists​

Abbreviations​
Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the spelled-out form of the

term​
Do not use abbreviations as verbs​
Do not use Latin abbreviations​
Spell out the full name and its abbreviation when the word appears for the first time. Use abbreviations in the texts that

follow​
Structure and format​
Word usage​

Zowe CLI command reference guide
Zowe CLI command reference guide
Zowe API reference
Zowe API reference
ZWE Server Command Reference
ZWE Server Command Reference

Using the zwe command​
Accessing zwe help​

zwe
zwe

Sub-commands​
Description​
Examples​
Parameters​
Errors​

zwe certificate keyring-jcl clean
zwe certificate keyring-jcl clean

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate keyring-jcl connect
zwe certificate keyring-jcl connect

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate keyring-jcl generate
zwe certificate keyring-jcl generate

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate keyring-jcl import-ds
zwe certificate keyring-jcl import-ds

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate keyring-jcl
zwe certificate keyring-jcl

Sub-commands​
Description​

Inherited from parent command​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate pkcs12 create ca
zwe certificate pkcs12 create ca

Description​

Inherited from parent command​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate pkcs12 create cert
zwe certificate pkcs12 create cert

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate pkcs12 create
zwe certificate pkcs12 create

Sub-commands​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate pkcs12 export
zwe certificate pkcs12 export

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate pkcs12 import
zwe certificate pkcs12 import

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate pkcs12 lock
zwe certificate pkcs12 lock

Description​
Inherited from parent command​

Examples​

Parameters​
Inherited from parent command​

Errors​
Inherited from parent command​

zwe certificate pkcs12 trust-service
zwe certificate pkcs12 trust-service

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate pkcs12
zwe certificate pkcs12

Sub-commands​
Description​

Inherited from parent command​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate verify-service
zwe certificate verify-service

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe certificate
zwe certificate

Sub-commands​
Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe components install extract
zwe components install extract

Description​
Examples​
Parameters​

Inherited from parent command​

Errors​
Inherited from parent command​

zwe components install process-hook
zwe components install process-hook

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe components install
zwe components install

Sub-commands​
Description​
Examples​
Parameters only for this command​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe components disable
zwe components disable

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe components enable
zwe components enable

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe components search
zwe components search

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe components uninstall
zwe components uninstall

Description​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe components upgrade
zwe components upgrade

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe components
zwe components

Sub-commands​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe config get
zwe config get

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe config validate
zwe config validate

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe config
zwe config

Sub-commands​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe init apfauth
zwe init apfauth

Description​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe init certificate
zwe init certificate

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe init mvs
zwe init mvs

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe init security
zwe init security

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe init stc
zwe init stc

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe init vsam
zwe init vsam

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe init
zwe init

Sub-commands​
Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal config get
zwe internal config get

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal config set
zwe internal config set

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal config
zwe internal config

Sub-commands​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal container cleanup
zwe internal container cleanup

Description​
Inherited from parent command​

Parameters​
Inherited from parent command​

Errors​
Inherited from parent command​

zwe internal container init
zwe internal container init

Description​
Inherited from parent command​

Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal container prestop
zwe internal container prestop

Description​
Inherited from parent command​

Parameters​
Inherited from parent command​

Errors​
Inherited from parent command​

zwe internal container
zwe internal container

Sub-commands​
Description​

Inherited from parent command​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal start component
zwe internal start component

Inherited from parent command​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal start prepare
zwe internal start prepare

Inherited from parent command​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal start
zwe internal start

Sub-commands​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal get-launch-components
zwe internal get-launch-components

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe internal
zwe internal

Sub-commands​
Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe migrate for kubernetes
zwe migrate for kubernetes

Description​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe migrate for
zwe migrate for

Sub-commands​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe migrate
zwe migrate

Sub-commands​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe sample sub deep
zwe sample sub deep

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe sample sub second

zwe sample sub second
Description​

Inherited from parent command​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe sample sub
zwe sample sub

Sub-commands​
Description​

Inherited from parent command​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe sample test
zwe sample test

Description​
Inherited from parent command​

Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe sample
zwe sample

Sub-commands​
Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe support verify-fingerprints
zwe support verify-fingerprints

Parameters​
Inherited from parent command​

Errors​
Inherited from parent command​

zwe support
zwe support

Sub-commands​
Description​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe diagnose
zwe diagnose

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe install
zwe install

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe start
zwe start

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe stop
zwe stop

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
zwe version
zwe version

Description​
Examples​
Parameters​

Inherited from parent command​
Errors​

Inherited from parent command​
Zowe Chat command reference overview
Zowe Chat command reference overview
zos commands
zos commands

Resources​
zos job
zos job

Usage​
Action​
Positional Arguments​
Options​
Examples​

zos job list
zos job list

Usage​
Object​

zos job list status
zos job list status

Usage​
Positional Arguments​
Options​
Examples​

zos dataset
zos dataset

Usage​
Action​
Positional Arguments​
Options​
Examples​

zos dataset list
zos dataset list

Usage​
Object​

zos dataset list status
zos dataset list status

Usage​
Positional Arguments​
Options​
Examples​

zos dataset list member
zos dataset list member

Usage​
Positional Arguments​
Options​
Examples​

zos file
zos file

Usage​
Action​
Positional Argument​
Option​

Examples​
zos file list
zos file list

Usage​
Objects​

zos file list status
zos file list status

Usage​
Positional Arguments​
Options​
Examples​

zos file list mounts
zos file list mounts

Usage​
Positional Arguments​
Options​
Examples​

zos command
zos command

Usage​
Action​
Positional Arguments​
Options​
Examples​

zos command issue
zos command issue

Usage​
Object​

zos command issue console
zos command issue console

Usage​
Positional Arguments​
Options​
Examples​

zos help
zos help

Usage​
Action​
Positional Arguments​
Examples​

zos help list
zos help list

Usage​
Object​

zos help list command
zos help list command

Usage​

Positional Arguments​
Examples​

Zowe YAML server configuration file reference
Zowe YAML server configuration file reference

High-level overview of YAML configuration file​
Extract sharable configuration out of zowe.yaml​
Creating portable references​
Configuration override​
YAML configurations - certificate​
YAML configurations - zowe​

Directories​
Zowe Job​
Domain and port to access Zowe​
Extra environment variables​
Certificate​
Launcher and launch scripts​
Setup​

YAML configurations - java​
YAML configurations - node​
YAML configurations - zOSMF​
YAML configurations - components​

Configure component gateway​
Configure component discovery​
Configure component api-catalog​
Configure component caching-service​
Configure component app-server​
Configure component zss​
Configure component jobs-api​
Configure component files-api​
Configure external extension​

YAML configurations - haInstances​
Auto-generated environment variables​
Troubleshooting your YAML with the Red Hat VS Code extension​

Server component manifest file reference
Server component manifest file reference
Bill of Materials
Bill of Materials

Version: v2.17.x LTS

Zowe announcements

New delivery date for Zowe Version 3.0
The Zowe V3 release NEW delivery date is September 30, 2024. New Zowe V3 Office Hours coming in September.

For updates, see vNext in Zowe.org. For information about changes to Zowe components to be introduced in Zowe v3, see Breaking
changes and Important Updates in Zowe v3.

Zowe Version 3.0 technical preview

Zowe publishes technical preview builds for Version 3 for all components involved.

The latest versions are downloadable from the Zowe JFrog Artifactory directory. The directory contains PAX and SMP/E packages. The
server-side includes the API Mediation Layer, Virtual Desktop, ZSS, and ZIS. The build is released nightly.

Client-side components are also available. Zowe CLI is available from NPM. The version starts with 8.0.0-next. Explorer for VS Code is
available from GitHub releases. Explorer for Intellij is available from the Intellij Marketplace

Future Zowe Version 2.0 releases

Three releases have been added to the Zowe V2 release schedule:

Zowe v2.16 in May

Zowe v2.17 in July

Zowe v2.18 in August

Archiving Zowe Version 1.0

Zowe V1 is scheduled to end support on September 30, 2024. Consumers should plan to upgrade in the first or second quarter of the
2024 calendar year. More information to follow.

https://www.zowe.org/vnext
https://docs.zowe.org/stable/whats-new/breaking-changes-v3
https://zowe.jfrog.io/zowe/libs-release-local/org/zowe/nightly/v3/
https://www.npmjs.com/package/@zowe/cli/v/8.0.0-next.202404191414
https://github.com/zowe/zowe-explorer-vscode/releases
https://plugins.jetbrains.com/plugin/18688-zowe-explorer

Version: v2.17.x LTS

Release Notes
The release notes for all Zowe V2 minor releases are published in this section.

Release notes detail all the new features, enhancements, bug fixes, and security vulnerabilities fixed in a particular Zowe minor release.

Select a Zowe release version on the Table of Contents located on the left of the page to view its release notes.

Accessing older release notes
To access notes for an older release, go to the Zowe Docs Version dropdown menu at the top right of the page and select a release.
The release notes for the selected version display under the Release Notes section in the Table of Contents.

Version: v2.17.x LTS

Version 2.17.0 (July 2024)
Welcome to the Zowe Version 2.17.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.17.0 build: Want to try new features as soon as possible? You can download the v2.17.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.17.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe installation and packaging

Added JCL sample templates within SZWESAMP dataset, also seen within “files/SZWESAMP” . Datasets beginning with ZWEI are

intended to be an alternative but not replacement of zwe init operations. ZWEIRAC , ZWEITSS , and ZWEIACF are derived from

and intended to replace ZWESECUR in the future. ZWEIKR* are derived from and intended to replace ZWEKRING in the future.

(#3890)

Added a job, ZWEGENER within the SZWESAMP dataset. When provided the location of Zowe’s runtime directory and YAML files,

this job will take the SZWESAMP sample JCL templates and resolve parameter values with those found in the YAML configuration

after validation, placing the results into the CUST.JCLLIB dataset. This can be used to simplify setup of jobs for Zowe installation.
(#3890)

Startup performance has been improved by moving extension schema validation of application framework plugins from runtime
to install time. This additionally helps identify schema errors at install time that would previously have been shown only at
runtime. (#3866)

Added zowe.network.server.tls.attls and zowe.network.client.tls.attls as Booleans for controlling global or per-

component way to tell Zowe servers that they should operate in a mode compatible with an AT-TLS setup. (#3463)

Startup performance has been improved by reducing the quantity of processes involved during startup. (#115)

Reduction in resource consumption. Each Zowe component uses one less shell process at runtime. (#115)

Added a “files/defaults.yaml” file which contains default YAML properties to reduce the chance of errors found during an upgrade
of Zowe when re-using an older YAML configuration file. This file should not be edited but can be reviewed to learn default

behaviors, and overridden within user YAML files. (#3883)

Zowe Application Framework

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zowe-install-packaging/pull/3890
https://github.com/zowe/zowe-install-packaging/pull/3890
https://github.com/zowe/zowe-install-packaging/pull/3866
https://github.com/zowe/zowe-install-packaging/pull/3463
https://github.com/zowe/zowe-install-packaging/pull/115
https://github.com/zowe/zowe-install-packaging/pull/115
https://github.com/zowe/zowe-install-packaging/pull/3883

Zlux App Server

The app-server can now use Zowe's standardized and simplified AT-TLS configuration simply by toggling

zowe.network.server.tls.attls: true or components.app-server.zowe.network.server.tls.attls: true . If you wish to

control client tls separately from server tls , you can also use zowe.network.client.tls.attls or components.app-

server.zowe.network.client.tls.attls . (#300) (#303)

Reduced startup time by removing a check for DNS behavior on node versions 14 and less. Node 14 has not been supported
since September 2023. (#304)

Reduced startup time by consolidating startup configuration script actions into one process. (#305)

Zlux Server Framework

Added function isClientAttls(zoweConfig) within libs/util.js. whenever a plugin makes a network request, it should

always use this to determine, if a normally HTTPS request should instead be made as HTTP due to AT-TLS handling the TLS

when enabled. (#544)

Zowe Common C

Fixed xplatform.loadFileUTF8 when trying to open nonexistent file. (#454)

Allocated SLH for http server with configurable value httpRequestHeapMaxBlocks in YAML . (#447)

ZSS

Added code to configure the SLH block size of the http server through httpRequestHeapMaxBlocks in the YAML. (#701)

Zowe API Mediation Layer

Cloud gateway can now run with AT-TLS enabled in the environment. (#3564)

The request buffer size for WebSocket connections is now customizable. (#3609)

Zowe CLI

Zowe CLI (Core)

Added the ability to set JCL reader properties for --jobRecordLength , --jobRecordFormat , and --jobEncoding on the zowe

jobs submit local-file and zowe jobs submit stdin commands. (#2139)

Added the ability to download job spool files using other codepages with --encoding on the zowe jobs download output ,

zowe jobs view spool-file-by-id , and zowe jobs view all-spool-content commands. This allows users to download job

spool files in other languages (i.e. IBM-1147 for French). (#1822)

Zowe CLI Imperative Framework

Added the ProfileInfo.profileManagerWillLoad function to verify that the credential manager can load. (#2111)

Added support for proxy servers using a proxy http agent. Supports the usage of the environment variables HTTP_PROXY and
HTTPS_PROXY (not case sensitive).

If any of these environment variables is set, and depending on how the Zowe session is configured for http or https, the REST
client instantiates an appropriate http agent.

https://github.com/zowe/zlux-app-server/pull/300
https://github.com/zowe/zlux-app-server/pull/303
https://github.com/zowe/zlux-app-server/pull/304
https://github.com/zowe/zlux-app-server/pull/305
https://github.com/zowe/zlux-server-framework/pull/544
https://github.com/zowe/zowe-common-c/pull/454
https://github.com/zowe/zowe-common-c/pull/447
https://github.com/zowe/zss/pull/701
https://github.com/zowe/api-layer/issues/3564
https://github.com/zowe/api-layer/issues/3609
https://github.com/zowe/zowe-cli/pull/2139
https://github.com/zowe/zowe-cli/pull/1822
https://github.com/zowe/zowe-cli/issues/2111

If the z/OS system uses self-signed certificates then the proxy server must be configured to accept them.

If the proxy server itself is configured with self-signed certificates then the user needs to either import these certificates on
their workstation, use rejectUnauthorized in their Zowe profile, or use the (not recommended) nodejs variable

NODE_TLS_REJECT_UNAUTHORIZED=0 .

Zowe also looks for the environment variable NO_PROXY . These work with a simple comma-separated list of hostnames that

need to match with the hostname of the Zowe profile.

Added the BufferBuilder utility class to provide a convenient way of downloading to a stream that can be read as a buffer.

(#2167)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.17.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Removed references to nonexistant STC ZWESVSTC from z/OSMF workflows. This was replaced with ZWESLSTC within Zowe v2.x

and already existed within the workflows. (#3881)

Updated messages ZWEL0121E and ZWEL0122E to clarify how to resolve these errors if encountered. (#3884)

Fixed schema validation issue preventing startup when having null entries within the zowe.certificates section of the YAML

configuration. (#3905), (#3901)

Zowe Application Framework

Zlux Server Framework

Fixed function isServerAttls(zoweConfig) within libs/util.js , which was preventing using AT-TLS with app-server .

(#544)

Zowe Common C

https://github.com/zowe/zowe-cli/pull/2167
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/3881
https://github.com/zowe/zowe-install-packaging/pull/3884
https://github.com/zowe/zowe-install-packaging/pull/3905
https://github.com/zowe/zowe-install-packaging/pull/3901
https://github.com/zowe/zlux-server-framework/pull/544

Fixed an incorrect check in the recovery router code, which might lead to the state cell-pool being released prematurely. (#446)

Zowe API Mediation Layer

Updated attls icsf condition. (#3635)

Added missing PAT documetantion. (#3618)

Added requestConnectionTimeout as a zowe.yaml property. (#3629)

Disabled auto conversion for tagged files on z/OS. (#3619)

The keystore is now not loaded when AT-TLS is set, thereby allowing ICSF keys. (#3612)

Health endpoints can now be optionally protected. (#3625)

The external URL in the ZUUL Gateway if AT-TLS is enabled has been corrected. (#3565)

The protocol in the start.sh is now specified. (#3593)

Fixed consistency between UI titles and messages. (#3502)

WebSocket client default timeout is now customizable. (#3613)

Zowe CLI

Zowe CLI (Core)

Updated braces dependency for technical currency. (#2157)

Fixed zowe daemon enable installing an invalid daemon binary on macOS. (#2126)

Zowe CLI Imperative Framework

Fixed error in REST client that when using stream could cause small data sets to download with incomplete contents. (#744)

Updated micromatch dependency for technical currency. (#2167)

Updated braces dependency for technical currency. (#2157)

Modified error text in SyntaxValidator.invalidOptionError . (#2138)

Updated error text for invalid command options so that allowable values are displayed as strings instead of regular expressions
when possible. (#1863)

Fixed issue where the ConfigSecure.securePropsForProfile function did not list secure properties outside the active config

layer. (Zowe Explorer #2633)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

https://github.com/zowe/zowe-common-c/issues/446
https://github.com/zowe/api-layer/issues/3635
https://github.com/zowe/api-layer/issues/3618
https://github.com/zowe/api-layer/issues/3629
https://github.com/zowe/api-layer/issues/3619
https://github.com/zowe/api-layer/issues/3612
https://github.com/zowe/api-layer/issues/3625
https://github.com/zowe/api-layer/issues/3565
https://github.com/zowe/api-layer/issues/3593
https://github.com/zowe/api-layer/issues/3502
https://github.com/zowe/api-layer/issues/3613
https://github.com/zowe/zowe-cli/pull/2157
https://github.com/zowe/zowe-cli/pull/2126
https://github.com/zowe/zowe-cli/issues/744
https://github.com/zowe/zowe-cli/pull/2167
https://github.com/zowe/zowe-cli/pull/2157
https://github.com/zowe/zowe-cli/issues/2138
https://github.com/zowe/zowe-cli/issues/1863
https://github.com/zowe/zowe-explorer-vscode/issues/2633
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.16.

CVE-2024-24549 (BDSA-2024-0623)

BDSA-2024-0622

BDSA-2021-2621

BDSA-2023-2855

CVE-2023-26159 (BDSA-2023-3572)

CVE-2024-28849 (BDSA-2024-0638)

CVE-2022-25883 (BDSA-2023-2207)

CVE-2024-22243 (BDSA-2024-0402)

CVE-2024-22257 (BDSA-2024-0647)

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.16.0 (May 2024)
Welcome to the Zowe Version 2.16.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.16.0 build: Want to try new features as soon as possible? You can download the v2.16.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.16.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe Install Packaging

Reduced resource consumption by removal of one shell process per server that was used when starting each server. (#3812)

The command zwe support now includes CEE Runtime option output to better diagnose issues related to environment
customization. (#3799)

Zowe Application Framework

Zowe Common C

No YAML value converted to null. (#442)

Added zos.getZosVersion() and zos.getEsm() calls for configmgr QJS . (#429)

For correct base64 encoding scheme the buffer size is made to be divisible by 3. (#431)

Now the leap seconds are taken into account in xmem log messages' timestamps . (#432), (#433)

Using a temporary buffer pointer to avoid pointer corruption during file write. (#437).

Zowe API Mediation Layer

The log message ZWEAM001I is now issued when API Mediation Layer starts. (#3523)

SSL is now disabled when profile attls is active to simplify AT-TLS configuration. (#3521)

Valid OIDC tokens are now forwarded to the downstream service when the distributed ID is not mapped. (#3497)

Included OIDC JWKSet in the gateway JWKs. JWKs retrieved from the Identity Provider allow clients and services to validate the
OIDC access token locally. (#3499)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zowe-install-packaging/pull/3812
https://github.com/zowe/zowe-install-packaging/pull/3799
https://github.com/zowe/Zowe-Common-C/pull/442
https://github.com/zowe/Zowe-Common-C/pull/429
https://github.com/zowe/Zowe-Common-C/pull/431
https://github.com/zowe/zowe-common-c/issues/432
https://github.com/zowe/Zowe-Common-C/pull/433
https://github.com/zowe/Zowe-Common-C/pull/437
https://github.com/zowe/api-layer/issues/3523
https://github.com/zowe/api-layer/issues/3521%5D
https://github.com/zowe/api-layer/issues/3497
https://github.com/zowe/api-layer/issues/3499

Moved OIDC access token from cookie to special header. If the user ID from the token cannot be mapped to a mainframe
account, the access token is now sent via the request header OIDC-token. (#3513)

Zowe CLI

Zowe CLI (Core)

Added a prompt for user ID/password on SSH commands when a token is stored in configuration. (#2081)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes
Zowe Version 2.16.0 contains the bug fixes that are described in the following topics.

Zowe Install Packaging

zowe.network.validatePortFree and zowe.network.vipaIp variables were moved from zowe.network to

zowe.network.server in the schema but not in the code, causing inability to use them without the workaround of specifying

them as environment variables ZWE_NETWORK_VALIDATE_PORT_FREE and ZWE_NETWORK_VIPA_IP instead. Now, the variables
match the schema: zowe.network.server is used instead of zowe.network . (#3784)

configmgr operations now run with HEAPPOOLS64 set to OFF to avoid abends caused when this parameter is not OFF . (#3799)

Zowe Application Framework

Zluz App Server

Removed message saying node not found prior to discovery of node. Now, you will only get an error message if node is not
found after lookup in NODE_HOME . (#301)

ZSS

AUX should take leap seconds into account in their log messages' timestamp . (#690), (#691)

https://github.com/zowe/api-layer/issues/3513
https://github.com/zowe/zowe-cli/pull/2081
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/3784
https://github.com/zowe/zowe-install-packaging/pull/3799
https://github.com/zowe/zlux-app-server/pull/301
https://github.com/zowe/zss/pull/690
https://github.com/zowe/zss/issues/691

Zowe API Mediation Layer

Allow key exchange port configuration (#3453)

Changed the scheme of the service homepage when AT-TLS is enabled and fix a bug in the UI. (#3346)

Checked for NullPointerException when the JWK key cannot be retrieved. (#3503)

Fixed an issue when PAT passed as the authorization header with the auth scheme zoweJwt (#3505)

Fixed the header position in the API Catalog. (#3345)

Fixed the log message about unauthorized calls. (#3326)

Allow for more general exception handling to detect TCP Stack restart. (#3462)

Fixed configuration enabling JWT Token Refresh Functionality. (#3474)

Fixed the Zowe logo and trademark info in the API Catalog. (#3338)

Zowe CLI

Zowe CLI (Core)

Fixed the command zowe daemon enable installing an invalid daemon binary on macOS. (#2126)

Fixed error in the zos-files list all-members command that could occur when members contain control characters in the

name. (#2104)

Resolved technical currency by updating the tar dependency. (#2101)

Resolved technical currency by updating the markdown-it dependency. (#2106)

Fixed default base profile missing in configuration generated by the zowe config auto-init command. (#2084)

Updated dependencies of the daemon client for technical currency. (#2076)

DB2 Plug-in for Zowe CLI

Updated follow-redirects transitive dependency to resolve technical debt. (#147)

FTP Plug-in for Zowe CLI

Fixed error when listing spool for active jobs to. Now prints a warning that says that no spool files are available. (#156)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

https://github.com/zowe/api-layer/issues/3453
https://github.com/zowe/api-layer/issues/3346
https://github.com/zowe/api-layer/issues/3503
https://github.com/zowe/api-layer/issues/3505
https://github.com/zowe/api-layer/issues/3345
https://github.com/zowe/api-layer/issues/3326
https://github.com/zowe/api-layer/issues/3462
https://github.com/zowe/api-layer/issues/3474
https://github.com/zowe/api-layer/issues/3338
https://github.com/zowe/zowe-cli/pull/2126
https://github.com/zowe/zowe-cli/pull/2104
https://github.com/zowe/zowe-cli/issues/2101
https://github.com/zowe/zowe-cli/pull/2106
https://github.com/zowe/zowe-cli/pull/2084
https://github.com/zowe/zowe-cli/pull/2076
https://github.com/zowe/zowe-cli-db2-plugin/pull/147
https://github.com/zowe/zowe-cli-ftp-plugin/issues/156
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.15.

BDSA-2023-1804

CVE-2023-46589 (BDSA-2023-3298)

BDSA-2021-2621

CVE-2023-45857 (BDSA-2023-2855)

BDSA-2023-3572

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.15.0 (March 2024)
Welcome to the Zowe Version 2.15.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.15.0 build: Want to try new features as soon as possible? You can download the v2.15.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.15.0 contains the enhancements that are described in the following topics:

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe API Mediation Layer

Timeout configuration values of the websocket webclient are now supported in the API Gateway. (#3315)

Zowe CLI

Zowe CLI (Core)

Added --binary and --encoding options to the zos-files edit command in Zowe CLI V2, allowing users to download and

edit binary files and data sets, or to edit files and data sets with a user-specified encoding. (#1725)

Hid the progress bar if the CI environment variable is set, or if the FORCE_COLOR environment variable is set to 0 , to prevent the

progress bar from displaying improperly in some cases. (#1845)

Zowe CLI Imperative Framework

Added multiple APIs to the ProfileInfo class to help manage schemas between client applications. (Zowe CLI #2012)

Hid the progress bar if the CI environment variable is set, or if the FORCE_COLOR environment variable is set to 0 , to prevent the

progress bar from displaying improperly in some cases.. (Zowe CLI #1845)

IMS Plug-in for Zowe CLI

Deprecated the IMS Plug-in for Zowe CLI due to compatibility issues between the plug-in, the Zowe IMS Operations API, and IBM
IMS running on the mainframe.

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/api-layer/issues/3315
https://github.com/zowe/zowe-cli/issues/1725
https://github.com/zowe/zowe-cli/issues/1845
https://github.com/zowe/zowe-cli/issues/2012
https://github.com/zowe/zowe-cli/issues/1845

Added notices in documentation announcing the deprecation of the IMS Plug-in for Zowe CLI. (#66)

z/OS FTP Plug-in for Zowe CLI

Updated the version of zos-node-accessor to 1.0.16. (#149)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes
Zowe Version 2.15.0 contains the bug fixes that are described in the following topics:

Zowe installation and packaging

zwe diagnose has been updated to use configmgr (#3627)

The Zowe PSWI has been updated to address known installation and configuration issues in prior versions. (#3779)

Zowe Application Framework

Zowe Common C

Removed obsolete building script build_configmgr.sh . (#410) and (#423)

Zlux Server Framework

App-server is now able to merge HTTPS and HTTP addresses and can run in HTTP mode for AT-TLS setup. (#532)

Zowe API Mediation Layer

Displaying the base path in API Catalog has been fixed. (#3297)

Disabling EhCache using apiml.caching.enabled=false has been fixed. (#3280)

Zowe CLI

https://github.com/zowe/zowe-cli-ims-plugin/pull/66
https://github.com/zowe/zowe-cli-ftp-plugin/pull/149
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/issues/3627
https://github.com/zowe/zowe-install-packaging/issues/3779
https://github.com/zowe/zowe-common-c/issues/410
https://github.com/zowe/zowe-common-c/pull/423
https://github.com/zowe/zlux-server-framework/pull/532
https://github.com/zowe/api-layer/issues/3297
https://github.com/zowe/api-layer/issues/3280

Zowe CLI (Core)

Fixed race condition in the config convert-profiles command that may fail to delete secure values for old profiles.

Resolved technical currency by updating socks transitive dependency. (#2049)

Updated zos-files copy dsclp system tests to include large mock files. This improves system test coverage for edge cases involving
large data sets. (#2023)

Zowe CLI Imperative Framework

Fixed race condition in the config convert-profiles command that may fail to delete secure values for old profiles. (Zowe CLI

#2055)

Resolved issue in ProfileInfo where schema comparisons fail, specifically when comparing the cached schema against a

command-based schema during registration. (Zowe CLI #2045)

Resolved technical currency by updating socks transitive dependency. (Zowe CLI #2049)

Updated mustache and jsonschema dependencies for technical currency. (Zowe CLI #2024)

Fixed issue where secure property names could be returned for the wrong profile. (Zowe Explorer #2633)

Fixed issue when a property is not found in ProfileInfo.updateProperty({forceUpdate: true}) so extenders can set or

update a property in a team configuration even if it is not defined in the schema without their application/extension failing. (Zowe
Explorer #2493)

IMS Plug-in for Zowe CLI

Added missing shrinkwrap to specify versions of dependencies installed with the plug-in. (#65)

z/OS FTP Plug-in for Zowe CLI

Fixed an issue specific to Windows where uploading a data set with JCL content hangs, preventing further actions through the
zFTP VSCode Extension. (#2533)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

https://github.com/zowe/zowe-cli/pull/2049
https://github.com/zowe/zowe-cli/pull/2023
https://github.com/zowe/zowe-cli/pull/2055
https://github.com/zowe/zowe-cli/pull/2045
https://github.com/zowe/zowe-cli/pull/2049
https://github.com/zowe/zowe-cli/pull/2024
https://github.com/zowe/zowe-explorer-vscode/issues/2633
https://github.com/zowe/zowe-explorer-vscode/issues/2493
https://github.com/zowe/zowe-cli-ims-plugin/pull/65
https://github.com/zowe/zowe-explorer-vscode/issues/2533
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.14.

BDSA-2023-2553

CVE-2023-35116 (BDSA-2023-1491)

CVE-2023-6378 (BDSA-2023-3307)

BDSA-2023-3341

BDSA-2018-4022

CVE-2023-34055 (BDSA-2023-3275)

BDSA-2023-2481

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.14.0 (January 2024)
Welcome to the Zowe Version 2.14.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.14.0 build: Want to try new features as soon as possible? You can download the v2.14.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.14.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe installation and packaging

The code has been revised to return a Zowe configuration along with the information of the High Availability (HA) instance (if
requested). After the enhancement, we get the correct information about if the component is enabled or disabled and more
configuration details with the information of the requested HA instance. (#3692)

Zowe Application Framework

Zlux App Server

Updated schema to specify multiple discovery servers instead of juse one.(#290)

Zowe API Mediation Layer

Introduced a native identity mapper as a replacement for ZSS identity mapping of x509 and OIDC id. The native identity mapper
removes a dependency on an external component and significantly improves performance by switching from an HTTP request to
an in-memory call for certificate mapping. (#3252)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Explorer API

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zowe-install-packaging/pull/3692
https://github.com/zowe/zlux-app-server/pull/290
https://github.com/zowe/api-layer/issues/3252
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md

See the Zowe Explorer API changelog for updates included in this release.

Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.14.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Environment variables were not using the values specified for each High Availability (HA) instance when zowe.useConfigmgr was

set to true . (#3692)

Zowe Application Framework

Zlux Server Framework

App-server could not load when multiple discovery servers were present and the App-server was unable to reach the first one

specified. Now, the App-server will iterate through the list of servers until an accessible one is reached. (#522)

App-server would not correctly detect when it was running in a high-availability configuration environment. (#521)

A call to GET /plugins would trigger an authorization check regardless of if rbac was set ON or OFF .(#523)

Zowe API Mediation Layer

Fixed the truststore for websockets in the Spring Cloud Gateway (v2). (#3249)

Fixed the keyring path update to properly support keyring paths by Spring Cloud Gateway. (#3265)

Fixed a conflict of XML processing between EhCache and the onboarding process. (#3266)

Fixed using a keystore during creation of a request without a client certificate in Spring Cloud Gateway. (#3273)

Fixed closing WebSocket to prevent a memory leak. (#3271)

Fixed disabling EhCache. (#3276)

Fixed enabling CORS by default in AT-TLS mode used in the API Gateway. (#3270)

Zowe CLI

Zowe CLI (Core)

Corrected extra character being displayed at the end of lines when issuing command zowe files compare on Windows. (#1992)

Corrected the online help description for zowe files compare uss . (#1754)

Fixed typo in command help for zowe zos-workflows create commands. (#2003)

Zowe CLI Imperative Framework

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/3692
https://github.com/zowe/zlux-server-framework/pull/522
https://github.com/zowe/zlux-server-framework/pull/521
https://github.com/zowe/zlux-server-framework/pull/523
https://github.com/zowe/api-layer/issues/3249
https://github.com/zowe/api-layer/issues/3265
https://github.com/zowe/api-layer/issues/3266
https://github.com/zowe/api-layer/issues/3273
https://github.com/zowe/api-layer/issues/3271
https://github.com/zowe/api-layer/issues/3276
https://github.com/zowe/api-layer/issues/3270
https://github.com/zowe/zowe-cli/issues/1992
https://github.com/zowe/zowe-cli/issues/1754
https://github.com/zowe/zowe-cli/pull/2003

Updated the error message shown for a command with a null or undefined option definition to include the command handler

file path to better identify the command causing the error. (#2002)

DB2 Plug-in for Zowe CLI

Updated follow-redirects transitive dependency to resolve technical debt. (#139)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.13.

BDSA-2023-2855

https://github.com/zowe/zowe-cli/issues/2002
https://github.com/zowe/zowe-cli-db2-plugin/pull/139
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.13.0 (December 2023)
Welcome to the Zowe Version 2.13.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.13.0 build: Want to try new features as soon as possible? You can download the v2.13.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.13.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe installation and packaging

Added utility getesm into bin/utils . It tells you which ESM your system is using. (#3662)

Zowe Application Framework

ZLUX App Server

Updated schema to allow cipher customization in IANA format. (#284)

Updated schema to allow curve customization. (#284)

Updated defaults to read TLS settings and IP settings from the zowe.network.server attribute of Zowe.yaml . (#284)

ZLUX Server Framework

Added support for using zowe.network and components.app-server.zowe.network to set listener IP and TLS properties

including max and min version , ciphers , and ECDH curves . (#511)

Zowe Common C

Added support for using zowe.network and components.zss.zowe.network to set TLS version properties. (#411

ZSS

Added support for using zowe.network and components.zss.zowe.network to set listener IP and TLS version properties.

(#659)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zowe-install-packaging/issues/3662
https://github.com/zowe/zlux-app-server/pull/284
https://github.com/zowe/zlux-app-server/pull/284
https://github.com/zowe/zlux-app-server/pull/284
https://github.com/zowe/zlux-server-framework/pull/511
https://github.com/zowe/zowe-common-c/pull/411
https://github.com/zowe/zss/pull/659

Added support for using zowe.network and components.zss.zowe.network to set cipher suites.

Changed pattern matching for keyrings to allow more types of keyrings in the future. (#581)

Consolidated JWK warnings into improved ZWES1606W message . (#663)

Zowe API Mediation Layer

CORS is now enabled in default mode with AT-TLS profile. This configuration allows for AT-TLS to allow all origins by default.
(#3221)

Zowe authentication scheme has been added to the Cloud Gateway. (#3214)

The endpoint /zaas/zoweJwt has been added to provide Zowe JWT token for Spring Cloud Gateway. (#3199)

The endpoint /zaas/zosmf has been added to provide z/OSMF JWT/LTPA2 token for Spring Cloud Gateway. (#3153)

The endpoint /zaas/safIdt has been added to provide the SAF IDT token for Spring Cloud Gateway. (#3220)

z/OSMF scheme in Spring Cloud Gateway is now supported. (#3190)

Fixes have been applied for Azure JWKS reader. (#3200)

Additional Discovery Service registration by Spring Cloud Gateway is now supported. (#3181)

Gateway additional registrations HA (#3127)

Fetch JWK from OIDC providers. This feature implements a mechanism and new properties in OIDC to configure the JWK keys
location obtained according to documentation from the authorization server's metadata. (#3137)

The following two properties in the zowe.yaml file have been deprecated in the current release as OIDC configuration has become
more general:

components.gateway.apiml.security.oidc.clientId

components.gateway.apiml.security.oidc.clientSecret

Zowe CLI

Zowe CLI (Core)

Incorporated all source code from the zowe/imperative Github repository into the zowe/zowe-cli repository for a more

streamlined code architecture. This change should have no user impact. (#1821)

Deprecated getDataSet in the zosfiles command group utility functions. getDataSet will be removed in Zowe V3. Use

zosfiles SDK's ZosFilesUtils.getDataSetFromName command instead. (#1696)

z/OS FTP Plug-in for Zowe CLI

Added a step to check the validity of a USS file path for the upload and stdin-to-uss-file commands. (#145)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

https://github.com/zowe/zss/pull/581
https://github.com/zowe/zss/pull/663
https://github.com/zowe/api-layer/issues/3221
https://github.com/zowe/api-layer/issues/3214
https://github.com/zowe/api-layer/issues/3199
https://github.com/zowe/api-layer/issues/3153
https://github.com/zowe/api-layer/issues/3220
https://github.com/zowe/api-layer/issues/3190
https://github.com/zowe/api-layer/issues/3200
https://github.com/zowe/api-layer/issues/3181
https://github.com/zowe/api-layer/issues/3127
https://github.com/zowe/api-layer/issues/3137
https://github.com/zowe/zowe-cli/pull/1821
https://github.com/zowe/zowe-cli/issues/1696
https://github.com/zowe/zowe-cli-ftp-plugin/pull/145
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes

Zowe Version 2.13.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Users were not able to use zOSMF workflows because the workflow files were not encoded in ASCII format. In this release, the
workflow files in the Zowe PAX are encoded in ASCII format. (#3591).

Zowe API Mediation Layer

ZSS

Corrected build environment file's use of IP address to github.com. (3660)

Fixed signing the outgoing call from Cloud Gateway where necessary. (#3203)

Fixed AT-TLS support by fixing the AT-TLS filter setup, adding a debug message for AT-TLS support mode initialization, disabling
routing to the Discovery service from the Gateway, and updating dsl in the security chain setup. (#3186)

Fixed read public key from keyring. (#3212)

Updated bean definitions for noop cache mode. (#3197)

Changed ehCache storage location. This fix uses the correct environment variable to avoid a resource lock when reading the
cache directory in HA setup. (#3184)

Fixed qualifier for the JWT clock. (#3180)

Set HTTP client timeouts. (#3174)

Made style updates for Catalog UI and Caching Fix for static file distribution in API Catalog. (#3168)

Gateway additional registration fixes. (#3172)

Set defaults in the cloud-gateway-service application.yml. (#3167)

Added Qualifier for clock to avoid conflict in extension. (#3166)

Enhanced error handling in the UI. (#3158)

Fixed context path from the application property in the mock catalog controller. (#3159)

https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/issues/3591
https://github.com/zowe/zss/issues/660
https://github.com/zowe/api-layer/issues/3203
https://github.com/zowe/api-layer/issues/3186
https://github.com/zowe/api-layer/issues/3212
https://github.com/zowe/api-layer/issues/3197
https://github.com/zowe/api-layer/issues/3184
https://github.com/zowe/api-layer/pull/3180
https://github.com/zowe/api-layer/issues/3174
https://github.com/zowe/api-layer/issues/3168
https://github.com/zowe/api-layer/issues/3172
https://github.com/zowe/api-layer/issues/3167
https://github.com/zowe/api-layer/pull/3166
https://github.com/zowe/api-layer/issues/3158
https://github.com/zowe/api-layer/issues/3159

Zowe CLI

Zowe CLI Imperative Framework

Added missing npm-shrinkwrap.json file to package.json . (#1978)

Added missing z/OSMF connection options to the z/OS logs command group. (#1842)

Removed out-of-date Perf-Timing performance timing package to improve Zowe CLI maintainability. (#1830)

Fixed behavior where a specified directory name was being lowercased on non-PDS data sets when downloading all data sets.
(#1722)

Fixed bug where encoding is not passed to the Download USS Directory API. (#1825)

Zowe CLI Imperative Framework

Fixed AbstactRestClient command failing to return when streaming a large data set or USS file. (#1805, #1813, #1824)

DB2 Plug-in for Zowe CLI

Added missing npm-shrinkwrap.json file to package.json . (#137)

Updated ibm_db dependency for technical currency. (#134)

z/OS FTP Plug-in for Zowe CLI

Added missing npm-shrinkwrap.json file to package.json . (#147)

Provided new utility function to check file names for valid characters. (#143)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

https://github.com/zowe/zowe-cli/pull/1978
https://github.com/zowe/zowe-cli/pull/1842
https://github.com/zowe/zowe-cli/pull/1830
https://github.com/zowe/zowe-cli/issues/1722
https://github.com/zowe/zowe-cli/issues/1825
https://github.com/zowe/zowe-cli/issues/1805
https://github.com/zowe/zowe-cli/issues/1813
https://github.com/zowe/zowe-cli/issues/1824
https://github.com/zowe/zowe-cli-db2-plugin/pull/137
https://github.com/zowe/zowe-cli-db2-plugin/pull/134/files
https://github.com/zowe/zowe-cli-ftp-plugin/pull/147
https://github.com/zowe/zowe-cli-ftp-plugin/issues/143
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

The following security issues were fixed by the Zowe security group in version 2.12.

CVE-2023-33201 (BDSA-2023-1625)

CVE-2022-25883

CVE-2023-34034 (BDSA-2023-1825)

CVE-2023-38286 (BDSA-2023-1804)

Version: v2.17.x LTS

Version 2.12.0 (October 2023)
Welcome to the Zowe Version 2.12.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.12.0 build: Want to try new features as soon as possible? You can download the v2.12.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.12.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe Application Framework

Zlux App Server

New versions of the components can change the location of their plug-ins, as the app-server will now re-inspect the plugin
locations on each startup. (#280)

ZLUX Server Framework

Auth plug-ins that are not requested by any dataservice found at startup are no longer loaded by the server. (#504)

ZSS

ZSS now defaults to using TLS 1.3 , which requires a minimum of zOS Version 2.4 . (#646)

Added configuration parameter components.zss.agent.https.maxTls to control which level of TLS to use, allowing
downgrading to tls 1.2 if desired with value TLSv1.2 . (#654)

Added configuration parameter components.zss.agent.https.trace which can be set to true if desired to capture a GSK
trace, which will be put into the log directory. (#654)

Zowe API Mediation Layer

Added a Central API ML registry endpoint to the Cloud Gateway to access an aggregated view of all services from all domains.
(#3076)

It is now possible to forward the client certificate from Central Gateway to Domain Gateway in the request header. (#3046)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zlux-app-server/pull/280
https://github.com/zowe/zlux-server-framework/pull/504
https://github.com/zowe/zss/pull/646
https://github.com/zowe/zss/pull/654
https://github.com/zowe/zss/pull/654
https://github.com/zowe/api-layer/issues/3076
https://github.com/zowe/api-layer/issues/3046

You can now register the Gateway to an additional Discovery service. Clients outside of the API ML cluster can now know about
other gateways to facilitate routing to clusters and domains. (#3068 and #3044)

You can now verify service SSO support from API ML. (#3054)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog for updates included in this release.

Zowe Explorer API

See the Zowe Explorer API changelog for updates included in this release.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog for updates included in this release.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog for updates included in this release.

Bug fixes
Zowe Version 2.12.0 contains the bug fixes that are described in the following topics.

Zowe Installation and packaging

Fixed a rare bug where zwe could hang when running a unix program. (#3590)

Zowe Application Framework

ZLUX App Server

Removed error message components/app-server/bin/configure.sh 26: .: FSUM6807 expression syntax error seen in
startup of Zowe in Version 2.11.0 , caused by incorrect shell syntax. (#283)

Zowe API Mediation Layer

Fixed normalization of baseUrl in ZAAS client. (#3123)

Added the JVM heap configuration to zowe.yaml . (#3087)

Fixed an error preventing the Catalog UI to load when a service does not have a required parameter. (#3050)

Fixed a navigation issue in the Catalog when using the browser back button. (#3135)

Zowe CLI

Zowe CLI (Core)

Fixed bug where encoding is not passed to the Download USS Directory API. (#1825)

https://github.com/zowe/api-layer/issues/3068
https://github.com/zowe/api-layer/issues/3044
https://github.com/zowe/api-layer/issues/3054
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-install-packaging/pull/3590
https://github.com/zowe/zlux-app-server/pull/283
https://github.com/zowe/api-layer/issues/3123
https://github.com/zowe/api-layer/issues/3087
https://github.com/zowe/api-layer/issues/3050
https://github.com/zowe/api-layer/issues/2998
https://github.com/zowe/zowe-cli/issues/1825

Bumped Imperative to Version 5.18.2 to fix issues with normalizing newlines on file uploads. (#1815)

Bumped Secrets SDK to Version 7.18.6 to use core-foundation-rs instead of the now-archived security-framework crate; to

include the edge-case bug fix for Linux; and to resolve build failures for FreeBSD users.

Zowe CLI Imperative Framework

Fixed normalization on stream chunk boundaries. (#1815)

Zowe Explorer

Zowe Explorer (Core)

See the Zowe Explorer changelog.

Zowe Explorer API

See the Zowe Explorer API changelog.

Zowe Explorer FTP Extension

See the Zowe Explorer FTP Extension changelog.

Zowe Explorer ESLint Plug-in

See the Zowe Explorer ESLint Plug-in changelog.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.11.

CVE-2023-33546 (BDSA-2023-1535)

CVE-2023-34462 (BDSA-2023-1556)

BDSA-2023-1804

CVE-2023-26136

https://github.com/zowe/zowe-cli/issues/1815
https://github.com/zowe/zowe-cli/issues/1815
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-api/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/main/packages/eslint-plugin-zowe-explorer/CHANGELOG.md
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.11.0 (September 2023)
Welcome to the Zowe Version 2.11.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.11.0 build: Want to try new features as soon as possible? You can download the v2.11.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.11.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe Installation and Packaging

Added zowe.sysMessages as a property to the Zowe YAML configuration file. This property is a new array that allows you to

select messages that will be duplicated into the z/OS syslog, when found in Zowe’s job log. (#93)

Zowe Application Framework

The title and description of the app server tile within the API Catalog has been updated to be more accurate and detailed.

(#497)

Zowe Common C

Functions for printing messages to z/OS syslog via WTO have been added to zos.(#397)

Zowe API Mediation Layer

Swagger is now validated for registered services whereby all endpoints listed in the swagger can be called and give a documented
response. This feature also checks that the API is correctly versioned. (#3039)

Zowe CLI

Zowe CLI (Core)

Bumped Secrets SDK to 7.18.3 . It uses more reliable resolution logic for prebuilds folder; adds static CRT for Windows builds.

(#1791)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/launcher/pull/93
https://github.com/zowe/zlux-server-framework/pull/497
https://github.com/zowe/zowe-common-c/pull/391
https://github.com/zowe/api-layer/issues/3039
https://github.com/zowe/zowe-cli/pull/1791

Updated daemon on MacOS to use universal binary which adds support for Apple Silicon. (#1766)

Added support for mutliple zowe auth login apiml operations on a single zowe config secure call. (#1734)

Replaced use of node-keytar with the keyring module from @zowe/secrets-for-zowe-sdk . See Secrets SDK for more

information.

Updated the Imperative Framework to add support for unique cookie identifiers from API ML. (#1734)

Created zos-files edit commands to edit a data set or uss file locally. (PR #1672)

Zowe CLI Imperative Framework

Replaced use of node-keytar with the new keyring module from @zowe/secrets-for-zowe-sdk . See Secrets SDK for more

information. (Zowe CLI #1622)

Added inSchema property for ProfileInfo to indicate if argument is a known schema argument. (#899)

Handled unique cookie identifier in the form of dynamic token types. (#966)

Added a new utility method to ImperativeExpect to match regular expressions. (#966)

Added support for multiple login operations in a single config secure command execution. (#966)

Bug fixes

Zowe Version 2.11.0 contains the bug fixes that are described in the following topics.

Zowe Installation and Packaging

Fixed a bug where using recent versions of Java 8 to generate a Zowe PKCS12 keystore would result in an unusable keystore

to ZSS and other z/OS software that utilizes GSK / SystemSSL. The fix uses a compatibility option in Java to revert its keystore
generation behavior to prior behavior that worked for Zowe.(#3507)

Zowe Application Framework

Fixed regression that prevented use of multiple certificatate authorities when specified via the
zowe.certificate.pem.certificateAuthorities section of the Zowe YAML configuration file. (#266)

Zowe API Mediation Layer

The default value of nonStrictVerifySslCertificatesOfServices is now set to false. (#3029)

Fixed newlines and SSL error message in z/OSMF validation. (#3024)

Improvements have been made in z/OSMF logging in debug and error handling. (#2998)

Zowe CLI

Zowe CLI (Core)

Fixed an issue in the Daemon server which prevents users on Windows with uppercase letters in their username from using the
Daemon. (#1765)

https://github.com/zowe/zowe-cli/pull/1766
https://github.com/zowe/zowe-cli/pull/1734
https://github.com/zowe/zowe-cli/blob/master/packages/secrets/OVERVIEW.md
https://github.com/zowe/zowe-cli/pull/1734
https://github.com/zowe/zowe-cli/pull/1672
https://github.com/zowe/zowe-cli/blob/master/packages/secrets/OVERVIEW.md
https://github.com/zowe/zowe-cli/issues/1622
https://github.com/zowe/imperative/issues/899
https://github.com/zowe/imperative/pull/996
https://github.com/zowe/imperative/pull/996
https://github.com/zowe/imperative/pull/996
https://github.com/zowe/zowe-install-packaging/pull/3507
https://github.com/zowe/zlux-server-framework/pull/266
https://github.com/zowe/api-layer/issues/3029
https://github.com/zowe/api-layer/issues/3024
https://github.com/zowe/api-layer/issues/2998
https://github.com/zowe/zowe-cli/pull/1765

Added a check to the zowe files create data-set command to prevent users from specifying an invalid block size for

sequential data sets with variable block format. (#1439)

Fixed a failure with the zowe auth logout apiml command that occurred if the user had an invalid or expired token. A user with

an invalid or expired token can use the zowe auth logout apiml command to remove the expired token from their secure

credential storage. (#1734)

Removed the need to check for basepath when the user was logging out to prevent misleading basePath error when

credentials are invalid. (#1734)

Zowe CLI Imperative Framework

Fixed merging of profile properties in ProfileInfo.createSession . (#1008)

Fixed an issue to now allow a user to run the zowe auth logout apiml command multiple times without failing. (#966)

Updated the auto-init command to prevent an unwanted second login request if the user already has a token. (#966)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.10.

BDSA-2023-1491

CVE-2023-33546

CVE-2022-1471 (BDSA-2022-3447)

BDSA-2023-0953

CVE-2023-20883 (BDSA-2023-1225)

CVE-2023-20873

https://github.com/zowe/zowe-cli/issues/1439
https://github.com/zowe/zowe-cli/pull/1734
https://github.com/zowe/zowe-cli/pull/1734
https://github.com/zowe/imperative/issues/1008
https://github.com/zowe/imperative/pull/996
https://github.com/zowe/imperative/pull/996
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.10.0 (July 2023)
Welcome to the Zowe Version 2.10.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.10.0 build: Want to try new features as soon as possible? You can download the v2.10.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.10.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe installation and packaging

Added a new zwe diagnose command to get help on zowe error messages. (#3455)

Zowe Application Framework

Zowe API Mediation Layer

The API Catalog now allows pre-defined style customizations. (#2965)

Zlux App Server

Migrated app-server configuration options into a defaults.yaml file which adheres to the schema of the Zowe config. This

allows users to see the default behaviors more clearly and can serve as an example by which users can customize their Zowe
config to override such defaults. (#247)

Zlux Server Framework

Avoid going directly to the Desktop when the gateway is active, by redirecting to the gateway equivalent homepage when the
homepage is accessed. The redirect behavior can be prevented if desired by using the query parameter ?zwed-no-redirect=1 in

your URL. (#449)

Zowe Common C

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zowe-install-packaging/pull/3455
https://github.com/zowe/api-layer/pull/2965
https://github.com/zowe/zlux-app-server/pull/247
https://github.com/zowe/zlux-server-framework/pull/449

The configmgr can now use the zos module in YAML config templates. The zos module is only added when run on zOS. For a

list of available functions, see this link. (#384)

Zowe CLI

Zowe CLI Imperative Framework

Performed back-end preparation for the upcoming ZOWE_V3_ERR_FORMAT environment variable to enable the ability to display

errors in a more reader-friendly format. (Zowe CLI #935)

Bug fixes
Zowe Version 2.10.0 contains the bug fixes that are described in the following topics.

Zowe Application Framework

Zlux App Server

Fixed the URLs that app-server would print in the logs describing where it was accessible from. Messages were incorrectly
providing URLs indicating the app-server’s location from the discovery server instead of the gateway server. (#247)

Zlux App Manager

Fixed a timing issue with the iframe-adapter for Firefox. (#532)

ZSS

Datasets with VOLSER set to an MVS symbol would cause dataset read, write, and metadata API calls to fail for those datasets. It is

fixed now.(#603)

Previously, the zss/datasetMetadata API could encounter an 0C9-09 error when accessing a dataset with 0 block size. This is

fixed. Now it does not have an error while accessing such datasets. (#606)

Zowe Common C

configmgr parsing of YAML to JSON has been updated to 1024 characters to allow for up to max unix path strings. Earlier it was

limited to 256 characters for strings. (#383)

Zowe API Mediation Layer

The client is provided with information about an expired password. (c4dc217, closes #2969)

Zowe CLI

Zowe CLI (Core)

Fixed the zowe files create data-set command failing when no additional options are specified. (#1736)

Added check for invalid block size when creating a sequential data set. (#1439)

Added the ability to list all data set members when some members have invalid names. (#1730)

https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/build/zwe/types/%40qjstypes/zos.d.ts
https://github.com/zowe/zowe-common-c/pull/384
https://github.com/zowe/zowe-cli/issues/935
https://github.com/zowe/zlux-app-server/pull/247
https://github.com/zowe/zlux-app-manager/pull/532
https://github.com/zowe/zss/pull/603
https://github.com/zowe/zss/pull/606
https://github.com/zowe/zowe-common-c/pull/383
https://github.com/zowe/api-layer/commit/c4dc217
https://github.com/zowe/api-layer/issues/2969
https://github.com/zowe/zowe-cli/pull/1736
https://github.com/zowe/zowe-cli/issues/1439
https://github.com/zowe/zowe-cli/pull/1730

Removed extra calls to list data sets matching patterns if authentication to z/OSMF fails. (#1731, Zowe Explorer #2262)

Zowe CLI Imperative Framework

Enabled NextVerFeatures.useV3ErrFormat() to form the right environment variable name even if Imperative.init() has not

been called. (Zowe CLI #935)

Handle logic for if a null command handler is provided. (#990)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.9.

BDSA-2023-1491

CVE-2023-33546

CVE-2022-1471 (BDSA-2022-3447)

BDSA-2023-0953

CVE-2023-20883 (BDSA-2023-1225)

CVE-2023-20873

https://github.com/zowe/zowe-cli/pull/1731
https://github.com/zowe/zowe-explorer-vscode/issues/2262
https://github.com/zowe/zowe-cli/issues/935
https://github.com/zowe/imperative/pull/990
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.9.0 (June 2023)
Welcome to the Zowe Version 2.9.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.9.0 build: Want to try new features as soon as possible? You can download the v2.9.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.9.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe installation and packaging

Users who have not set the value of zowe.useConfigmgr will now have the behavior set to true . If you still wish to use false, set

zowe.useConfigmgr=false explicitly. (#3423)

Zowe Application Framework

Zlux Server Framework

zowe.certificates.pem is no longer needed when using keyrings. (#448)

Zowe Common C

configmgr's z/OS module now has a resolveSymbol function which takes a string starting with & which can be used to resolve

static and dynamic z/OS symbols. (#378)

Zowe API Mediation Layer

Personal access tokens are now accepted as Bearer authentication and in the apimlAuthenticationToken cookie. (7c393a6,
closes #2908)

A OAuth2 access token is now accepted as an authentication source. (3809622, closes #2835)

The maximum idle timeout for websocket connections (between the gateway and the registered service) is now configurable.
(020da87, closes #2914)

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zowe-install-packaging/pull/3423
https://github.com/zowe/zlux-server-framework/pull/448
https://github.com/zowe/zowe-common-c/pull/378
https://github.com/zowe/api-layer/commit/7c393a6
https://github.com/zowe/api-layer/issues/2908
https://github.com/zowe/api-layer/commit/3809622
https://github.com/zowe/api-layer/issues/2835
https://github.com/zowe/api-layer/commit/020da87
https://github.com/zowe/api-layer/issues/2914

Imperative CLI Framework

Added the function IO.giveAccessOnlyToOwner to restrict access to only the currently running user ID for security. (#987)

Enabled command arguments to change {$Prefix}_EDITOR . Updated IDiffOptions to include names for the files that are to

be compared. Updated IO.getDefaultTextEditor() for different OS versions. Updated return value types for

CliUtils.readPrompt . This prepares development of future commands in Zowe CLI. (#967)

Altered TextUtils behavior slightly to enable daemon color support without TTY. (#977)

Zowe CLI

Updated daemon to use tokio library instead of the unmaintained named_pipe library for technical currency. (#1710)

Added the zowe files copy dsclp command to copy a data set from one LPAR to another, making data transfer between

LPARs easier. (#1098)

Re-enabled color in the daemon client to differentiate text displayed in the terminal. (#1379)

Zowe Explorer

Added option to save unique data set attributes as a template after allocation for future use. (#1425)

Added "Cancel Job" feature for job nodes in Jobs panel view. (#2251)

Enhanced ID generation for parent tree nodes to ensure uniqueness. (#2325)

Added support for custom credential manager extensions. (#2212)

Bug fixes
Zowe Version 2.9.0 contains the bug fixes that are described in the following topics.

Zowe Application Framework

ZLux App Server

Recognizers from multiple plug-ins could not be merged due to an error in the merge code execution at startup. (#256)

Zowe API Mediation Layer

Client certificates in a request are ignored when x509 authentication is not enabled. (406f588, closes #2930)

The correct list of public keys are returned when z/OSMF is not available. (030a34f, closes #2936)

Imperative CLI Framework

Added logic to display a warning in cases where a null command handler is provided. (#990)

Fixed a logic error in the config list command that caused unwanted behavior when a positional argument and the --

locations option were both passed in the command. (#989)

Reduced file loading time by searching for command definitions with the fast-glob NPM module instead of the glob module.

(#986)

Removed validation of the deprecated pluginHealthCheck property because it was an unused feature. (#980)

https://github.com/zowe/imperative/pull/987
https://github.com/zowe/imperative/pull/967
https://github.com/zowe/imperative/pull/977
https://github.com/zowe/zowe-cli/pull/1710
https://github.com/zowe/zowe-cli/issues/1098
https://github.com/zowe/zowe-cli/issues/1379
https://github.com/zowe/zowe-explorer-vscode/issues/1425
https://github.com/zowe/zowe-explorer-vscode/issues/2251
https://github.com/zowe/zowe-explorer-vscode/pull/2325
https://github.com/zowe/zowe-explorer-vscode/issues/2212
https://github.com/zowe/zlux-app-server/pull/256
https://github.com/zowe/api-layer/commit/406f588
https://github.com/zowe/api-layer/issues/2930
https://github.com/zowe/api-layer/commit/030a34f
https://github.com/zowe/api-layer/issues/2936
https://github.com/zowe/imperative/pull/990
https://github.com/zowe/imperative/pull/989
https://github.com/zowe/imperative/pull/986
https://github.com/zowe/imperative/issues/980

Zowe CLI

Enabled ANSI in Windows-based terminals to better display progress bars when using daemon mode. (#1701)

Changed daemon to spawn as its own process to avoid unintentional termination of the daemon mode. (#1241, #1277, #1309)

Fixed --secondary data set allocation option being specified as 1 unit on BLANK type data sets with the zowe files create

data-set command. (#1595)

Fixed --range option so it is not ignored on the zowe files view uss-file command. (#1717)

Fixed --binary option ignored by commands that upload and download USS directories when the .zosattributes file is used.

(#1717)

Fixed --include-hidden option ignored by the zowe files upload dir-to-uss command when it was used without the --

recursive option. (#1717)

Implemented several updates for technical currency. Updated Imperative to allow for special handling of chalk and coloring in
daemon client (#1721). Updated imperative to fix undesired behavior in the zowe config list command in certain situations

(#1721). Updated tar dependency (#1719).

IBM Db2 Database Plug-in for Zowe CLI

Updated ibm_db dependency for better support with Node.js 18. (#125)

Zowe Explorer

Fixed issue where the Disable Validation for Profile context menu option did not update to Enable Validation for Profile after
use. (#1897)

Removed "/" characters in path.join() calls. (#2172)

Fixed issue where user was not able to view job spool file with the same DD name in different steps because of duplicated local
file name. (#2279)

Fixed issue where user was not able to view job spool file from jobs with duplicated step names because of duplicated local file
name. (#2315)

Fixed issue with Windows path when uploading file to data set. (#2323)

Fixed an issue with mismatch etag error returned not triggering the diff editor and possible loss of data due to the issue. (#2277)

Fixed issue where refreshing views collapsed the tree views in their respective panels. (#2215)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

https://github.com/zowe/zowe-cli/issues/1701
https://github.com/zowe/zowe-cli/issues/1241
https://github.com/zowe/zowe-cli/issues/1277
https://github.com/zowe/zowe-cli/issues/1309
https://github.com/zowe/zowe-cli/issues/1595
https://github.com/zowe/zowe-cli/pull/1717
https://github.com/zowe/zowe-cli/pull/1717
https://github.com/zowe/zowe-cli/pull/1717
https://github.com/zowe/zowe-cli/pull/1721
https://github.com/zowe/zowe-cli/pull/1721
https://github.com/zowe/zowe-cli/pull/1719
https://github.com/zowe/zowe-cli-db2-plugin/pull/125
https://github.com/zowe/zowe-explorer-vscode/issues/1897
https://github.com/zowe/zowe-explorer-vscode/issues/2172
https://github.com/zowe/zowe-explorer-vscode/issues/2279
https://github.com/zowe/zowe-explorer-vscode/issues/2315
https://github.com/zowe/zowe-explorer-vscode/issues/2323
https://github.com/zowe/zowe-explorer-vscode/issues/2277
https://github.com/zowe/zowe-explorer-vscode/issues/2215
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.8.0 (April 2023)
Welcome to the Zowe Version 2.8.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.8.0 build: Want to try new features as soon as possible? You can download the v2.8.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.8.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe installation and packaging

Component installation can now print stdout of install scripts. (#3361)

Zowe Application Framework

ZSS

Added the API /datasetCopy to copy data sets.

/datasetMetadata now returns prime, secnd, and space fields for showing the primary and secondary extent sizes and the unit

type for them. (#582)

ZSS data set creation API now supports space values of BYTE , KB , and MB , instead of just CYL and TRK .

Zowe Common C

fileCopy now copies with the target having the permissions of the source, as opposed to the previous 700 permissions.

Zlux App Manager

Added new isSingleAppModeSimple() to iframe-adapter to differentiate between standalone mode and simple standalone

mode.

Replaced existing snapshot preview with lighter UI to significantly increase multi-app Desktop performance.

Zlux Server Framework

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zowe-install-packaging/pull/3361
https://github.com/zowe/zss/pull/582

Added support for zowe.verifyCertificates=NONSTRICT . (#468)

Allow dataservices to pass CAs into the call() function. (#462)

Zlux Editor

Renamed openFile to openBuffer in editor-control.serverice.ts .

Zowe API Mediation Layer

A unique authentication cookie name has been added for multi-instance deployment (#2812) (6654271), closes #2812.

Zowe CLI

Zowe CLI (Core)

Updated Imperative to add --prune option to zowe config secure command to delete unused properties. (Imperative #547)

Added range option to zos-files view uss-file command.

Imperative CLI Framework

Added --prune option to zowe config secure command to delete unused properties. (#547)

Added credMgrOverride property to IProfOpts interface that can be used to override credential manager in the ProfileInfo
API. (Zowe CLI #1632)

Deprecated the requireKeytar property on the IProfOpts interface. Use the credMgrOverride property instead and pass the

callback that requires Keytar to ProfileCredentials.defaultCredMgrWithKeytar .

Added AbstractPluginLifeCycle to enable plug-ins to write their own postInstall and preUninstall functions, which will

be automatically called by the Zowe plug-in's install and uninstall commands.

Added pluginLifeCycle property to IImperativeConfig to enable a plug-in to specify the path name to its own module which

implements the AbstractPluginLifeCycle class.

Added a list of known credential manager overrides to Imperative. When a credential manager cannot be loaded, a list of valid
credential managers displays in an error message.

Added a CredentialManagerOverride class containing utility functions to replace the default CLI credential manager or restore

the default CLI credential manager. Plug-ins which implement a credential manager override can call these utilities from their
AbstractPluginLifeCycle functions.

Added documentation Overriding_the_default_credential_manager describing the techniques for overriding the default CLI
credential manager with a plug-in.

z/OS FTP Plug-in for Zowe CLI

Updated example of upload file-to-data-set command in the plug-in help.

Zowe Explorer

https://github.com/zowe/zlux-server-framework/pull/468
https://github.com/zowe/zlux-server-framework/pull/462
https://github.com/zowe/api-layer/commit/6654271
https://github.com/zowe/api-layer/issues/2812
https://github.com/zowe/imperative/issues/547
https://github.com/zowe/imperative/issues/547
https://github.com/zowe/zowe-cli/issues/1632
https://github.com/zowe/imperative/blob/master/doc/Plugin%20Architecture/Overriding_the_default_credential_manager.md

Added a new Zowe Explorer setting, zowe.logger , with a default setting of INFO to allow users to select the level of logging

they want to see. Logging levels range from TRACE (most verbose) to FATAL (only fatal).

Added an output channel, Zowe Explorer , for logging within VS Code's Output view so users can view Zowe Explorer logs within

VS Code. The log level is set by the new Zowe Explorer setting, zowe.logger .

Opening a dialog for Upload or Download of files will now open at the project level directory or the user's home directory if no
project is opened. (#2203)

Updated linter rules and addressed linter errors throughout the codebase. (#2184)

Added the new setting zowe.files.logsFolder.path that can be used to override the Zowe Explorer logs folder if the default

location is read-only. (#2186)

Bug fixes
Zowe Version 2.8.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Component environment variables will not be aliased to the configs shorthand when the component had a configure script, but

not a validate script, and zowe.useConfigmgr was enabled.

When zowe.useConfigmgr=true , component installation will not run the installation script from the component root directory,

but instead from the place zwe was executed, causing relative path differences versus zowe.useConfigmgr=false .

Zowe Application Framework

ZSS

Changed conflicting message IDs in the ZIS dynamic linkage base plug-in.

Zowe Common C

fileCopy would not work when convert encoding was not requested. The destination file would be created, but without the
requested content.

respondWithUnixFileMetadata would not return UID or GID of a file if the id-to-name mapping failed, which is possible when

an account is removed.

Zlux App Manager

Fixed the iframe-adapter not properly recognizing standalone mode.

Fixed Iframes from unintentionally loading their sources multiple times during refocus and multi-app situations.

Zlux Editor

Fixed app2app openDataset function.

Renamed openFile to openBuffer in editor-control.serverice.ts .

https://github.com/zowe/zowe-explorer-vscode/issues/2203
https://github.com/zowe/zowe-explorer-vscode/issues/2184
https://github.com/zowe/zowe-explorer-vscode/issues/2186

Zowe API Mediation Layer

Mitigate storing password in memory for V2 (#2858) (b1596eb), closes #2858.

Mitigate storing password in memory for V1 (#2867) (3356b7c), closes #2867.

Read response from http client to prevent exahusting connection pool (#2854) (137be23), closes #2854.

Passticket generation and limit Eureka replication peers threads (#2845) (42b491e), closes #2845.

Refactor SSL configuration (#2832) (33f4882), closes #2832.

Zowe CLI

Zowe CLI (Core)

Fixed encoding option for zos-files view uss-file command. (#1495)

Added notification that encoding , binary , and record options conflict on the zos-files view data-set and zos-files

view uss-file commands.

Updated Imperative to fix the zowe auth li and zowe auth lo aliases. (Imperative #964)

Fixed URI encoding on zos-jobs commands. (#1596)

Updated Imperative to fix an error on Windows preventing plug-ins from installing if a local file or directory contains a space.
(Imperative #959)

Updated daemon executable to resolve technical debt.

Fixed URI encoding on zos-files commands. (#1073)

Solved daemon issue where Windows usernames were treated as case-sensitive when checking the daemon process owner
during Zowe commands.

Fixed the login and logout handlers, fixing the li and lo aliases.

Fixed broken plug-in install command for Windows when a file has a space in the name.

Fixed plug-in install error not displayed correctly. (#954)

Fixed environment file not applying to daemon client environment variables.

CICS Plug-in for Zowe CLI

Updated xml2js dependency to resolve security vulnerability.

MQ Plug-in for Zowe CLI

Fixed GitHub repository URL in package.json .

Zowe Explorer

Fixed issue with silent failures when uploading members into a data set. (#2167)

Added back fix that was accidentally removed between updates: Resolved an issue where VS Code did not provide all context
menu options for a profile node after a multi-select operation. (#2108)

Fixed issue where Paste option is shown for a multi-select operation in the Data Sets pane.

Fixed z/OSMF profiles issue with Data Sets and Jobs with special characters in the names. (#2175)

Fixed redundant text in error messages that included the same error details twice.

Fixed error message when no data sets found that match pattern.

https://github.com/zowe/api-layer/commit/b1596eb
https://github.com/zowe/api-layer/issues/2858
https://github.com/zowe/api-layer/commit/3356b7c
https://github.com/zowe/api-layer/issues/2867
https://github.com/zowe/api-layer/commit/137be23
https://github.com/zowe/api-layer/issues/2854
https://github.com/zowe/api-layer/commit/42b491e
https://github.com/zowe/api-layer/issues/2845
https://github.com/zowe/api-layer/commit/33f4882
https://github.com/zowe/api-layer/issues/2832
https://github.com/zowe/zowe-cli/issues/1495
https://github.com/zowe/imperative/issues/964
https://github.com/zowe/zowe-cli/issues/1596
https://github.com/zowe/imperative/issues/959
https://github.com/zowe/zowe-cli/issues/1073
https://github.com/zowe/imperative/issues/954
https://github.com/zowe/zowe-explorer-vscode/issues/2167
https://github.com/zowe/zowe-explorer-vscode/pull/2108
https://github.com/zowe/zowe-explorer-vscode/issues/2175

Fixed secure credential storage not possible to enable in Theia.

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.7.0 (March 2023)
Welcome to the Zowe Version 2.7.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.7.0 build: Want to try new features as soon as possible? You can download the v2.7.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.7.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe installation and packaging

The zowe authorized loadlib now contains a new ZIS plug-in as a member named ZWESISDL . This is the ZIS Dynamic Plug-in, and

exists for use by other plug-ins that wish to access zowe-common-c utilities at runtime without needing to statically link them in the

other plug-in. This plug-in must be referenced in the ZWESIP00 parmlib member before use. The samplib for ZWESIP00 now

references this ZWESISDL member and it is recommended that you update your ZWESIP00 member using the samplib if you need to

use this plug-in.

Zowe Application Framework

ZSS

A new ZIS plug-in, ZISDYNAMIC , is available within the LOADLIB as ZWESISDL. This plug-in allows for ZIS plug-ins to access utility
functions of the zowe-common-c libraries without needing to statically build them into the plug-in itself.

New REST endpoint that maps distributed username to RACF user ID.

Zlux Editor

Added the feature to copy the line content and copy URL link to open a file at a specific line.

Zowe API Mediation Layer

The API ML now supports additional keyring types (#2799) (952bf2b), closes #2799.

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/api-layer/commit/952bf2b
https://github.com/zowe/api-layer/issues/2799

OIDC info is now available via webfinger (#2757) (71e88ba), closes #2757.

The API Catalog can now be configured to hide service information (#2743) (2fbbc65), closes #2743.

Zowe CLI

Zowe CLI (Core)

Added support for a CLI-specific environment variable file for users who are not able to set system environment variables. (#1484)

Added support for downloading job spool content in binary and record formats so you have more options in how to view results.
(#1607)

Zowe CLI Imperative Framework

Added the ~/.<cli_name>.env.json file to provide environment variables to the Imperative framework during Imperative
initialization. This allows sites without environment variable access to specify process specific environment variables. (#943)

Added ProfileInfo.removeKnownProperty to delete profile properties to use as an alternative to the existing

ProfileInfo.updateKnownProperty to update a property with an undefined value. To do so, allowed type IProfArgValue to be of

type undefined to support removing properties more easily. (#917)

Zowe Explorer

Added Job search label to the Jobs tree to display the current search query. (#2062)

Added feature to copy datasets (partitioned datasets, sequential, members across partitioned datasets) with multi-select capabilities.
(#1150)

Bug fixes

Zowe Version 2.7.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

When zwe components install detects that the given component is already installed, you will get a message to run zwe components

upgrade.

Launcher parameters such as shareAs could not be customized globally due to zowe.launcher schema being wrong with some
parameters nested inside another.

Launcher parameters within an individual component were not documented to exist despite the launcher allowing per-component
customization.

zwe detects and warns against nodejs lower than version 14 (due to end of life of v12).

Tracing and writing to log files would not work for component scripts when zowe.useConfigmgr=true.

Zowe Application Framework

https://github.com/zowe/api-layer/commit/71e88ba
https://github.com/zowe/api-layer/issues/2757
https://github.com/zowe/api-layer/commit/2fbbc65
https://github.com/zowe/api-layer/issues/2743
https://github.com/zowe/zowe-cli/issues/1484
https://github.com/zowe/zowe-cli/pull/1607
https://github.com/zowe/imperative/pull/943
https://github.com/zowe/imperative/issues/917
https://github.com/zowe/zowe-explorer-vscode/pull/2064
https://github.com/zowe/zowe-explorer-vscode/issues/1550

Zlux App Server

Explicitly prefer ipv4 dns results to be compatible with node 18 since it switched to prefer ipv6 without configuration. This behavior

can be cusomized via components.app-server.dns.lookupOrder='ipv4' or ipv6 . It defaults to ipv4 .

ZSS

Fixed /unixfile/metadata not working when URL encoded spaces were present in file names.

Zlux Editor

Added a few rules for JCL syntax highlighter.

Set USS path to correct directory, when opening the directory or file in new browser tab respectively.

Getting 400 BAD REQUEST in the browser when opening the file or data set in a new browser tab.

When opening New File , editor keeps on using the earlier opened file and its model.

Zowe API Mediation Layer

Updated keyring config (#2828) (c1e1cc9), closes #2828.

Ran gateway instances with own cache storage (#2807) (4d08707), closes #2807.

Fixed stack overflow during cleaning websocket client (#2815) (376f818), closes #2815.

Fixed support of different type of keyrings in proper format (just two slashes) (#2687) (dfb0168), closes #2687.

Addressed WebSocket connection failure (#2805) (232bade), closes #2805.

Enabled Periodical clean of the connection pool (#2797) (7058290), closes #2797.

Recognized profile settings (#2789) (adf5ea5), closes #2789.

Eureka peer connections loop (#2775) (85a27ea), closes #2775.

Reduced the number of WARN logs (#2780) (df0243f), closes #2780.

Fixed bug in Wizard static onboarding method (#2773) (c8d7c66), closes #2773.

Improved handling of SSL errors (#2744) (bb9792b), closes #2744.

Zowe CLI

Zowe CLI (Core)

Enabled option to download output from a submitted job with the -d flag. The -e flag now enables changes to file extension as
originally intended. (#729)

Changed default value for modify-jobs option in the Zowe jobs command group to 2.0 . This change results in calls to z/OSMF

becoming synchronous, and a successful response from the modify , cancel , and delete commands indicates the requested action

https://github.com/zowe/api-layer/commit/c1e1cc9
https://github.com/zowe/api-layer/issues/2828
https://github.com/zowe/api-layer/commit/4d08707
https://github.com/zowe/api-layer/issues/2807
https://github.com/zowe/api-layer/commit/376f818
https://github.com/zowe/api-layer/issues/2815
https://github.com/zowe/api-layer/commit/dfb0168
https://github.com/zowe/api-layer/issues/2687
https://github.com/zowe/api-layer/commit/232bade
https://github.com/zowe/api-layer/issues/2805
https://github.com/zowe/api-layer/commit/7058290
https://github.com/zowe/api-layer/issues/2797
https://github.com/zowe/api-layer/commit/adf5ea5
https://github.com/zowe/api-layer/issues/2789
https://github.com/zowe/api-layer/commit/85a27ea
https://github.com/zowe/api-layer/issues/2775
https://github.com/zowe/api-layer/commit/df0243f
https://github.com/zowe/api-layer/issues/2780
https://github.com/zowe/api-layer/commit/c8d7c66
https://github.com/zowe/api-layer/issues/2773
https://github.com/zowe/api-layer/commit/bb9792b
https://github.com/zowe/api-layer/issues/2744
https://github.com/zowe/zowe-cli/issues/729

was completed successfully. (#1459)

Fix in employing --context-lines option for all diff/compare commands. Fixed broken --seqnum option implementation. (#1529)

Updated Imperative to include bug fixes in version 5.8.2.

Zowe CLI Imperative Framework

Fixed --help-examples option failing on command groups. (Zowe CLI #1617)

Fixed npm not found on zowe plugins install when using daemon mode in Windows. (Zowe CLI #1615)

Fixed web help not showing top-level options like --version for the zowe command. (#927)

Removed --help-examples option from CLI help for commands as it only applies to groups. (#928)

Zowe Explorer

Fixed issue where job search queries were not working properly when favorited. (#2122)

Fixed issues where document changes may fail to upload if the environment has a slow filesystem or mainframe connection, or when
VS Code exits during an upload operation. (#1948)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.6.

CVE-2022-40159

CVE-2022-42252 (BDSA-2022-3105)

CVE-2022-31159

CVE-2022-24999 (BDSA-2022-3375)

CVE-2022-31690 (BDSA-2022-3109)

CVE-2022-31692 (BDSA-2022-3106)

BDSA-2022-2580

BDSA-2022-2582

BDSA-2022-2583

CVE-2022-40151 (BDSA-2022-2580)

CVE-2022-40152 (BDSA-2022-2582)

CVE-2022-3517

CVE-2022-37603 (BDSA-2022-3812)

CVE-2022-37601 (BDSA-2022-3814)

CVE-2022-37599 (BDSA-2022-3811)

https://github.com/zowe/zowe-cli/issues/1459
https://github.com/zowe/zowe-cli/issues/1529
https://github.com/zowe/zowe-cli/issues/1617
https://github.com/zowe/zowe-cli/issues/1615
https://github.com/zowe/imperative/issues/927
https://github.com/zowe/imperative/issues/928
https://github.com/zowe/zowe-explorer-vscode/issues/2122
https://github.com/zowe/zowe-explorer-vscode/issues/1948
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.6.1 (February 2023)
Welcome to the Zowe Version 2.6.1 release!

This release contains a minor packaging fix, no user action is required.

See Zowe's Version 2.6.0 release notes for the latest features, enhancements, and bug fixes.

Download v2.6.1 build: Want to try new features as soon as possible? You can download the V2.6.1 build from Zowe.org.

https://docs.zowe.org/stable/whats-new/release-notes/v2_6_1/v2_6_0
https://www.zowe.org/download.html

Version: v2.17.x LTS

Version 2.6.0 (January 2023)
Welcome to the Zowe Version 2.6.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.6.0 build: Want to try new features as soon as possible? You can download the v2.6.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.6.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe API Mediation Layer

Spring Cloud Gateway implementation - Support of remapping to Passticket (#2046)

Spring Cloud Gateway implementation - Support of remapping to client certificate (#2044)

Zowe Explorer

Added Job search prefix validator. (#1971)

Added file association for zowe.config.json and zowe.config.user.json to automatically detect them as JSON with Comments.
(#1997)

Added the ability to list all datasets, even those with Imperative Errors. (#235, #2036)

Added favorite job query to jobs view. (#1947)

Added confirmation message for "Submit Job" feature as an option in extension settings (set to "All jobs" by default). (#998)

Updated error dialog when Zowe config is invalid, with option to "Show Config" within VS Code for diagnostics. (#1986)

Bug fixes

Zowe Version 2.6.0 contains the bug fixes that are described in the following topics.

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/api-layer/issues/2046
https://github.com/zowe/api-layer/issues/2044
https://github.com/zowe/zowe-explorer-vscode/issues/1971
https://github.com/zowe/zowe-explorer-vscode/issues/1997
https://github.com/zowe/zowe-explorer-vscode/issues/235
https://github.com/zowe/zowe-explorer-vscode/issues/2036
https://github.com/zowe/zowe-explorer-vscode/issues/1947
https://github.com/zowe/zowe-explorer-vscode/issues/998
https://github.com/zowe/zowe-explorer-vscode/issues/1986

Zowe installation and packaging

When a component configure script failed during startup, no warning would be printed. Starting in 2.6, a warning will be printed
and there's also an option to prevent Zowe from continuing startup when this failure is seen, by setting
zowe.launchScript.onComponentConfigureFail to "exit".

Tar archived components would not be installed when zowe.useConfigmgr=true was set.

Various bugfixes made for reading and writing of parmlib configuration files when using the PARMLIB() syntax with zwe
commands or the ZWESLSTC job.

Revised help documentation syntax for substitution values to fix auto-documentation, by changing angle brackets to square
brackets.

Zowe Application Framework

zLUX Editor

Getting 400 BAD REQUEST in browser when opening the file or dataset in a new browser tab.

Zowe API Mediation Layer

Improve the information for failure of extension loading (#2721)

Correctly process metadata for the Plain Java Enabler running on z/OS (#1927)

Zowe CLI

Zowe CLI (Core)

Removed all line break encodings from strings for zos-files compare local-file-data-set (#1528)

Zowe CLI Imperative Framework

Exported AppSettings for CLI and other applications to use. (#840)

Exported the IAuthHandlerApi from imperative package. (#839)

Fixed ProfileInfo API failing to load schema for v1 profile when schema exists but no profiles of that type exist. (#645)

Updated return type of ProfileInfo.getDefaultProfile method to indicate that it returns null when no profile exists for the specified
type.

Fixed a logic error where chained command handlers would cause plugin validation to fail. (#320)

Fixed IO.writeFileAsync method throwing uncatchable errors. (#896)

z/OS FTP Plug-in for Zowe CLI

Updated the list jobs command to throw an error when an invalid prefix or owner is specified. (Zowe Explorer #1971)

https://github.com/zowe/api-layer/pull/2721
https://github.com/zowe/api-layer/issues/1927
https://github.com/zowe/zowe-cli/issues/1528
https://github.com/zowe/imperative/issues/840
https://github.com/zowe/imperative/issues/839
https://github.com/zowe/imperative/issues/645
https://github.com/zowe/imperative/issues/320
https://github.com/zowe/imperative/issues/896
https://github.com/zowe/zowe-explorer-vscode/issues/1971

Zowe Explorer

Updated UI/UX method calls to use standalone Gui module for better usability and maintainability. (#1967)

Fixed issue where responseTimeout (in Zowe config) was not provided for supported API calls. (#1907)

Fixed lack of legibility when "Show Attributes" feature displayed unsuitable colors with light Visual Studio Code themes. (#2048)

Fixed settings not persisting in Theia versions >=1.29.0. (#2065)

Fixed issue with a success message being returned along with error for Job deletion. (#2075)

Removed extra files from the VSIX bundle to reduce download size by 64%. (#2042)

Surfaced any errors from a data set Recall/Migrate operation. (#2032)

Re-implemented regular dataset API call if the dataSetsMatching does not exist. (#2084)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.5:

BDSA-2018-5235

CVE-2018-10237 (BDSA-2018-1358)

CVE-2020-8908 (BDSA-2020-3736)

CVE-2022-42003 (BDSA-2022-2765)

CVE-2022-42004 (BDSA-2022-2768)

CVE-2022-38752 (BDSA-2022-2590)

BDSA-2022-2584

BDSA-2022-2585

BDSA-2022-2586

https://github.com/zowe/zowe-explorer-vscode/issues/1967
https://github.com/zowe/zowe-explorer-vscode/issues/1907
https://github.com/zowe/zowe-explorer-vscode/issues/2048
https://github.com/zowe/zowe-explorer-vscode/pull/2065
https://github.com/zowe/zowe-explorer-vscode/issues/2075
https://github.com/zowe/zowe-explorer-vscode/pull/2042
https://github.com/zowe/zowe-explorer-vscode/issues/2032
https://github.com/zowe/zowe-explorer-vscode/issues/2084
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.5.0 (December 2022)
Welcome to the Zowe Version 2.5.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.5.0 build: Want to try new features as soon as possible? You can download the v2.5.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.5.0 contains the enhancements that are described in the following topics.

FIND OUT MORE

To watch a demo of new enhancements and updated features included in a Zowe V2 minor release, look for the release demo
recording in the Zowe V2 System Demo playlist on YouTube.

System demos are typically held the week after a minor release becomes available. Check the Open Mainframe Project Calendar
for the latest schedule.

Zowe installation and packaging

zwe now has a zwe config get and zwe config validate command. The get command can be used to get a part of the zowe

yaml configuration without needing to read the yaml yourself. zwe config get only returns values upon proving the

configuration is valid first. zwe config validate can be used to perform validation of the zowe configuration files without

running any additional actions. This is useful for verifying that a change is valid before starting zowe, for example.

A new component management command zwe components upgrade allows you to install an already-installed component.

A new component management command zwe components uninstall allows you to remove an installed extension.

A new component management command zwe components search allows you to query for extensions.

zwe components subcommands can now search for, install, and upgrade extensions retrieved via an on-prem or remote package

registry. At this time, npm is supported as the registry and package manager technology that zwe can use to download content.

This is an optional feature and is not enabled by default: it must be configured. View the schema for zowe.yaml to learn more
about the "package registry" and "registry handler" technologies to configure for this feature. More information and a recorded
demo is available at https://github.com/zowe/zowe-install-packaging/pull/2980

Zowe Application Framework

ZSS

Support ZIS runtime version check

Update the dynamic linkage stub vector to include new functions

Add ZIS plugin development documentation and samples

https://www.zowe.org/download.html
https://www.youtube.com/playlist?list=PL8REpLGaY9QGjSTAqZaWxLG_g-jW1qGmo
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://github.com/zowe/zowe-install-packaging/pull/2980

zLUX Editor

Added the feature to copy the line content and copy URL link to open a file at a specific line

Zowe Common C

Added embeddedjs command xplatform.appendFileUTF8 for appending to files rather than writing whole files.

Zowe API Mediation Layer

Zowe CLI

Zowe CLI (Core)

Added new functions to support the changing of a job class and the hold status of a job. Can now call zowe jobs modify job

[jobid] with options --jobclass , --hold , and --release . (#1156)

Updated Imperative to incorporate new zowe config report-env command from version 5.7.0 .

To view a subset of data set content instead of the entire file, added new command zowe files view ds ... --range SSS-EEE

| SSS,NNN . (#1539)

To define the unit of space allocation when creating a data set, added ZosFilesCreateOptions.alcunit option to PDS
definition. (#1203)

Zowe CLI Imperative Framework

Exported AppSettings for CLI and other applications to use (#840)

To view a diagnostic report of the CLI working environment, added the zowe config report-env command.

To show information for a plug-in's first steps, added the show-first-steps command. (#1325)

Zowe Explorer

Added ability to filter jobs by status. (#1925)

Added option to view PDS member attributes, and updated formatting for attributes webview. (#1577)

Streamlined attribute viewing options into one feature - "Show Attributes".

Bug fixes
Zowe Version 2.5.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Use of DVIPA may cause Zowe to believe a port is not free when it is. Starting in this release, Zowe can narrow its port validation
to a specific IP via zowe.network.vipaIp=some.ip or bypass the verification via zowe.network.validatePortFree=false .
Setting this to false will still cause the servers to be unable to connect if the port is not free, but this can be a more accurate and
portable setting.

component configure stages will now have their STDOUT printed when running at the INFO level of zwe verbosity.

zwe was not guaranteeing that the workspace folder had 770 permission when zowe.useConfigmgr=true was set

https://github.com/zowe/zowe-cli/issues/1156
https://github.com/zowe/zowe-cli/issues/1539
https://github.com/zowe/zowe-cli/issues/1203
https://github.com/zowe/imperative/issues/840
https://github.com/zowe/zowe-cli/issues/1325
https://github.com/zowe/zowe-explorer-vscode/issues/1925
https://github.com/zowe/zowe-explorer-vscode/issues/1577

Zowe Application Framework

ZSS

In 2.3 and 2.4, safkeyring:// syntax stopped working, only allowing safkeyring://// . Now, support for both is restored.

zLUX Editor

Added a few rules for JCL syntax highlighter

Set USS path to correct directory, when opening the directory or file in new browser tab respectively

Zowe Common C

Fixed a bug that the configmgr binary would always return rc=0. Now, it has various return codes for the various internal errors or
config invalid responses.

Zowe API Mediation Layer

Zowe CLI

Zowe CLI (Core)

Documented in the CLI web help that the --token-type and --token-value options do not apply to SSH commands.

Updated Imperative to include bug fixes in version 5.7.2 .

Updated the zowe zos-files create data-set command to work without the --like flag. (#1252)

Zowe CLI Imperative Framework

Added validation for null/undefined command definitions. (#868)

Updated plugins --login command option to behave as expected when running in an NPM 9 environment.

Cleaned up uses of execSync in Imperative where it makes sense to do so.

Zowe Explorer

Fixed missing localization for certain VS Code error/info/warning messages. (#1722)

Fixed "Allocate Like" error that prevented proper execution. (#1973)

Fixed de-sync issue between Data Set and Favorites panels when adding or deleting datasets/members that were favorited.
(#1488)

Added logging in places where errors were being caught and ignored.

Fixed issue where parent in Jobs list closes after single/multiple job deletion. (#1676)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

https://github.com/zowe/zowe-cli/issues/1252
https://github.com/zowe/imperative/issues/868
https://github.com/zowe/zowe-explorer-vscode/issues/1722
https://github.com/zowe/zowe-explorer-vscode/issues/1973
https://github.com/zowe/zowe-explorer-vscode/issues/1488
https://github.com/zowe/zowe-explorer-vscode/issues/1676
https://www.zowe.org/security.html

The following security issues were fixed by the Zowe security group in version 2.4.

CVE-2022-31159

BDSA-2022-2590

BDSA-2022-2580

BDSA-2022-2582

Version: v2.17.x LTS

Version 2.4.0 (October 2022)
Welcome to the Zowe Version 2.4.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.4.0 build: Want to try new features as soon as possible? You can download the v2.4.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.4.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

Updated ZWEWRF03 workflow to be up to date with the installed software.

Zowe Application Framework

ZSS

ZSS /datasetContents now has a PUT API for creating datasets.

ZIS dynamic linkage support

Zowe API Mediation Layer

Validate OIDC token (#2604) (cdd4a43)

Introduced service routing based on header to enables the Cloud Gateway to route to a southbound service by information in the
request header. (#2600) (6fafb60)

Introduced a new cloud gateway service that provides routing functionality for multi-sysplex environments. (#2576) (7c618c0)

Zowe CLI

Zowe CLI (Core)

Added the zowe files download uss-dir command to download the contents of a USS directory. (#1038)

Updated the zowe files upload file-to-uss and zowe files upload dir-to-uss commands to improve how they handle

file encoding. (#1479)
Both commands now "chtag" files after uploading them to indicate their remote encoding. This matches the already existing
behavior of the zowe files download uss-file command which checks file tags before downloading.

The behavior of .zosattributes files which can specify local and remote encoding has been changed. Files are now

converted to remote encoding, not just tagged. If no encoding is specified, the default transfer mode is text instead of binary
to be consistent with z/OSMF default behavior.

z/OS FTP Plug-in for Zowe CLI

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/issues/2604
https://github.com/zowe/api-layer/commit/cdd4a43
https://github.com/zowe/api-layer/issues/2600
https://github.com/zowe/api-layer/commit/6fafb60
https://github.com/zowe/api-layer/issues/2576
https://github.com/zowe/api-layer/commit/7c618c0
https://github.com/zowe/zowe-cli/issues/1038
https://github.com/zowe/zowe-cli/issues/1479

Added a new profile property to support encoding for data sets. (#120)

Added the ability to filter jobs based on status (e.g., Active, Held, Output, Input). (#119)

Zowe Explorer

Added check for existing team configuration file in location during create, prompting user to continue with the create action.
(#1923)

Added a solution to allow Zowe Explorer extensions with a dependency on Zowe Explorer to work as web extension without Zowe
Explorer functionality in vscode.dev . (#1953)

Zowe Explorer FTP Extension

Added support for profile file encoding used for upload and download of MVS files. (#1942)

Bug fixes
Zowe Version 2.4.0 contains the bug fixes that are described in the following topics.

Zowe Application Framework

Zowe App Server

Plugin register/deregister would not consider app2app actions and recgonizers. Now, they are added on registration and
removed on deregistration.

Zowe API Mediation Layer

Do not require clientAuth extension (#2595) (e9e8092)

snakeyml update, scheme validation fix (#2577) (ae48669)

Add build info to the manifest.yaml (#2573) (93298dd)

Fix bug in the swagger (#2571) (36997c6)

Zowe CLI

Zowe CLI (Core)

Updated example for the zowe profiles create zosmf-profile command. (#1152)

Restored info message on daemon startup. (#1506)

Updated ssh2 dependency to fix "Received unexpected packet type" error on SSH commands. (#1516)

Updated the minimatch and keytar dependencies for technical currency.

Zowe CLI Imperative Framework

Updated the Config.search API to skip loading project config layers when project directory is false . (#883)

Updated glob , js-yaml , diff2html , and npm-package-arg dependencies for technical currency.

https://github.com/zowe/zowe-cli-ftp-plugin/pull/120
https://github.com/zowe/zowe-cli-ftp-plugin/pull/119
https://github.com/zowe/zowe-explorer-vscode/issues/1923
https://github.com/zowe/zowe-explorer-vscode/pull/1953
https://github.com/zowe/zowe-explorer-vscode/pull/1942
https://github.com/zowe/api-layer/issues/2595
https://github.com/zowe/api-layer/commit/e9e8092
https://github.com/zowe/api-layer/issues/2577
https://github.com/zowe/api-layer/commit/ae48669
https://github.com/zowe/api-layer/issues/2573
https://github.com/zowe/api-layer/commit/93298dd
https://github.com/zowe/api-layer/issues/2571
https://github.com/zowe/api-layer/commit/36997c6
https://github.com/zowe/zowe-cli/issues/1152
https://github.com/zowe/zowe-cli/issues/1506
https://github.com/zowe/zowe-cli/issues/1516
https://github.com/zowe/imperative/issues/883

Zowe Explorer

Fixed failed job status update for refresh job and spool file pull from mainframe. (#1936)

Fixed project profiles loaded when no workspace folder is open. (#1802)

Fixed serial saving of data sets and files to avoid conflict error. (#1868)

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.3.

CVE-2022-34305 (BDSA-2022-1742)

BDSA-2022-1887

BDSA-2022-1891

CVE-2016-1000027

https://github.com/zowe/zowe-explorer-vscode/pull/1936
https://github.com/zowe/zowe-explorer-vscode/issues/1802
https://github.com/zowe/zowe-explorer-vscode/issues/1868
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.3.1 (September 2022)
Welcome to the Zowe Version 2.3.1 release!

This release contains a minor packaging fix, no user action is required.

See Zowe's Version 2.3.0 release notes for the latest features, enhancements, and bug fixes.

Download v2.3.1 build: Want to try new features as soon as possible? You can download the V2.3.1 build from Zowe.org.

https://docs.zowe.org/stable/whats-new/release-notes/v2_3_1/v2_3_0
https://www.zowe.org/download.html

Version: v2.17.x LTS

Version 2.3.0 (September 2022)
Welcome to the Zowe Version 2.3.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.3.0 build: Want to try new features as soon as possible? You can download the V2.3.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.3.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

Added a new dataset SZWELOAD. It contains versions of configmgr named ZWECFG31 , ZWECFG64 , and ZWERXCFG which can be
used to invoke configmgr from within a rexx program. The expected use case is to simplify how complex JCL gets configuration
information about Zowe.

Zowe can now start in a mode called configmgr mode. You can enable this in certain zwe commands by adding --configmgr .

Not all commands support this yet. For now, you can use it in zwe start , zwe stop , and zwe components . This mode is
generally significantly faster to start up Zowe, but also enforces validation of the zowe.yaml configuration against the

zowe.yaml schema files (found in /schemas).

Zowe can now start using multiple zowe.yaml files when using the configmgr mode. This works for the STC startup as well as

the zwe start , zwe stop , and zwe components commands. Each file must follow the same zowe.yaml schema as before, but

in the list of files, properties found in a file to the right will be overridden by the file to the left. Through this, you can separate
portions of Zowe configuration any way you want. To use multiple files, change your existing --config / CONFIG input to instead
be a list of FILE() entries which are colon : separated. For example, zwe start --config
FILE(/my/customizations.yaml):FILE(/zowe/defaults.yaml)

Zowe server YAML files can now have templates within them when using configmgr mode. When the value of any attribute

contains ${{ }} , the content within the brackets will be replaced with whatever the template evaluates to. The entries are
processed as ECMAScript2020-compatible JavaScript assignments. You can, for example, set one property to the value of another,
such as having parmlib: ${{ zowe.setup.dataset.prefix }}.MYPARM rather than needing to type the prefix explicitly. You can
also use this to set conditionals. For examples, check the ZSS default yaml file.

Zowe Application Framework

Zowe App Server

app-server can now be configured by using configmgr. This increases startup time and validation of components and their
plugins to increase automatic detection of plugin compatibility issues. This mode can be enabled or disabled with Zowe
configuration property zowe.useConfigmgr=true/false .

Zowe Common C

https://www.zowe.org/download.html
https://github.com/zowe/zss/blob/013d11d700003483fde38e1df0a373bb5bd4ef8c/defaults.yaml

Added a new build target configmgr-rexx , which builds a version of configmgr that can be used within rexx scripts.

ZSS

ZSS now utilizes the configuration parameters present in the zowe configuration file via the configmgr, simplifying the startup of
ZSS and increasing the validation of its parameters. The file zss/defaults.yaml shows the default configuration parameters of

zss, in combination with the schema of the parameters within zss/schemas, though some parameters are derived from zowe-wide
parameters or from other components when they involve those other components.

Improved startup time due to using the configmgr to process plugin registration, and only when the app-server is not enabled, as
the app-server does the same thing.

Zowe API Mediation Layer

Introduction of a new cloud gateway service to provide routing functionality for multi-sysplex environments. (#2576) (7c618c0),
closes #2576

Introduced a new Personal Access Token (PAT) API to evict non-relevant tokens and rules (#2554) (f3aeafa), closes #2554

Added a Redis sentinel enabled field that allows Sentinel configuration to be added to a file and kept available even when
Sentinel is not in use. (#2546) (3779072), closes #2546

Added customized code snippets to API Catalog. Customized snippets can now be defined as part of the service metadata to be
displayed in the API Catalog UI (#2526) (602392e), closes #2526

Code snippet configuration now enables direct integration of an endpoint into an application without requiring code to integrate
the other application's REST APIs. (#2509) (4d2298e), closes #2509

A Personal Access Token (PAT) for SSO is now accepted. The PAT can now be validated and invalidated using a REST API on the
Gateway (#2499) (ad17c18), closes #2499

Zowe CLI

Zowe CLI (Core)

Added the browser-view option to the zowe zos-files compare data-set command to compare two data sets, and display the

differences in the browser. (#1443)

Added the command zowe zos-files compare local-file-data-set to compare a local file and a data set, and display the
differences in the browser and terminal. (#1444)

Added the command zowe zos-files compare uss-files to compare two uss files, and display the differences in the browser

and terminal. (#1445)

Added the command zowe zos-files compare local-file-uss-file to compare a local file and a uss file, and display the

differences in the browser and terminal. (#1446)

Added the command zowe zos-files compare spool-dd to compare two spool dds, and display the differences in the browser

and terminal. (#1447)

Added the command zowe zos-files compare local-file-spool-dd to compare a local file and a spool dd, and display the

differences in the browser and terminal. (#1448)

Added the ZOWE_CLI_PLUGINS_DIR environment variable to override the location where plug-ins are installed. (#1483)

Added the zowe zos-files compare data-set command to compare two data sets, and display the differences in the terminal.

(#1442)

https://github.com/zowe/api-layer/commit/7c618c0
https://github.com/zowe/api-layer/issues/2576
https://github.com/zowe/api-layer/commit/f3aeafa
https://github.com/zowe/api-layer/issues/2554
https://github.com/zowe/api-layer/commit/3779072
https://github.com/zowe/api-layer/issues/2546
https://github.com/zowe/api-layer/commit/602392e
https://github.com/zowe/api-layer/issues/2526
https://github.com/zowe/api-layer/commit/4d2298e
https://github.com/zowe/api-layer/issues/2509
https://github.com/zowe/api-layer/commit/ad17c18
https://github.com/zowe/api-layer/issues/2499
https://github.com/zowe/zowe-cli/issues/1443
https://github.com/zowe/zowe-cli/issues/1444
https://github.com/zowe/zowe-cli/issues/1445
https://github.com/zowe/zowe-cli/issues/1446
https://github.com/zowe/zowe-cli/issues/1447
https://github.com/zowe/zowe-cli/issues/1448
https://github.com/zowe/zowe-cli/issues/1483
https://github.com/zowe/zowe-cli/issues/1442

Zowe CLI Imperative Framework

Added ZOWE_CLI_PLUGINS_DIR environment variable to override the location where plug-ins are installed. (Zowe CLI #1483)

Added Diff utility features for getting differences between two files and open diffs in browser. Also added web diff generator for
creating web diff dir at the CLI home.

Zowe Explorer

Added option to edit team configuration file via the + button for easy access. #1896

Added multiple selection to manage context menu of Datasets, USS, and Jobs views. #1428

Added Spool file attribute information to a hover over the Spool file's name. #1832

Added support for CLI home directory environment variable in Team Config file watcher, and support watching Team Config files
named zowe.config.json and zowe.config.user.json at both locations. #1913

Update to Job's View Spool file label to display PROCSTEP if available, if PROCSTEP isn't available the label will display the Spool
file's record count. #1889 #1832

Extensibility API for Zowe Explorer

New API ZoweVsCodeExtension.updateCredentials for credential prompting that updates the ProfilesCache after obtaining

credentials from user. #1852

New API ProfilesCache.updateProfilesArrays to update ProfilesCache.allProfiles for profiles that don't store

credentials locally in profile file. #1852

New API ProfilesCache.isCredentialsSecured to check if credentials are stored securely. #1852

Bug fixes
Zowe Version 2.3.0 contains the bug fixes that are described in the following topics.

Zowe installation and packaging

Schema pattern for semver range has been simplified as it was not compiling in configmgr

When zwe components install could not find or set the PC bit of a ZSS plugin, it would print out an example command for fixing
the issue. Now, it shows the exact command you could execute to fix the PC bit problem.

Zowe Application Framework

Zowe App Server

Schema regex pattern for semver range was not working in configmgr, and has been corrected.

Zowe Common C

Fixed lht functions of collections.c to avoid memory issues on negative keys

Fixed the help message on configmgr

ZSS

https://github.com/zowe/zowe-cli/issues/1483
https://github.com/zowe/zowe-explorer-vscode/issues/1896
https://github.com/zowe/zowe-explorer-vscode/issues/1428
https://github.com/zowe/zowe-explorer-vscode/issues/1832
https://github.com/zowe/zowe-explorer-vscode/issues/1913
https://github.com/zowe/zowe-explorer-vscode/issues/1889
https://github.com/zowe/zowe-explorer-vscode/issues/1832
https://github.com/zowe/zowe-explorer-vscode/issues/1852
https://github.com/zowe/zowe-explorer-vscode/issues/1852
https://github.com/zowe/zowe-explorer-vscode/issues/1852

Fixed an 0C4 error within the /unixfile API in 31-bit mode. This was preventing files from being shown in the editor.

0C4 error messages from dataservices are now shown under the SEVERE log instead of the DEBUG log, so that issues can be
spotted more easily.

0C4 when lht hashmap functions were called with negative key

Zowe API Mediation Layer

snakeyml update, scheme validation fix (#2577) (ae48669), closes #2577

Add build info to the manifest.yaml (#2573) (93298dd), closes #2573

Fix bug in the swagger (#2571) (36997c6), closes #2571

AdditionalProperties must be outside of properties attribute (#2567) (fea515a), closes #2567

Enable hsts (#2565) (4cffe97), closes #2565

Fix code snippets bug (#2564) (23bed56), closes #2564

Enable redis storage mode in tests (#2522) (11bf491), closes #2522

Gradle publish after update (#2528) (1baa6f7), closes #2528

Remove multiple tokens from cookies (#2514) (d5bc187), closes #2514

Retrieve swagger api docs with or without certificate configuration enabled (#2500) (16ca734), closes #2500

Zowe CLI

Zowe CLI and related components contain the following bug fixes:

Updated Imperative to include bug fixes in version 5.5.1.

Renamed download data-set-matching to download data-sets-matching . The old name still exists as an alias.

Fixed output of download data-sets-matching being printed twice when some data sets fail to download.

Altered the zowe daemon disable command to kill only the daemon running for the current user.

Zowe CLI (Core)

Zowe CLI Imperative Framework

Prevented base profile secure-property lookup on the global layer when there is not default base profile. (#881)

Fixed exception when non-string passed to ImperativeExpect.toBeDefinedAndNonBlank() . (#856)

Removed periods in command example descriptions so descriptions look syntactically correct. (#795)

Improved performance of ProfileInfo API to load large team config files. (Zowe Explorer #1911)

Fixed dot-separated words incorrectly rendered as links in the web help. (#869)

Web-diff template directory included in files section of package.json file.

Changed the default log level of Console class from "debug" to "warn" so it is consistent with Logger class behavior. In Zowe

v2.0 the Logger class was changed to have a default log level of "warn" but the Console class was not changed. To modify a log

level, you can change it after initializing the console like this: console.level = "info"; (Zowe CLI #511)

Introduced examples for setting default profiles in zowe config set Examples section. (Zowe CLI #1428)

Fixed error when installing plug-ins that do not define profiles. (#859)

Removed some extraneous dependencies. (#477)

https://github.com/zowe/api-layer/commit/ae48669
https://github.com/zowe/api-layer/issues/2577
https://github.com/zowe/api-layer/commit/93298dd
https://github.com/zowe/api-layer/issues/2573
https://github.com/zowe/api-layer/commit/36997c6
https://github.com/zowe/api-layer/issues/2571
https://github.com/zowe/api-layer/commit/fea515a
https://github.com/zowe/api-layer/issues/2567
https://github.com/zowe/api-layer/commit/4cffe97
https://github.com/zowe/api-layer/issues/2565
https://github.com/zowe/api-layer/commit/23bed56
https://github.com/zowe/api-layer/issues/2564
https://github.com/zowe/api-layer/commit/11bf491
https://github.com/zowe/api-layer/issues/2522
https://github.com/zowe/api-layer/commit/1baa6f7
https://github.com/zowe/api-layer/issues/2528
https://github.com/zowe/api-layer/commit/d5bc187
https://github.com/zowe/api-layer/issues/2514
https://github.com/zowe/api-layer/commit/16ca734
https://github.com/zowe/api-layer/issues/2500
https://github.com/zowe/imperative/issues/881
https://github.com/zowe/imperative/issues/856
https://github.com/zowe/imperative/issues/795
https://github.com/zowe/zowe-explorer-vscode/issues/1911
https://github.com/zowe/imperative/issues/869
https://github.com/zowe/zowe-cli/issues/511
https://github.com/zowe/zowe-cli/issues/1428
https://github.com/zowe/imperative/issues/859
https://github.com/zowe/imperative/issues/477

Db2 Plug-in for Zowe CLI

Updated ibm_db dependency to be compatible with Node.js 18.

Zowe Explorer

Fixed extension being slow to load large team config files. #1911

Fix issue with cached profile information after updates to profiles. #1915

Fix for saving credentials to v1 profile's yaml file when un-secure and save is selected after credential prompting. #1886

Fix for outdated cached information after Update Credentials. #1858

Fix to support ZOWE_CLI_HOME environment variable. #1747

Fixed activation failure when error reading team configuration file. #1876

Fixed Profile IO errors by refactoring use of Imperative's CliProfileManager. #1851

Fixed runtime error found in initForZowe call used by extenders. #1872

Added error notification for users when OS case sensitivitiy is not set up to avoid issues found with USS files in single directory of
same name but different case. #1484

Added file watcher for team configuration files to fix v2 profile update issues experienced during creation, updating, and deletion
of global or project level configuration files in VS Code. #1760

Updated dependencies for improved security. #1878

Optimized saving of files on DS/USS when utilizing autosave or experiencing slow upload speeds. #1800

Updates to use new Zowe Explorer APIs ZoweVsCodeExtension.updateCredentials for credential prompting and

ProfilesCache.updateProfilesArrays for profiles that don't store credentials locally in profile file. #1852

Zowe Explorer Extension for FTP

Fixed for profile properties like "rejectUnauthorized" being ignored.

Extensibility API for Zowe Explorer

Fix for extenders that call registerCustomProfileType() and recieved error when team configuration file was in place. #1870

Deprecated ZoweVsCodeExtension.promptCredentials in favor of ZoweVsCodeExtension.updateCredentials . #1852

Vulnerabilities fixed

Zowe discloses fixed vulnerabilities in a timely manner giving you sufficient time to plan your upgrades. Zowe does not disclose the
vulnerabilities fixed in the latest release as we respect the need for at least 45 days to decide when and how you upgrade Zowe. When
a new release is published, Zowe publishes the vulnerabilities fixed in the previous release. For more information about the Zowe
security policy, see the Security page on the Zowe website.

The following security issues were fixed by the Zowe security group in version 2.2.

BDSA-2019-3199

https://github.com/zowe/zowe-explorer-vscode/issues/1911
https://github.com/zowe/zowe-explorer-vscode/issues/1915
https://github.com/zowe/zowe-explorer-vscode/issues/1886
https://github.com/zowe/zowe-explorer-vscode/issues/1858
https://github.com/zowe/zowe-explorer-vscode/issues/1747
https://github.com/zowe/zowe-explorer-vscode/issues/1876
https://github.com/zowe/zowe-explorer-vscode/issues/1851
https://github.com/zowe/zowe-explorer-vscode/issues/1872
https://github.com/zowe/zowe-explorer-vscode/issues/1484
https://github.com/zowe/zowe-explorer-vscode/issues/1760
https://github.com/zowe/zowe-explorer-vscode/pull/1878
https://github.com/zowe/zowe-explorer-vscode/issues/1800
https://github.com/zowe/zowe-explorer-vscode/issues/1852
https://github.com/zowe/zowe-explorer-vscode/issues/1870
https://github.com/zowe/zowe-explorer-vscode/issues/1852
https://www.zowe.org/security.html

Version: v2.17.x LTS

Version 2.2.0 (July 2022)
Welcome to the Zowe Version 2.2.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.2.0 build: Want to try new features as soon as possible? You can download the V2.2.0 build from Zowe.org.

New features and enhancements
Zowe Version 2.2.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

A new command configmgr is now present in /bin/utils . It can load, validate, and report on the Zowe configuration file.

Zowe Application Framework

Added a script dependencies.sh which assists in managing external dependencies needed for project compilation

Added a new build target, configmgr , which builds a tool that can be called to either load, validate, and print the zowe

configuration, or load, validate, and run a JS script that is given the configuration.

Added an automated build for configmgr which is consumed by the Zowe packaging

Zowe API Mediation Layer

Revoke a Personal Access Token by admin (#2476) (e4d42a9), closes #2476

Caching Service can store invalidated token rules (#2460) (055aac9), closes #2460

Exchange client certificate for SAF IDT (#2455) (303087c), closes #2455 #2384

Fix SAF IDT scheme and service (#2224) (7772401), closes #2224

Generate Personal Access Token (#2452) (0e39aa7), closes #2452

Limit the scope of a Personal Access Token (#2456) (cc0aba4), closes #2456

Revoke a Personal Access Token (#2422) (c7f79d5), closes #2422

Validate ServiceId with Endpoint (#2413) (9f3825f), closes #2413

Zowe CLI

Zowe CLI (Core)

Added the zowe files download data-sets-matching command to download multiple data sets at once. (#1287)

Note: If you used this command previously in the extended files plug-in for Zowe v1, the --fail-fast option now defaults to

true which is different from the original behavior.

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/commit/e4d42a9
https://github.com/zowe/api-layer/issues/2476
https://github.com/zowe/api-layer/commit/055aac9
https://github.com/zowe/api-layer/issues/2460
https://github.com/zowe/api-layer/commit/303087c
https://github.com/zowe/api-layer/issues/2455
https://github.com/zowe/api-layer/issues/2384
https://github.com/zowe/api-layer/commit/7772401
https://github.com/zowe/api-layer/issues/2224
https://github.com/zowe/api-layer/commit/0e39aa7
https://github.com/zowe/api-layer/issues/2452
https://github.com/zowe/api-layer/commit/cc0aba4
https://github.com/zowe/api-layer/issues/2456
https://github.com/zowe/api-layer/commit/c7f79d5
https://github.com/zowe/api-layer/issues/2422
https://github.com/zowe/api-layer/commit/9f3825f
https://github.com/zowe/api-layer/issues/2413
https://github.com/zowe/zowe-cli/issues/1287

Added the zowe zos-files compare data-set command to compare two datasets and display the differences on the terminal.

(#1442)

Zowe Explorer

Pull from Mainframe option added for JES spool files. #1837

Updated Licenses. #1841

Bug fixes
Zowe Version 2.2.0 contains the bug fixes that are described in the following topics.

Zowe API Mediation Layer

Immediately expire a passticket command to generate a passticket for each call (#2496) (8adca78), closes #2496

Optimize image builds (#2445) (e220cbd), closes #2445

Extend Tomcat to be able to recover after TCP/IP stack is restarted, so that the service does not require restart. (#2421) (a851b8f),
closes #2421

Zowe CLI

Zowe CLI and related components contain the following bug fixes.

Zowe CLI (Core)

Updated Imperative to address ProfileInfo related issues.

Fixed the Zowe Daemon binary exiting with an error if the daemon server does not start within 3 seconds.

Alter the zowe daemon disable command to only kill the daemon running for the current user.

Zowe CLI Imperative Framework

Expose the isSecured functionality from the ProfilesCredentials. (#549)

Allow the ConfigAutoStore to store plain-text properties that are defined as secure in the schema (for example, user, password).
(zowe/vscode-extension-for-zowe: #1804)

Added ANSI escape codes trimming for the Web Help. (#704)

Fixed AbstractRestClient not converting LF line endings to CRLF for every line when downloading large files on Windows.

(zowe/zowe-cli/#1458)

Fixed zowe --version --rfj including a trailing newline in the version field. (#842)

Fixed --response-format-json option not supported by some commands in daemon mode. (#843)

Removed some extraneous dependencies. (#477)

z/OS FTP Plug-in for Zowe CLI

Pick up zos-node-accessor v1.0.11 to fix listing single USS file or symbol link and update PDS dataset allocation.

Refine help of partitioned dataset allocation.

https://github.com/zowe/zowe-cli/issues/1442
https://github.com/zowe/zowe-explorer-vscode/pull/1837
https://github.com/zowe/zowe-explorer-vscode/issues/1841
https://github.com/zowe/api-layer/commit/8adca78
https://github.com/zowe/api-layer/issues/2496
https://github.com/zowe/api-layer/commit/e220cbd
https://github.com/zowe/api-layer/issues/2445
https://github.com/zowe/api-layer/commit/a851b8f
https://github.com/zowe/api-layer/issues/2421
https://github.com/zowe/imperative/issues/549
https://github.com/zowe/zowe-explorer-vscode/issues/1804
https://github.com/zowe/imperative/issues/704
https://github.com/zowe/zowe-cli/issues/1458
https://github.com/zowe/imperative/issues/842
https://github.com/zowe/imperative/issues/843
https://github.com/zowe/imperative/issues/477

Zowe Explorer

Updated imports to use the imperative instance provided by the CLI package. #1842

Fixed unwanted requests made by tree node when closing folder. #754

Fix for credentials not being updated after the invalid credentials error is displayed. #1799

Fixed hyperlink for Job submitted when profile is not already in JOBS view. #1751

Fixed key bindings for Refresh Zowe Explorer to not override default VSC key binding. See README.md for new key bindings.

#1826

Fixed Update Profile issue for missing nonsecure credentials. #1804

Fixed errors when operation cancelled during credential prompt. #1827

Login and Logout operations no longer require a restart of Zowe Explorer or VSC. #1750

Fix for Login token always being stored in plain text. #1840

Fixed Theia tests. #1665

https://github.com/zowe/zowe-explorer-vscode/issues/1842
https://github.com/zowe/zowe-explorer-vscode/issues/754
https://github.com/zowe/zowe-explorer-vscode/issues/1799
https://github.com/zowe/zowe-explorer-vscode/issues/1751
https://github.com/zowe/zowe-explorer-vscode/blob/master/packages/zowe-explorer/README.md#keyboard-shortcuts
https://github.com/zowe/zowe-explorer-vscode/issues/1826
https://github.com/zowe/zowe-explorer-vscode/issues/1804
https://github.com/zowe/zowe-explorer-vscode/issues/1827
https://github.com/zowe/zowe-explorer-vscode/issues/1750
https://github.com/zowe/zowe-explorer-vscode/issues/1840
https://github.com/zowe/zowe-explorer-vscode/issues/1665

Version: v2.17.x LTS

Version 2.1.0 (June 2022)
Welcome to the Version 2.1.0 release of Zowe!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of issues addressed in this
release.

Download v2.1.0 build: Want to try new features as soon as possible? You can download the V2.1.0 build from Zowe.org.

New features and enhancements

Zowe API Mediation Layer

Added trivial schema files for lib components. Updated manifests to remove build metadata (#2379) (6eba58f), closes #2379

Extended API operation filter in the Swagger UI (#2397) (cffd6cf), closes #2397

Generate basic code snippets (#2387) (79c67d0), closes #2387

New endpoint to retrieve default API doc for service (#2327) (502ba3c), closes #2327

Enhanced Discovery service health check (#2312) (2f167ff), closes #2312

Support for TLS v1.3 (#2314) (e96135a), closes #2314 #2269

Enhanced x509 authentication scheme to support client certificates (#2285) (a053b00), closes #2285

Enhanced zowejwt authentication scheme to support client certificates (#2292) (c602080), closes #2292

Enhanced z/OSMF authentication scheme to support client certificates (#2207) (5750072), closes #2207

Added support to change password via z/OSMF (#2095) (51e8bd3), closes #2095

Enabled Discovery Service and Gateway Service native library extensions (#1987) (fd03db5), closes #1987

Added methods for ZaaS client to support password change (#1991) (7597bd7), closes #1991

API ML sample extension (#1947) (a085cf3), closes #1947

Zowe Application Framework

USS Explorer contains the following enhancement.

Added the feature to download a file.

MVS Explorer contains the following enhancement.

Disabled the submit button and gave a warning message in Dialogs when dataset or dataset member name is invalid.

JES Explorer contains the following enhancements.

Highlighted the selected Jobs and Job Files.

Updated the Job tree when a job is deleted or cancelled.

Added * support for job ID.

Added app2app arguments: expand - Boolean that says to expand the job. In a list of jobs, this expands the first result. showDD -

string that auto-opens any dataset definition with this name when expanding the job.

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/commit/6eba58f
https://github.com/zowe/api-layer/issues/2379
https://github.com/zowe/api-layer/commit/cffd6cf
https://github.com/zowe/api-layer/issues/2397
https://github.com/zowe/api-layer/commit/79c67d0
https://github.com/zowe/api-layer/issues/2387
https://github.com/zowe/api-layer/commit/502ba3c
https://github.com/zowe/api-layer/issues/2327
https://github.com/zowe/api-layer/commit/2f167ff
https://github.com/zowe/api-layer/issues/2312
https://github.com/zowe/api-layer/commit/e96135a
https://github.com/zowe/api-layer/issues/2314
https://github.com/zowe/api-layer/issues/2269
https://github.com/zowe/api-layer/commit/a053b00
https://github.com/zowe/api-layer/issues/2285
https://github.com/zowe/api-layer/commit/c602080
https://github.com/zowe/api-layer/issues/2292
https://github.com/zowe/api-layer/commit/5750072
https://github.com/zowe/api-layer/issues/2207
https://github.com/zowe/api-layer/commit/51e8bd3
https://github.com/zowe/api-layer/issues/2095
https://github.com/zowe/api-layer/commit/fd03db5
https://github.com/zowe/api-layer/issues/1987
https://github.com/zowe/api-layer/commit/7597bd7
https://github.com/zowe/api-layer/issues/1991
https://github.com/zowe/api-layer/commit/a085cf3
https://github.com/zowe/api-layer/issues/1947

Zowe CLI

Zowe CLI contains the following enhancements and changes.

Zowe CLI (Core)

Updated the zowe config auto-init command to allow using certificates for authentication. (#1359)

Exposed profile type configuration from the respective SDKs.

Added the zowe zos-jobs view all-spool-content command to view all spool content given a job ID. (#946)

Added the zowe jobs submit uss-file command to submit a job from a USS file. (#1286)

Added the zowe files view data-set and the zowe files view uss-file commands to view a data set or a USS file. (#1283)

Added the zowe jobs delete old-jobs command to delete (purge) jobs in OUTPUT status. (#1285)

Zowe CLI Imperative Framework

Added the ability for CLIs and Plug-ins to override some of the prompting logic if an alternate property is set.

Introduced the --show-inputs-only flag to show the inputs of the command that would be used if a command were executed.

Added the dark theme mode to web help that is automatically used when system-wide dark mode is enabled.

Added environmental variable support to the ProfileInfo APIs by defaulting homeDir to cliHome . (#1777)

Bug fixes

Zowe API Mediation Layer

Add log masking class for sensitive logs (#2003) (994b483), closes #2003

API Catalog swagger link (#2344) (be07fda), closes #2344

Use same key and record lengths as jcl (#2341) (d8644f2), closes #2341

Add server-side logging for swagger handling code (#2328) (7b0455d), closes #2328

Preserve request cookies (#2293) (71c6649), closes #2293 #2269

ZaaS client compatibility with Zowe v2 (#2227) (abdf995), closes #2227

Add BearerContent filter to enable bearer auth (#2197) (1d41704), closes #2197

Configure southbound timeout with APIML_GATEWAY_TIMEOUT_MILLIS (#2154) (6af5d6f), closes #2154

Improve error handling for API diff endpoint (#2178) (1581e39), closes #2178

Update data model for infinispan storage in Caching service (#2156) (38a1348), closes #2156

Versioning in image publishing workflow (#2159) (db52527), closes #2159

Add x509 auth info to gw api doc (#2142) (0205470), closes #2142

Properly remove services when instances are removed from Discovery Service (#2128) (c675b91), closes #2128

Use ribbon LB for Web sockets (#2147) (4751dbc), closes #2147

Add missing fields in error response (#2118) (3b9745c), closes #2118

Do not require keyAlias for SSL configuration (#2110) (03bee79), closes #2110

Zowe CLI

Zowe CLI (Core)

https://github.com/zowe/zowe-cli/issues/1359
https://github.com/zowe/zowe-cli/issues/946
https://github.com/zowe/zowe-cli/issues/1286
https://github.com/zowe/zowe-cli/issues/1283
https://github.com/zowe/zowe-cli/issues/1285
https://github.com/zowe/zowe-explorer-vscode/issues/1777
https://github.com/zowe/api-layer/commit/994b483
https://github.com/zowe/api-layer/issues/2003
https://github.com/zowe/api-layer/commit/be07fda
https://github.com/zowe/api-layer/issues/2344
https://github.com/zowe/api-layer/commit/d8644f2
https://github.com/zowe/api-layer/issues/2341
https://github.com/zowe/api-layer/commit/7b0455d
https://github.com/zowe/api-layer/issues/2328
https://github.com/zowe/api-layer/commit/71c6649
https://github.com/zowe/api-layer/issues/2293
https://github.com/zowe/api-layer/issues/2269
https://github.com/zowe/api-layer/commit/abdf995
https://github.com/zowe/api-layer/issues/2227
https://github.com/zowe/api-layer/commit/1d41704
https://github.com/zowe/api-layer/issues/2197
https://github.com/zowe/api-layer/commit/6af5d6f
https://github.com/zowe/api-layer/issues/2154
https://github.com/zowe/api-layer/commit/1581e39
https://github.com/zowe/api-layer/issues/2178
https://github.com/zowe/api-layer/commit/38a1348
https://github.com/zowe/api-layer/issues/2156
https://github.com/zowe/api-layer/commit/db52527
https://github.com/zowe/api-layer/issues/2159
https://github.com/zowe/api-layer/commit/0205470
https://github.com/zowe/api-layer/issues/2142
https://github.com/zowe/api-layer/commit/c675b91
https://github.com/zowe/api-layer/issues/2128
https://github.com/zowe/api-layer/commit/4751dbc
https://github.com/zowe/api-layer/issues/2147
https://github.com/zowe/api-layer/commit/3b9745c
https://github.com/zowe/api-layer/issues/2118
https://github.com/zowe/api-layer/commit/03bee79
https://github.com/zowe/api-layer/issues/2110

Zowe CLI (Core) contains the following bug fixes:

Fixed an issue where config auto-init could report that it modified a config file that did not yet exist.

Updated Imperative to fix the config import and config secure commands that were not respecting the --reject-
unauthorized option.

Fixed an issue where privateKey is not being respected. (#1398 and #1392)

Moved the authConfig object from the core SDK into the CLI's base profile definition to fix invalid handler path.

Fixed an issue where SSH command waits forever when user has expired password. (#989)

Fixed the name of the positional in zowe zos-jobs submit uss-file command.

Updated the description of the zowe zos-jobs view all-spool-content command.

Updated the descriptions of the zowe zos-files view uss-file and zowe zos-files view data-set commands.

Removed the zowe zos-files view uss-file <file> --record option.

Fixed the description of the zowe zos-jobs delete command group.

Added the --modify-version option to the zowe zos-jobs delete old-jobs command for feature parity with zowe zos-

jobs delete job .

Updated Imperative to address ProfileInfo related issues.

Zowe CLI Imperative Framework

Zowe CLI Imperative Framework contains the following bug fixes:

Fixed ProfileInfo API argTeamConfigLoc not recognizing secure fields in multi-layer operations. (#800)

Fixed ProfileInfo API updateKnownProperty possibly storing information in the wrong location due to optional osLoc

information. (#800)

Fixed osLoc information returning project level paths instead of the global layer. (#805)

Fixed autoStore not being checked by updateKnownProperty . (#806)

Fixed the plugins uninstall command failing when there is a space in the install path.

Fixed an issue where config auto-init might fail to create project config when global config already exists. (#810)

Fixed config secure not respecting the rejectUnauthorized property in team config. (#813)

Fixed config import not respecting the rejectUnauthorized property in team config. (#816)

Updated the cli-table3 dependency for performance improvements.

Fixed config init not replacing empty values with prompted for values in team config. (#821)

Fixed config init saving empty string values to config file when prompt was skipped.

Fixed ConfigLayers.read skipping load of secure property values.

Improved the performance of ConfigLayers.activate by skipping config reload if the active layer directory has not changed.

https://github.com/zowe/zowe-cli/issues/1398
https://github.com/zowe/zowe-cli/issues/1392
https://github.com/zowe/zowe-cli/issues/989
https://github.com/zowe/imperative/pull/800
https://github.com/zowe/imperative/pull/800
https://github.com/zowe/imperative/issues/805
https://github.com/zowe/imperative/issues/806
https://github.com/zowe/imperative/issues/810
https://github.com/zowe/imperative/issues/813
https://github.com/zowe/imperative/issues/816
https://github.com/zowe/imperative/issues/821

Removed the async keyword from the ConfigLayers.read method and the ConfigLayers.write method because they do not

contain asynchronous code.

Fixed ProfileInfo.readProfilesFromDisk failing when team config files and old-school profile directory do not exist.

Fixed ProfileInfo.updateProperty not updating properties that are newly present after reloading team config.

Note: If you are developing an SDK that uses the ProfileInfo API, use the method ProfileInfo.getTeamConfig instead of

ImperativeConfig.instance.config which may contain outdated config or be undefined.

Fixed ProfileInfo API not detecting secure credential manager after profiles have been reloaded.

Zowe Application Framework

USS Explorer contains the following fix.

Fixed the bug where opening a file fails when USS path has / at the end.

JES Explorer contains the following fixes.

Fixed bug where URL requests fail when using # character in prefix.

Fixed a bug where using app2app params at launch would not use desired data.

Zowe Explorer

Fixed Quick-key Delete in USS and Jobs trees. #1821

Fixed issue with Zowe Explorer crashing during initialization due to Zowe config file errors. #1822

Fixed issue where Spool files failed to open when credentials were not stored in a profile. #1823

Fixed extra space in the Invalid Credentials dialog, at profile validation profilename. #1824

Updated dependencies for improved security. #1819

Fixed USS search filter fails on credential-less profiles. #1811

Fixed Zowe Explorer recognizing environment variable ZOWE_CLI_HOME. #1803

Fixed Zowe Explorer prompting for TSO Account number when saved in config file's TSO profile. #1801

Improved logging information to help diagnose Team Profile issues. #1776

Fixed adding profiles to the tree view on Theia. #1774

Updated Log4js version to resolve initialization problem on Eclipse Che. #1692

Fixed dataset upload issue by trimming labels. #1789

Fixed duplicate jobs appearing in the jobs view upon making an owner/prefix filter search for extenders. #1780

Fixed error displayed when opening a job file for extenders. #1701

https://github.com/zowe/zowe-explorer-vscode/pull/1821
https://github.com/zowe/zowe-explorer-vscode/pull/1822
https://github.com/zowe/zowe-explorer-vscode/pull/1823
https://github.com/zowe/zowe-explorer-vscode/pull/1824
https://github.com/zowe/zowe-explorer-vscode/pull/1819
https://github.com/zowe/zowe-explorer-vscode/pull/1811
https://github.com/zowe/zowe-explorer-vscode/pull/1803
https://github.com/zowe/zowe-explorer-vscode/pull/1801
https://github.com/zowe/zowe-explorer-vscode/pull/1776
https://github.com/zowe/zowe-explorer-vscode/issues/1774
https://github.com/zowe/zowe-explorer-vscode/issues/1692
https://github.com/zowe/zowe-explorer-vscode/issues/1789
https://github.com/zowe/zowe-explorer-vscode/pull/1780
https://github.com/zowe/zowe-explorer-vscode/pull/1701

Version: v2.17.x LTS

Version 2.0.0 (April 2022)
Welcome to the Version 2.0.0 release of Zowe!

Version 2.0 introduced breaking changes and a number of new features.

If you are upgrading from V1 to V2, review the Breaking changes first.

See New features and enhancements for a full list of changes to the functionality.

See Bug fixes for a list of V1 issues addressed in this release.

See Conformance and release compatibility for V2 Conformance Criteria updates and compatibility with v1.

Download v2.0.0 build: Want to try new features as soon as possible? You can download the V2.0.0 build from Zowe.org.

v2 office hours videos: Zowe held a series of v2 LTS office hours for extenders and consumers to introduce all the V2 changes. Watch
the videos to learn more about the new features.

Breaking changes

Zowe installation

You must pass -ppx when you unpax the Zowe convenience build to preserve extended file attributes.

All utility scripts, like zowe-install.sh , zowe-install-xmem.sh , zowe-install-proc.sh , validate-directory-is-

accessible.sh , are removed and migrated to the new zwe server command format.

If you rely on some of the scripts, find the alternative new zwe command or shell library functions.

ZWESVSTC is removed and ZWESLSTC will replace it to start Zowe.

instance.env is deprecated and replaced by zowe.yml .

In V2, you use the P command to terminate Zowe instead of the C cancel command.

Zowe now allows fine-grained customization of log, workspace, and configuration directories. By default, these directories remain
grouped under an instance directory (same as Zowe v1).

Environment variables are reorganized to better describe itself. All zowe.yaml configuration entries will be automatically

converted to environment variables for easy consumption. Check with the community what the new alternative variable names
are.

During Zowe configuration, redundant ip fields will be removed or consolidated in favor of hostname or domains .

Component or extension manifest is mandatory. You must use the zwe components install command to install the extension.

API Mediation Layer

Removed the support for the old path pattern (#1770). This includes the changes to the endpoints used in ZAAS client. If your
application uses ZAAS client, please verify whether the configuration properties use the new path pattern (/gateway/api/v1
instead of /api/v1/gateway).

Removed the support for different authentication schemas for different instances of service (#1051).

https://www.zowe.org/download.html
https://docs.zowe.org/stable/getting-started/zowe-office-hours
https://github.com/zowe/api-layer/issues/1770
https://github.com/zowe/api-layer/issues/1051

Zowe Application Framework

Some configuration, such as port and IP values, are different by default in V2 but can be reconfigured to old values. However, some
application framework extensions may not work in V2 without enhancements.

zLUX App Manager

Due to new library versions, native apps such as Angular and React apps written for Zowe v1 may not work in Zowe v2. Rebuilding
the apps with the same versions and the latest webpack build scripts is recommended.

zLUX Server Framework

The list of properties sent back from the /server/environment has changed to reflect the different environment values present
in Zowe v2

Adjusted the server to respect ZSS's new cookie format in which the port or HA instance ID is a suffix of the ZSS cookie. This
means that the server may not work properly when paired with a v1 ZSS and works best with v2 ZSS.

zLUX Editor

The app now uses angular 12, making it compatible with Zowe v2 desktop and incompatible with v1 desktop.

Basic VT Terminal Emulator

Upgrade to Angular 12, Typescript 4, and Corejs 3 to match Desktop libraries in Zowe v2. This app may no longer work in the
Zowe v1 Desktop, and v2 should be used instead.

Basic TN3270 Display Emulator

Upgrade to Angular 12, Typescript 4, and Corejs 3 to match Desktop libraries in Zowe v2. This app may no longer work in the
Zowe v1 Desktop, and v2 should be used instead.

Sample angular app

The app now uses angular 12, making it compatible with Zowe v2 desktop and incompatible with v1 desktop.

Zowe CLI

Breaking changes for Zowe CLI end users:

zowe config no longer manages app settings (Imperative and CLI)

fail-on-error default changed to true for zowe plugins validate (Imperative and CLI)

Default Imperative and CLI log level changed from DEBUG to WARN (Imperative and CLI), which potentially changes
troubleshooting steps for providing information to support.

Breaking changes that could prevent a V1 plug-in or SDK from working in V2

CLI package should be removed as a plug-in peer dep (Imperative)

AbstractRestClient.mDecode defaults to true so any plug-in with custom RestClient implementation that adds gzip

decompression may break

The return value for PluginManagementFacility.requirePluginModuleCallback changed. Application and plug-in

developers requiring a module from a plug-in's relative path using the requirePluginModuleCallback function no longer

need to provide the plug-in name in a separate variable this.pluginNmForUseInCallback = pluginName before binding
the class this.requirePluginModuleCallback.bind(this) . Instead they can call

this.requirePluginModuleCallback(pluginName) .

Previously in V1:

In V2:

Breaking changes for Zowe CLI and Imperative plug-in developers

These changes only impact early adopters of @next as these are breaking changes made during the technical preview validation
phase. Thanks to the community for the feedback.

tokenType and tokenValue were combined into authToken , which later was reverted (Imperative and CLI)

Options in zowe config group are renamed: --user is renamed to --user-config , and --global to --global-config .

Zowe.schema.json format changed a few times (version 2, version 3): ConfigSchemas.loadProfileSchemas is changed to

ConfigSchemas.loadSchema

Config.set no longer coerces string values to other types unless parseString = true which might impact the SDK

instead of CLI plug-ins.

New features and enhancements

Zowe installation

Introduced a new server command zwe to balance between simplification and flexibility on installation and configuration.
Almost all Zowe utility scripts in V1 are consolidated into new zwe server command. This new command defines consistent

help messages, logging options, and so on. See the ZWE Command Reference for more information.

Provides shell function library to help extensions to achieve common tasks. For example, execute TSO command, operator
command, submit job and check job completion, and so on.

Keep away from commands/functions marked as experimental and internal.

Installation / Configuration changes
During installation, no new runtime directory will be created.

A zowe.yaml file can be used to centralize all configuration options. This configuration is compatible with all Zowe use cases
(including high availability and containerization).

For almost all Zowe configuration steps, an automation option zwe init command is provided. You can still choose to run

all steps one by one.

Provides the --security-dry-run mode that allows you to generate security commands and pass along to your system

admin.

You can run all steps from USS now.

A Zowe component or extension can use manifest.yaml to define how it interacts with Zowe and other components.

The component or extension must define a manifest.yaml or manifest.json file to describe itself. The manifest allows you

to define how to register on Zowe API ML Discovery, how to register under Zowe Desktop, and whether it’s Java extension
library for API ML, and so on.

https://docs.zowe.org/stable/whats-new/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean

Components can define their own configs in manifest.yaml which shows you how to customize this component and

provides default values if they are not defined. This option is compatible with Zowe running in high availability mode.

Introduced new data sets to better organize the contents.
Added SZWEEXEC to contain few utility tools.

You can customize your own PARMLIB, APF Authorized LOADLIB and APF-authorized ZIS plug-ins library. CUST.JCLIB is a

data set where Zowe will store temporary JCLs.

Zowe API Mediation Layer

There is now the option to change your password via the Catalog UI (#2035) (139a231), closes #2035

Discovery service can be configured to modify the service ID at registration time (#2229) (63f6fde), closes #2229

There is now the option to specify base packages for the extensions loader(#2081) (9a4be5a), closes #2081

There is a new design of the logout panel in the Catalog dashboard (#2102) (1382f24), closes #2102

Add missing tooltips to all onboarding options (#2194) (5446fd5), closes #2194

Migrate API Catalog to the Material UI library (2c595d5, 0da7f15, 95da488, c60371d, 537fa34, 81ab2ed), closes #1169

Made various improvements to the onboarding wizard (#1772) (20dd70b), closes #1772

Zowe Application Framework

zLUX App Manager

New desktop library versions are Angular 6->12, Corejs 2->3, Typescript 2->4, and so on. For more information, visit
https://www.zowe.org/vnext.

The web-browser and admin-desktop-notification apps now contains a manifest file so that it can be installed with zwe
components install.

zLUX App Server

Renamed ZLUX_ environment variables to ZWED_ for consistency. Backwards compatible with old environment variables.

Added support for new logDirectory variable specification in zowe.yaml

Added support for reading from zowe.yaml instead of server.json

zLUX Server Framework

Added support for reading zowe.yaml directly, as opposed to server.json .

The server can now support checks on the existence and version of APIML if a plug-in states a dependency on APIML in the
"requirements.components" section of its plug-in definition.

The list of parameters for server configuration is now documented in json-schema for validation, you can find this in the zlux
repository

ZSS Package

New configuration option that allows to run 64-bit ZSS

zLUX Editor

Cookie name now has a suffix which includes the port or if in an HA instance, the HA ID.

https://github.com/zowe/api-layer/commit/139a231
https://github.com/zowe/api-layer/issues/2035
https://github.com/zowe/api-layer/commit/63f6fde
https://github.com/zowe/api-layer/issues/2229
https://github.com/zowe/api-layer/commit/9a4be5a
https://github.com/zowe/api-layer/issues/2081
https://github.com/zowe/api-layer/commit/1382f24
https://github.com/zowe/api-layer/issues/2102
https://github.com/zowe/api-layer/commit/5446fd5
https://github.com/zowe/api-layer/issues/2194
https://github.com/zowe/api-layer/commit/2c595d5
https://github.com/zowe/api-layer/commit/0da7f15
https://github.com/zowe/api-layer/commit/95da488
https://github.com/zowe/api-layer/commit/c60371d
https://github.com/zowe/api-layer/commit/537fa34
https://github.com/zowe/api-layer/commit/81ab2ed
https://github.com/zowe/api-layer/issues/1169
https://github.com/zowe/api-layer/commit/20dd70b
https://github.com/zowe/api-layer/issues/1772
https://www.zowe.org/vnext

Basic VT Terminal Emulator

The app now contains a manifest file so that it can be installed with zwe components install

Sample angular app

The app now contains a manifest file so that it can be installed with zwe components install

USS Explorer

USS-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe environment, this will result
in less processes but does break links about getting to the explorer via APIML routes. The explorer is now available via the app-
server's APIML route.

JES Explorer

JES-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe environment, this will result
in less processes but does break links about getting to the explorer via APIML routes. The explorer is now available via the app-
server's APIML route.

MVS Explorer

MVS-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe environment, this will result
in less processes but does break links about getting to the explorer via APIML routes. The explorer is now available via the app-
server's APIML route.

Zowe CLI

Zowe CLI contains the following enhancements and changes:

Team Configuration:

Team configuration significantly improves the configuration/onboarding experience and provides the ability to easily share
configuration information with others in an organization.

Automatic Team Configuration:

Automatic team configuration leverages the Zowe API Mediation Layer to automatically configure connections for conformant
API ML services that also have a CLI plug-in.

Daemon Mode:

Daemon Mode significantly improves the performance of Zowe CLI by not requiring separate node processes to be spawned for
every command.

Secure by Default:

Secure by default provides a secure out-of-the-box experience by including the secure credential store feature, previously offered
as a plug-in in V1, as part of the core Zowe CLI package.

Migrating to Zowe V2 Team Configuration:

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode

After installing @zowe/cli@zowe-v2-lts and all desired plug-ins @zowe-v2-lts , you can easily migrate to Zowe V2 team

configuration by issuing the following command:

Note: For more information, see Team configurations.

Zowe CLI Plug-ins

Zowe maintained CLI plug-ins are Zowe V2 LTS conformant. As such, they integrate with Team configuration, daemon mode, and the
team configuration migration utility. For information about enhancements and bug fixes, see the changelogs for the following plug-
ins:

IBM CICS Plug-in for Zowe CLI

IBM Db2 Database Plug-in for Zowe CLI

IBM z/OS FTP Plug-in for Zowe CLI

IBM IMS Plug-in for Zowe CLI

IBM MQ Plug-in for Zowe CLI

Imperative CLI Framework

Imperative is the infrastructure on which various Zowe technologies are built. For information about enhancements and bug fixes, see
the Imperative CLI Framework changelog.

Nodejs SDK

The Nodejs SDK packages were updated to make use of key Zowe V2 features, including Team Configuration. For information about
enhancements and bug fixes, see the changelogs for the following packages:

Core Package

Provisioning Package

z/OS Console Package

z/OS Files Package

z/OS Jobs Package

z/OS Logs Package

z/OS Management Facility Package

z/OS TSO Package

z/OS USS Package

z/OS Workflows Package

Zowe Explorer

Zowe Explorer makes use of Team Configuration and is secure by default. For information about enhancements and bug fixes, see the
following changelogs:

Zowe Explorer

Zowe Explorer CICS Extension

Zowe Explorer FTP Extension

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles#important-information-about-team-profiles
https://github.com/zowe/cics-for-zowe-client/blob/master/packages/cli/CHANGELOG.md
https://github.com/zowe/zowe-cli-db2-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ftp-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ims-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-mq-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/imperative/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/core/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/provisioning/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosconsole/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosfiles/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosjobs/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zoslogs/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosmf/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zostso/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosuss/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/workflows/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/next/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/cics-for-zowe-client/blob/next/packages/vsce/CHANGELOG.md
https://github.com/zowe/zowe-explorer-vscode/blob/next/packages/zowe-explorer-ftp-extension/CHANGELOG.md

Bug fixes

Zowe API Mediation Layer

Caching service logging (#2222) (5ff64d9), closes #2222

Add x509 Authentication information to the API Documentation of the API Gateway (#2142) (072ad23), closes #2142

Authorization provider set empty as default (#2107) (aa77926), closes #2107

Update URL of the API Catalog to work with the V2 version of the Zowe Desktop (6f4257a), closes #2022

Zowe Application Framework

zLUX Server Framework

When paired with the Zowe server infrastructure, the app-server will now automatically register and de-register plug-ins at
startup depending on each plug-in's component enabled status.

ZSS Package

Do not use "tee" when log destination is /dev/null

Cookie name now has a suffix which includes the port or if in an HA instance, the HA ID.

Conformance and release compatibility

Backward compatibility

Zowe v1 conformant extensions/plug-ins are not guaranteed to be compatible with Zowe v2 and therefore may not be operable. In
general, plug-ins/extensions which leverage v2 APIs that have known breaking changes are at high risk of incompatibility and
unpredictable results.

Recommendation: All v1 extenders test with Zowe v2, identify any issues, and disclose results to consumers to clearly indicate
backward compatibility status in the extension documentation. If unable to test, clearly document as such.

Forward compatibility

Zowe v2 conformant (planning to earn conformance) extensions/plug-ins are not guaranteed to be compatible with Zowe v1 LTS. In
general, plug-ins/extensions with no known dependency on any newly introduced Zowe v2 functions are at minimum risk.

Recommendation: All v2 extenders test with Zowe v1 LTS, identify any issues, and disclose results to consumers to clearly indicate
forward compatibility status in the extension documentation. If unable to test, clearly document as such.

Conformance compatibility

Zowe v1 conformant extensions/plug-ins are likely to require changes to meet Zowe v2 conformance criteria. All extensions
(regardless of v1 conformance status) must apply for v2 conformance and satisfy all required v2 testing criteria. You can find the V2
Conformance Criteria here.

https://github.com/zowe/api-layer/commit/5ff64d9
https://github.com/zowe/api-layer/issues/2222
https://github.com/zowe/api-layer/commit/072ad23
https://github.com/zowe/api-layer/issues/2142
https://github.com/zowe/api-layer/commit/aa77926
https://github.com/zowe/api-layer/issues/2107
https://github.com/zowe/api-layer/commit/6f4257a
https://github.com/zowe/api-layer/issues/2022
https://github.com/openmainframeproject/foundation/files/8489757/Zowe.Conformance.Program.-.Test.Evaluation.Guide.Table.pdf

Recommendation: All extenders interested in earning v2 conformance review the v2 conformance criteria, determine if technical
changes are necessary, make appropriate modifications and prepare to apply for v2 conformance.

Need help? For assistance with reviewing or completing the Zowe Conformance Zowe v2 application, reach out to members of the
Zowe Onboarding Squad on Slack at https://slack.openmainframeproject.org in the #zowe-onboarding channel.

https://slack.openmainframeproject.org/

Version: v2.17.x LTS

Breaking Changes and Important Updates in Zowe v3
The upcoming release of Zowe v3 will bring a range of major changes in Zowe functionality. Review this article for details about
changes to various Zowe components to be introduced in Zowe v3.

API Mediation Layer (API ML)

Breaking Changes to API ML

Authentication endpoints will not support the route /api/v1/gateway , and instead will support only /gateway/api/v1

Spring Enabler will be updated to Spring Boot 3 and Spring 6. Spring Boot 2 and Spring 5 versions will no longer be supported.

Datasets API will be archived

Jobs API will be archived

Metrics service will be archived

IMS API will be archived

Java 17 will be required for the API Mediation Layer to run

z/OSMF in version V2R5 with APAR PH12143 applied

Configuration of keyrings will require transformation from safkeyring://// to safkeyring://

Important updates

The current API Gateway contains Authentication and Authorization Services. This service will be separated as a standalone service.
This is the only API Mediation Layer service that needs z/OS directly

Application Framework

Breaking changes

Updating Angular to Version 16 from Version 12

Removing the core-js dependency

Updating Webpack to version 5

Updating Typescript to 4.9

CLI

Breaking changes

Introducing a new format for error messages to improve clarity

Removing V1 profile support

Removing deprecated items - CLI and Imperative

https://github.com/zowe/zowe-cli/issues/1694
https://github.com/zowe/zowe-cli/issues/1873

Pre-release availability

V3 pre-release versions are available via npm under the 'next' tag

Explorer for Intellij

Important updates

Explorer for Intellij will be part of the Zowe Core

Working with USS Files

Working with Data Sets

Working with JES Working Sets

Interactive TSO Console

Explorer for Visual Studio Code

Breaking changes

Removing V1 profile support

Removing deprecated items - Explorer for VSCode

Changing profile creation menus

Storing extension settings in local storage

Important updates

Storing persistent settings in local storage

Comparing files in MVS view, the USS view, and across the two views

Pre-release availability

V3 pre-release versions are available via GitHub releases or via the Open VSX Registry.

Installation and Packaging

Breaking changes

Dropping the original V2 configuration management, zowe.useConfigmgr=false . (The Configuration Manager remains as the

only supported method for configuring Zowe)

Important updates

Removing the dependency on Node.js for configuration

Introducing ZEN, a wizard to simplify configuration via the UI

https://www.npmjs.com/package/@zowe/cli?activeTab=readme
https://github.com/zowe/zowe-explorer-vscode/issues/2238
https://github.com/zowe/zowe-explorer-vscode/releases
https://open-vsx.org/extension/Zowe/vscode-extension-for-zowe

ZSS

Breaking changes

Run by default in 64 bit mode, components.zss.agent.64bit=true . 31-bit plugins cannot run in 64-bit ZSS, so you need to

compile your plugins for the version of ZSS to be used. Note that only one version of ZSS can run at a time.

Version: v2.17.x LTS

Zowe V3 Office Hours
Zowe Office Hours are a chance for users and extenders to hear directly from Zowe developers about what to expect from the next
major Zowe release.

Zowe squads go over their upcoming projects and answer your questions about Zowe V3.

Missed a session? Catch up here. Office hours are recorded and made available with videos posted to the Open Mainframe Project
YouTube channel.

Consumer focused Office Hours

Upcoming Consumer focused Office Hours

Date Topic Link to the meeting
Link to the
recording

Links to
the

materials

09/06/2024
8AM - 9AM
ET

Web UI
https://zoom-
lfx.platform.linuxfoundation.org/meeting/92746535715?
password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2

09/13/2024
8AM - 9AM
ET

API
Mediation
Layer

https://zoom-
lfx.platform.linuxfoundation.org/meeting/92746535715?
password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2

09/20/2024
8AM - 9AM
ET

Zowe CLI &
Client Node
SDK

https://zoom-
lfx.platform.linuxfoundation.org/meeting/92746535715?
password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2

09/27/2024
8AM - 9AM
ET

Explorer (VS
Code)

https://zoom-
lfx.platform.linuxfoundation.org/meeting/92746535715?
password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2

10/04/2024
8AM - 9AM
ET

Explorer
(Intellij)

https://zoom-
lfx.platform.linuxfoundation.org/meeting/92746535715?
password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2

10/11/2024
8AM - 9AM
ET

Systems,
Install &
Packaging

https://zoom-
lfx.platform.linuxfoundation.org/meeting/92746535715?
password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2

10/18/2024
8AM - 9AM

Open Office
Hours

https://zoom-
lfx.platform.linuxfoundation.org/meeting/92746535715?

https://www.youtube.com/@OpenMainframeProject
https://zoom-lfx.platform.linuxfoundation.org/meeting/92746535715?password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2
https://zoom-lfx.platform.linuxfoundation.org/meeting/92746535715?password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2
https://zoom-lfx.platform.linuxfoundation.org/meeting/92746535715?password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2
https://zoom-lfx.platform.linuxfoundation.org/meeting/92746535715?password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2
https://zoom-lfx.platform.linuxfoundation.org/meeting/92746535715?password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2
https://zoom-lfx.platform.linuxfoundation.org/meeting/92746535715?password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2
https://zoom-lfx.platform.linuxfoundation.org/meeting/92746535715?password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2

Date Topic Link to the meeting
Link to the
recording

Links to
the

materials

ET password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2

Past Consumer focused Office Hours

Date Topic Link to the meeting
Link to the
recording

Links to the
materials

01/05/2024
8AM - 9AM
ET

API
Mediation
Layer

https://zoom-
lfx.platform.linuxfoundation.org/meeting/95815909111?
password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7

Zoom
recording

Presentation

01/12/2024
8AM - 9AM
ET

Zowe CLI
https://zoom-
lfx.platform.linuxfoundation.org/meeting/95815909111?
password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7

Zoom
recording

Presentation

01/12/2024
8AM - 9AM
ET

Node Client
SDK

https://zoom-
lfx.platform.linuxfoundation.org/meeting/95815909111?
password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7

Zoom
recording

Presentation

01/19/2024
8AM - 9AM
ET

Explorer
(VSCode)

https://zoom-
lfx.platform.linuxfoundation.org/meeting/95815909111?
password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7

Zoom
recording

Presentation

01/26/2024
8AM - 9AM
ET

Explorer
(Intellij)

https://zoom-
lfx.platform.linuxfoundation.org/meeting/95815909111?
password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7

Zoom
recording

Presentation

02/02/2024
8AM - 9AM
ET

Web UI
https://zoom-
lfx.platform.linuxfoundation.org/meeting/95815909111?
password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7

Zoom
recording

Presentation

02/09/2024
8AM - 9AM
ET

Systems
Install &
Packaging

https://zoom-
lfx.platform.linuxfoundation.org/meeting/95815909111?
password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7

Zoom
recording

Presentation

Past Extender focused Office Hours

https://zoom-lfx.platform.linuxfoundation.org/meeting/92746535715?password=0d6d9c4d-acab-4979-9ac1-f0a99aaa75c2
https://zoom-lfx.platform.linuxfoundation.org/meeting/95815909111?password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7
https://youtu.be/6gkoSSypTck?si=h4DJCZ8LzZMj3rHh
https://ibm.box.com/s/06rtqh1at3nd7q3lgi36ly8uum1h4adn
https://zoom-lfx.platform.linuxfoundation.org/meeting/95815909111?password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7
https://youtu.be/wgzJO9eyyhA?si=dgER1FQVzwAvm_1t
https://ibm.box.com/s/aqcwrc83i8uq9llyo3kae8pjxi0p1xlb
https://zoom-lfx.platform.linuxfoundation.org/meeting/95815909111?password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7
https://youtu.be/wgzJO9eyyhA?si=dgER1FQVzwAvm_1t
https://ibm.box.com/s/ujdkjfb6f1zhx4amse1x7aysdb76ai80
https://zoom-lfx.platform.linuxfoundation.org/meeting/95815909111?password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7
https://youtu.be/ZGmD2hxJVHE?si=ra46RJu3YdkecrXu
https://ibm.box.com/s/366i3i576c3r2s6kn3sqtwxzsj9lcpzm
https://zoom-lfx.platform.linuxfoundation.org/meeting/95815909111?password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7
https://youtu.be/mDlCuhizy3M?si=OlFs5mXUahH59xEl
https://ibm.box.com/s/monvnv2b55v1p6cz5cpxrmeyf8m794j4
https://zoom-lfx.platform.linuxfoundation.org/meeting/95815909111?password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7
https://youtu.be/KllchLDvBjs?si=WxJ4nBJrUDzqwwwW
https://ibm.box.com/s/asqn9wx7qc1mfwmdn6dqnkt56xuuflaz
https://zoom-lfx.platform.linuxfoundation.org/meeting/95815909111?password=57c97886-d2b6-4430-9c05-1eedfa1e0fa7
https://youtu.be/EQ-jYYl6wnY?si=W3ei2hVVqMcR0Mcn
https://ibm.box.com/s/iy5fwn7u5jcjaxfnopd9i6acjsb491qx

Date Topic Link to the meeting
Link to the
recording

Links to the
materials

11/10/2023
8AM - 9AM
ET

Other
SYSTEMS
Installation &
Packaging &
z/OS

https://zoom-
lfx.platform.linuxfoundation.org/meeting/93849373934?
password=15f05b8e-88c9-4bf5-be2b-2a48f3120129

Zoom
recording

Presentation

11/03/2023
8AM - 9AM
ET

Web UI
https://zoom-
lfx.platform.linuxfoundation.org/meeting/93849373934?
password=15f05b8e-88c9-4bf5-be2b-2a48f3120129

Zoom
recording

Not Available

10/20/2023
8AM - 9AM
ET

Explorer
(VSCode)

https://zoom-
lfx.platform.linuxfoundation.org/meeting/93849373934?
password=15f05b8e-88c9-4bf5-be2b-2a48f3120129

Zoom
recording

Presentation

10/13/2023
8AM - 9AM
ET

Zowe CLI
https://zoom-
lfx.platform.linuxfoundation.org/meeting/93849373934?
password=15f05b8e-88c9-4bf5-be2b-2a48f3120129

Zoom
recording

Presentation

10/06/2023
8AM - 9AM
ET

API Mediation
Layer

https://zoom-
lfx.platform.linuxfoundation.org/meeting/93849373934?
password=15f05b8e-88c9-4bf5-be2b-2a48f3120129

Zoom
recording

Presentation

Office Hours video series for Extenders

Zowe V3 Office Hours fZowe V3 Office Hours f……

API Mediation Layer

Zowe V3 Office Hours fZowe V3 Office Hours f……

Zowe CLI

Zowe V3 OZowe V3 O

Zowe Explorer for V

https://zoom-lfx.platform.linuxfoundation.org/meeting/93849373934?password=15f05b8e-88c9-4bf5-be2b-2a48f3120129
https://youtu.be/XdU4YTcjBaw?feature=shared
https://ibm.box.com/shared/static/jrc9sfdiqipyk13enskcpri32ykg8f38.pptx
https://zoom-lfx.platform.linuxfoundation.org/meeting/93849373934?password=15f05b8e-88c9-4bf5-be2b-2a48f3120129
https://youtu.be/xcoN3z4W_GM?feature=shared
https://zoom-lfx.platform.linuxfoundation.org/meeting/93849373934?password=15f05b8e-88c9-4bf5-be2b-2a48f3120129
https://youtu.be/Ur-yPjJyTH8?feature=shared
https://ibm.box.com/s/h5nizhrgke12z63u7v1wivax126usjda
https://zoom-lfx.platform.linuxfoundation.org/meeting/93849373934?password=15f05b8e-88c9-4bf5-be2b-2a48f3120129
https://youtu.be/3DLV28Z3szE?feature=shared
https://ibm.box.com/s/cdw0q1xnpnmm1wmtbjl3bk0esiqnfyox
https://zoom-lfx.platform.linuxfoundation.org/meeting/93849373934?password=15f05b8e-88c9-4bf5-be2b-2a48f3120129
https://youtu.be/6TTpRx9TyO4?feature=shared
https://ibm.box.com/s/0srch736nkq0q6kcrxazt0nvgfjnxyd3
https://www.youtube.com/watch?v=6TTpRx9TyO4
https://www.youtube.com/watch?v=3DLV28Z3szE
https://www.youtube.com/watch?v=Ur-yPjJyTH8

Version: v2.17.x LTS

Zowe V3 conformance criteria
The final version of Zowe V3 Conformance Criteria is published here.

See the link in each section for a PDF with the specific criteria for the corresponding project.

Zowe API Mediation Layer
Review the API Mediation Layer related conformance criteria.

Zowe CLI

Review the CLI related conformance criteria.

Zowe Explorer
Review the Explorer related conformance criteria.

Zowe Application Framework

Review the Application Framework related conformance criteria.

Support providers
Review the support providers related conformance criteria.

https://ibm.box.com/s/qin12i90slsxzv2zdpiq4we6o6157gh5
https://ibm.box.com/s/d8dgrx37k42wi2o92bk6vglfdazmkte9
https://ibm.box.com/s/xmiwe01li8n0mgx4wpj68dqpsw2ybati
https://ibm.box.com/s/krk4cckl7mo1wgmjkghv1s82q8cu5rx1
https://ibm.box.com/s/ok85oj6eflnpxsxvp1rntrebjbhebuk1

Version: v2.17.x LTS

Zowe V3 Frequently Asked Questions

General questions
1. When will Zowe V3 be released?

Zowe V3 is scheduled to be released on Sept. 28, 2024. Any changes to the plan will be communicated via all available channels.

2. When will Zowe V3 be available for preview?

Currently, Zowe V3 pre-release versions are available for the PAX, Zowe CLI, Zowe Client Node.js SDKs, Zowe Explorer for Visual
Studio Code, and the Zowe IntelliJ Plug-in.

Extender questions

API Mediation Layer

1. Do we need to move away from PassTickets as the method of authentication to the API Mediation Layer?

No, we will continue to support PassTickets. However, PassTickets will be deprecated in Zowe V3, and are no longer
recommended due to the inefficiency of configuration wherein users must configure a PassTicket for every service that uses them.

2. With the introduction of the new cloud gateway, how is the configuration going to change?

The cloud gateway configuration for V3 will move to the currently used gateway configuration space (For example,
zowe.components.gateway).The configuration that was Zuul specific will be removed and replaced with the Spring Cloud

Gateway configuration.

3. How does client certificate authentication work in Zowe V3?

Northbound authentication accepts client certificates. The API Mediation Layer then transforms the client certificate to another
method of authentication (such as a JWT token, SAF IDT, or PassTicket). This new method is then accepted by southbound
services. Currently, we do not plan to support authentication with client certificates to z/OSMF.

4. Will you identify deprecated functionality such as PassTickets?

PassTickets will be deprecated in V3, but they will still be supported, possibly even through to Zowe V4.

We plan to identify all deprecated functionality. We will announce how this functionality will be identified in the near future.

5. How do you intend to work with the the bypass scheme?

The bypass scheme will remain. You can still claim conformance for services that only provide public endpoints that do not
require authentication.

6. Do the dependency changes mean that I need Java 17 to run Zowe V3?

Yes, Java 17 is required to run the API Mediation Layer in Zowe V3.

Zowe Explorer for Visual Studio Code

1. Will the functionality to convert Zowe V1 profiles to team configuration remain available for Zowe V3?

Yes. However, users will not be able to use Zowe V1 profiles to connect to services on the mainframe.

2. Will the APIs that Zowe CLI provides for extenders remain the same?

In broad terms, yes. However, some of the functionality that was available in Zowe V2 has been changed (or removed). The
changes are included in the Zowe CLI and Imperative lists of breaking changes.

Zowe Application Framework, ZSS

1. Is it possible to run 31-bit plug-ins at the same time as 64-bit plug-ins with ZSS?

No. ZSS runs in either 31-bit or 64-bit mode, which means it can accommodate only one type of plug-in.

2. Are Angular and Webpack updated to the latest current versions?

In Zowe V3, the Application Framework uses Angular 16 and Webpack 5, which are the latest current releases.

3. What React versions are supported by Zowe Desktop?

It is possible for Desktop extensions to use different versions of React. While the Desktop is not built on React, it is still compatible
with extensions that import React.

4. Is the Zowe Server Install Wizard application running on Zowe Desktop or on z/OS?

The Zowe Server Install Wizard runs on a laptop/desktop and connects to z/OS via standard methods.

5. Is it possible to validate and change the zowe.yaml file and job definition within the Zowe Server Install Wizard?

Yes.

Zowe System Installation and Configuration

1. Does Zowe provide a Software Bill of Materials (SBOM)?

SBOMs are available in the SPDX format from the Bill of Materials page on Zowe Docs.

User questions

Zowe API Mediation Layer

1. Will Zowe V3 API ML support clients with the V2 onboarding enabler?

The API ML in Zowe V3 supports clients with onboarding enablers from Zowe V2. It also works the other way around: The
onboarding enablers from Zowe V3 will continue working with Zowe V2 API ML.

https://ibm.ent.box.com/s/vqu92d82b4wk0i6fupo8glbrxvufn4zw
https://github.com/zowe/imperative/issues/970
https://docs.zowe.org/stable/appendix/bill-of-materials/

2. The jump to Java 17 means that we have to maintain two separate versions of our application, one with apiml-enabler V2 and one
with V3, to support customers who want to stay with Java 8. Do you have a recommendation or a workaround for supporting
both Java versions?

The plain Java Enabler from Zowe V2 works in Zowe V3. You can keep this until Zowe V4.

Zowe V4 will only support Spring Boot, which requires Java 17. We recommend building applications for Java 17 to ensure that
applications continue to be compatible with API ML.

3. Can you speak about the migration from Zuul to Spring Cloud Gateway? Today there are two separate gateway services in API ML
with separate configurations.

Spring Cloud Gateway is replacing Zuul as the technology to provide the API Gateway. The configuration for the API Gateway
remains in the components.gateway namespace. If you were using Spring Cloud Gateway in V2 for the multi-tenancy scenario,

you need to update the configuration for the central gateway and move this configuration from components.cloud-gateway to

components.gateway .

4. If I have a legacy gateway deployed, how will I migrate to the new gateway? Will the old gateway be removed?

The old gateway is removed in Zowe V3, but nothing should change from the point of view of the user. However, we may deliver
a configuration utility to help with this transition if required.

5. How would a client-side end user find and obtain the correct API ML service instance ID for the desired instance of the user's
service?

In Zowe V2, clients can use the header instance ID to route communications to a specific instance. Clients can get instance IDs for
specific services via an API on the Discovery service. We are planning to improve the method for finding service IDs in Zowe V3.

6. Will the LPAR ID be available for the clients to obtain?

It is not currently available, but we are scheduled to work on this functionality in 2024.

7. API ML static onboarding locates templates that are then used to set variables in the api-defs directory. No manual user action is
required. Will this automated process still be available in Zowe V3?

Static onboarding will continue to be available. The recommendation for Zowe V3 is to move the api-defs directory out of the
Zowe workspace. The zowe.yaml file contains a parameter called

components.discovery.alternativeStaticApiDefinitionsDirectories that specifies where the directories for static
definitions reside.

https://docs.zowe.org/stable/appendix/zowe-glossary#workspace-directory

Version: v2.17.x LTS

Zowe overview
Zowe™ is an open source software which provides both an extensible framework, and a set of tools that allow mainframe
development and operation teams to securely manage, develop, and automate resources and services on z/OS family mainframes.
Zowe offers modern interfaces to interact with z/OS and allows users to interact with the mainframe system in a way that is similar to
what they experience on cloud platforms today. Users can work with these interfaces as delivered or through plug-ins and extensions
created by customers or third-party vendors. All members of the IBM Z platform community, including Independent Software Vendors
(ISVs), System Integrators, and z/OS consumers, benefit from the modern and open approach to mainframe computing delivered by
Zowe.

Zowe is a member of the Open Mainframe Project governed by Linux Foundation™.

Zowe demo video

Watch this video to see a quick demo of Zowe.

Introduction to Zowe (Feb. 26, 2021)Introduction to Zowe (Feb. 26, 2021)

Download the deck for this video | Download the script

Component overview

Zowe consists of the following components:

Zowe Launcher

API Mediation Layer

Zowe Application Framework

https://www.youtube.com/embed/NX20ZMRoTtk
https://www.youtube.com/watch?v=7XpOjREP8JU
https://docs.zowe.org/assets/files/Zowe_introduction_video_deck-fbb2a23bfe28dd10f5a003a305350c92.pptx
https://docs.zowe.org/assets/files/Zowe_introduction_video_script-cd119a2662821b55ad9bb5108f40f261.txt

Zowe CLI

Zowe Explorer

Zowe Client Software Development Kits SDKs

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Zowe Launcher

The Zowe Launcher makes it possible to launch Zowe z/OS server components in a high availability configuration, and performs the
following operations:

Start all Zowe server components using the START (or S) operator command.

Stop Zowe server components using the STOP (or P) operator command.

Stop and start specific server components without restarting the entire Zowe instance using MODIFY (or F) operator command.

API Mediation Layer

The API Mediation Layer provides a single point of access for APIs of mainframe services, and provides a Single Sign On (SSO)
capability for mainframe users.

The API Mediation Layer (API ML) facilitates secure communication between loosely coupled clients and services through a variety of
API types, such as REST, GraphQL or Web-Socket. API ML consists of these core components: the API Gateway, the Discovery Service,
the API Catalog, and the Caching service:

The API Gateway provides secure routing of API requests from clients to registered API services.

The Discovery Service allows dynamic registration of microservices and enables their discoverability and status updates.

The API Catalog provides a user-friendly interface to view and try out all registered services, read their associated APIs
documentation in OpenAPI/Swagger format.

The API ML Caching Service allows components to store, search and retrieve their state. The Caching service can be configured to
store the cached data in-memory or using Redis, or VSAM storage.

Core Zowe also provides out of the box services for working with MVS Data Sets, JES, as well as working with z/OSMF REST APIs.

Note: The MVS datasets and JES services are deprecated and will not be available in Zowe V3.

The API Mediation Layer offers enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery, consistent
security, a single sign-on experience, and API documentation.

Key features

Consistent Access: API routing and standardization of API service URLs through the Gateway component provides users with
a consistent way to access mainframe APIs at a predefined address.

Dynamic Discovery: The Discovery Service automatically determines the location and status of API services.

High-Availability: API Mediation Layer is designed with high-availability of services and scalability in mind.

Caching Service: This feature is designed for Zowe components in a high availability configuration, and supports high
availability of all components within Zowe. As such, components can remain stateless whereby the state of the component is

Learn more

https://docs.zowe.org/stable/getting-started/user-guide/api-mediation-sso

offloaded to a location accessible by all instances of the service, including those which just started.

Redundancy and Scalability: API service throughput is easily increased by starting multiple API service instances without the
need to change configuration.

Presentation of Services: The API Catalog component provides easy access to discovered API services and their associated
documentation in a user-friendly manner. Access to the contents of the API Catalog is controlled through a z/OS security
facility.

Encrypted Communication: API ML facilitates secure and trusted communication across both internal components and
discovered API services.

API Mediation Layer structural architecture

The following diagram illustrates the single point of access through the Gateway, and the interactions between API ML
components and services:

Components

The API Layer consists of the following key components:

API Gateway

Services that comprise the API ML service ecosystem are located behind a gateway (reverse proxy). All end users and API client
applications interact through the Gateway. Each service is assigned a unique service ID that is used in the access URL. Based on

the service ID, the Gateway forwards incoming API requests to the appropriate service. Multiple Gateway instances can be started
to achieve high-availability. The Gateway access URL remains unchanged. The Gateway is built using Netflix Zuul and Spring Boot
technologies.

Discovery Service

The Discovery Service is the central repository of active services in the API ML ecosystem. The Discovery Service continuously
collects and aggregates service information and serves as a repository of active services. When a service is started, it sends its
metadata, such as the original URL, assigned serviceId, and status information to the Discovery Service. Back-end microservices
register with this service either directly or by using a Eureka client. Multiple enablers are available to help with service on-
boarding of various application architectures including plain Java applications and Java applications that use the Spring Boot
framework. The Discovery Service is built on Eureka and Spring Boot technology.

Discovery Service TLS/SSL

HTTPS protocol can be enabled during API ML configuration and is highly recommended. Beyond encrypting communication, the
HTTPS configuration for the Discovery Service enables heightened security for service registration. Without HTTPS, services
provide a username and password to register in the API ML ecosystem. When using HTTPS, only trusted services that provide
HTTPS certificates signed by a trusted certificate authority can be registered.

API Catalog

The API Catalog is the catalog of published API services and their associated documentation. The Catalog provides both the REST
APIs and a web user interface (UI) to access them. The web UI follows the industry standard Swagger UI component to visualize
API documentation in OpenAPI JSON format for each service. A service can be implemented by one or more service instances,
which provide exactly the same service for high-availability or scalability.

Catalog Security

Access to the API Catalog can be protected with an Enterprise z/OS Security Manager such as IBM RACF, ACF2, or Top Secret.
Only users who provide proper mainframe credentials can access the Catalog. Client authentication is implemented through the
z/OSMF API.

Caching Service

An API is provided in high-availability mode which offers the possibility to store, retrieve, and delete data associated with keys.
The service can only be used by internal Zowe services and is not exposed to the internet.

Metrics Service (Technical Preview)

The Metrics Service provides a web user interface to visualize requests to API Mediation Layer services. HTTP metrics such as
number of requests and error rates are displayed for each API Mediation Layer service. This service is currently in technical
preview and is not ready for production.

Onboarding APIs

Essential to the API Mediation Layer ecosystem is the API services that expose their useful APIs. Use the following topics to
discover more about adding new APIs to the API Mediation Layer and using the API Catalog:

Onboarding Overview

Onboard an existing Spring Boot REST API service using Zowe API Mediation Layer

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler

Onboard an existing Node.js REST API service using Zowe API Mediation Layer

Using API Mediation Layer

To learn more about the architecture of Zowe, see Zowe architecture.

Zowe Application Framework

A web user interface (UI) that provides a virtual desktop containing a number of apps allowing access to z/OS function. Base Zowe
includes apps for traditional access such as a 3270 terminal and a VT Terminal, as well as an editor and explorers for working with JES,
MVS Data Sets and Unix System Services.

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe Application Framework,
you can create applications to suit your specific needs. The Zowe Application Framework contains a web UI that has the following
features:

The web UI works with the underlying REST APIs for data, jobs, and subsystem, but presents the information in a full screen
mode as compared to the command line interface.

The web UI makes use of leading-edge web presentation technology and is also extensible through web UI plug-ins to
capture and present a wide variety of information.

The web UI facilitates common z/OS developer or system programmer tasks by providing an editor for common text-based
files like REXX or JCL along with general purpose data set actions for both Unix System Services (USS) and Partitioned Data
Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:

Zowe Desktop

The desktop, accessed through a browser. The desktop contains a number of applications, including a TN3270 emulator for
traditional Telnet or TLS terminal access to z/OS, a VT Terminal for SSH commands, as well as rich web GUI applications
including a JES Explorer for working with jobs and spool output, a File Editor for working with USS directories and files and
MVS data sets and members. The Zowe desktop is extensible and allows vendors to provide their own applications to run
within the desktop. See Extending the Zowe Desktop. The following screen capture of a Zowe desktop shows some of its
composition as well as the TN3270 app, the JES Explorer, and the File Editor open and in use.

Learn more

https://docs.zowe.org/stable/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer
https://docs.zowe.org/stable/getting-started/zowe-architecture
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux

Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js server plus the Express.js as a
webservices framework, and the proxy applications that communicate with the z/OS services and components.

ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server. For services that need to run as APF
authorized code, Zowe uses an angel process that the ZSS Server calls using cross memory communication. During
installation and configuration of Zowe, you will see the steps needed to configure and launch the cross memory server.

Application plug-ins

Several application-type plug-ins are provided. For more information, see Using the Zowe Application Framework application
plug-ins.

Zowe CLI

Zowe CLI is a command-line interface that lets you interact with the mainframe in a familiar, off-platform format. Zowe CLI helps to
increase overall productivity, reduce the learning curve for developing mainframe applications, and exploit the ease-of-use of off-
platform tools. Zowe CLI lets you use common tools such as Integrated Development Environments (IDEs), shell commands, bash
scripts, and build tools for mainframe development. Though its ecosystem of plug-ins, you can automate actions on systems such as
IBM Db2, IBM CICS, and more. It provides a set of utilities and services for users that want to become efficient in supporting and
building z/OS applications quickly.

Zowe CLI provides the following benefits:

Learn more

https://docs.zowe.org/stable/user-guide/mvd-using#zowe-desktop-application-plug-ins

Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS applications.

Fosters the development of new and innovative tools from a computer that can interact with z/OS. Some Zowe extensions
are powered by Zowe CLI, for example the Visual Studio Code Extension for Zowe.

Ensure that business critical applications running on z/OS can be maintained and supported by existing and generally
available software development resources.

Provides a more streamlined way to build software that integrates with z/OS.

Note: For information about software requirements, installing, and upgrading Zowe CLI, see Installing Zowe.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

Interact with mainframe files: Create, edit, download, and upload mainframe files (data sets) directly from Zowe CLI.

Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and download the output
automatically.

Issue TSO and z/OS console commands: Issue TSO and console commands to the mainframe directly from Zowe CLI.

Integrate z/OS actions into scripts: Build local scripts that accomplish both mainframe and local tasks.

Produce responses as JSON documents: Return data in JSON format on request for consumption in other programming
languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI Command Groups.

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe CLI.

More Information:

System requirements for Zowe CLI

Installing Zowe CLI

Zowe Explorer

Zowe Explorer is a Visual Studio Code extension that modernizes the way developers and system administrators interact with z/OS
mainframes. Zowe Explorer lets you interact with data sets, USS files, and jobs that are stored on z/OS. The extension complements
your Zowe CLI experience and lets you use authentication services like API Mediation Layer. The extension provides the following
benefits:

Enables you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

Enables you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

Provides a more streamlined way to access data sets, uss files, and jobs.

Letting you create, edit, and delete Zowe CLI zosmf compatible profiles.

Lets you use the Secure Credential Store plug-in to store your credentials securely in the settings.

Lets you leverage the API Mediation Layer token-based authentication to access z/OSMF.

For more information, see Information roadmap for Zowe Explorer.

Zowe Client Software Development Kits (SDKs)

https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-installcli
https://docs.zowe.org/stable/getting-started/user-roadmap-zowe-explorer

The Zowe Client SDKs consist of programmatic APIs that you can use to build client applications or scripts that interact with z/OS. The
following SDKs are available:

Zowe Node.js Client SDK

Zowe Java Client SDK

Zowe Python Client SDK

For more information, see Using the Zowe SDKs.

Zowe Chat (Technical Preview)

Zowe Chat is a chatbot that aims to enable a ChatOps collaboration model including z/OS resources and tools. Zowe Chat enables
you to interact with the mainframe from chat clients such as Slack, Microsoft Teams, and Mattermost. Zowe Chat helps to increase
your productivity by eliminating or minimizing the context switching between different tools and user interfaces.

Zowe Chat key features

Manage z/OS resource in chat tool channels Check your z/OS job, data set, and USS files status directly in chat tool
channels. You can also issue z/OS console commands directly in the chat tool. You can drill down on a specific job, data set,
error code, and so on to get more details through button or drop-down menu that Zowe Chat provides.

Execute Zowe CLI commands in chat tool channels

You can also issue Zowe CLI commands to perform operations such as help and z/OS resource management including z/OS
job, data set, USS file, error code, and console command. Theoretically, most of Zowe CLI commands are supported as long
as it is executable with single-submit.

Extensibility

Zowe Chat is extensible via plug-ins. You can extend Zowe Chat by developing plug-ins and contributing code to the base
Zowe Chat or existing plug-ins.

Security:

Zowe Chat makes use of z/OS SAF calls and supports the three main security management products on z/OS (RACF, Top
Secret, ACF2). You can log in to the chat client via enterprise standards, including two factor authentication if required. The
first time you issue a command to the Zowe Chat installed in the chat workspace, it prompts you to log in with the
mainframe ID using a one-time URL. Once authenticated against the mainframe security, Zowe Chat securely caches in
memory the relationship between your Chat tool ID and the mainframe ID. Zowe Chat’s Security Facility will generate
credentials for downstream API requests.

Display alerts:

Allows you to send alert or event to a channel in the chat tool in use. An event data model enables Zowe Chat extenders to
send alerts to a channel in the chat through Zowe Chat.

Read the following blogs to learn more about Zowe Chat:

Learn more

https://docs.zowe.org/stable/user-guide/sdks-using

Zowe Gets Chatty

Zowe Chat can make you more productive: user scenarios

Zowe Chat architecture

Zowe Chat is based on the Common Bot framework, which is required for the chat platform Slack, Mattermost, and Microsoft
Teams.

For more information, see Installing Zowe Chat and Using Zowe Chat.

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

ZEBRA Provides re-usable and industry compliant JSON formatted RMF/SMF data records, so that many other ISV SW and users can
exploit them using open-source SW for many ways.

For more information, see the ZEBRA documentation.

Zowe IntelliJ Plug-in

Zowe IntelliJ plug-in for Intellij-based IDEs is a smart and interactive mainframe code editing tool that allows you to browse, edit, and
create data on z/OS via z/OSMF REST API.

Zowe IntelliJ plug-in helps you to:

Start working with z/OS easily with no complex configurations.

Organize datasets on z/OS, files on USS into working sets.

Allocate datasets, create members, files and directories with different permissions.

https://medium.com/zowe/zowe-gets-chatty-842e3b548902
https://medium.com/zowe/zowe-chat-can-make-you-more-productive-user-scenarios-f52a9985dd50
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_install_overview
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_use_interact_methods
https://github.com/zowe/zebra/tree/main/Documentation

Perform operations like renaming, copying and moving data in a modern way.

Edit datasets, files and members. Smart auto-save keeps your content both in the editor and on the mainframe in-sync.

Create multiple connections to different z/OS systems.

Perform all available operations with jobs.

Highlight all IntelliJ supported languages automatically and recognize them once opened from the mainframe.

For more information, see Using Zowe IntelliJ plug-in.

Zowe Bill of Materials

For information about the Zowe Bill of Materials (BOM), see this link to the appendix.

https://docs.zowe.org/stable/user-guide/intellij-using
https://docs.zowe.org/stable/appendix/bill-of-materials

Version: v2.17.x LTS

Zowe architecture
Zowe™ is a collection of components that together form a framework that makes Z-based functionality accessible across an
organization. Zowe functionality includes exposing Z-based components, such as z/OSMF, as REST APIs. The Zowe framework
provides an environment where other components can be included and exposed to a broader non-Z based audience.

The following diagram illustrates the high-level Zowe architecture.

The diagram shows the default port numbers that are used by Zowe. These are dependent on each instance of Zowe and are held in
the Zowe YAML configuration file.

Zowe components can be categorized by location: server or client. While the client is always an end-user tool such as a PC, browser, or
mobile device, the server components can be further categorized by what machine they run on.

Zowe server components can be installed and run entirely on z/OS, but a subset of the components can alternatively run on Linux or
z/Linux via Docker. While on z/OS, many of these components run under UNIX System Services (USS). The components that do not
run under USS must remain on z/OS when using Docker in order to provide connectivity to the mainframe.

Zowe architecture with high availability enablement on Sysplex

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into a Sysplex with high
availability enabled as opposed to running all components on a single z/OS system.

Zowe has a high availability feature built in. To enable this feature, you can define the haInstances section in your YAML
configuration file.

The preceding diagram shows that ZWESLSTC has started two Zowe instances running on two separate LPARs that can be on the same

or different sysplexes.

Sysplex distributor port sharing enables the API Gateway 7554 ports to be shared so that incoming requests can be routed to
either the Gateway on LPAR A or LPAR B.

The discovery servers on each LPAR communicate with each other and share their registered instances, which allows the API
Gateway on LPAR A to dispatch APIs to components either on its own LPAR, or alternatively to components on LPAR B. As
indicated in the diagram, each component has two input lines: one from the API Gateway on its own LPAR and one from the
Gateway on the other LPAR. When one of the LPARs goes down, the other LPAR remains operating within the Sysplex, thereby
providing high availability to clients that connect through the shared port irrespective of which Zowe instance is serving the API
requests.

The zowe.yaml file can be configured to start Zowe instances on more than two LPARS, and also to start more than one Zowe

instance on a single LPAR, thereby providing a grid cluster of Zowe components that can meet availability and scalability
requirements.

The configuration entries of each LPAR in the zowe.yaml file control which components are started. This configuration mechanism

makes it possible to start just the desktop and API Mediation Layer on the first LPAR, and start all of the Zowe components on the
second LPAR. Because the desktop on the first LPAR is available to the Gateway of the second LPAR, all desktop traffic is routed there.

The caching services for each Zowe instance, whether on the same LPAR, or distributed across the sysplex, are connected to each
other by the same shared VSAM data set. This arrangement allows state sharing so that each instance behaves similarly to the user
irrespective of where their request is routed.

For simplification of the preceding diagram, the Jobs and Files API servers are not shown as being started. If the user defines Jobs and
Files API servers to be started in the zowe.yaml configuration file, these servers behave the same as the servers illustrated. In other

words, these services register to their API discovery server which then communicates with other discovery servers on other Zowe
instances on either the same or other LPARs. The API traffic received by any API Gateway on any Zowe instance is routed to any of the
Jobs or Files API components that are available.

To learn more about Zowe with high availability enablement, see Configuring Sysplex for high availability.

Zowe architecture when running in Kubernetes cluster

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into a Kubernetes cluster as
opposed to running all components on a single z/OS system.

When deploying other server components into container orchestration software like Kubernetes, Zowe follows standard Kubernetes
practices. The cluster can be monitored and managed with common Kubernetes administration methods.

All Zowe workloads run on a dedicated namespace (zowe by default) to distinguish from other workloads in same Kubernetes

cluster.

Zowe has its own ServiceAccount to help with managing permissions.

Server components use similar zowe.yaml on z/OS, which are stored in ConfigMap and Secret , to configure and start.

Server components can be configured by using the same certificates used on z/OS components.

Zowe claims its own Persistent Volume to share files across components.

Each server component runs in separated containers.

Components may register themselves to Discovery with their own Pod name within the cluster.

https://docs.zowe.org/stable/user-guide/configure-sysplex

Zowe workloads use the zowe-launch-scripts initContainers step to prepare required runtime directories.

Only necessary components ports are exposed outside of Kubernetes with Service .

App Server
The App Server is a portable, extensible HTTPS server written in node.js. It can be extended with expressjs routers to add REST or
Websocket APIs. This server is responsible for the Zowe Application Framework, including the Desktop which is described later in this
page.

When the API Gateway is running, this server and the Desktop are accessible at https://<ZOWE_HOST_IP>:7554/zlux/ui/v1/ . When

the API Catalog is running, this server's API documentation is accessible at the API Catalog tile Zowe Application Server , which can

be viewed at https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/zlux/zlux . When running on z/OS, this server uses the

jobname suffix of DS1.

ZSS
Zowe System Services (ZSS) is a z/OS native, extensible HTTPS server which allows you to empower web programs with z/OS
functionality due to ZSS' conveniences for writing REST and Websocket APIs around z/OS system calls. The Zowe desktop delegates a
number of its services to the ZSS server.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/zss/api/v1 . When the API Catalog is
running, this server's API documentation is accessible at the API Catalog tile Zowe System Services (ZSS) which can be viewed at

https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/zss/zss When running on z/OS, the server uses the jobname suffix of

SZ.

ZIS
ZIS is a z/OS native, authorized cross-memory server that allows a secure and convenient way for Zowe programs, primarily ZSS, to
build powerful APIs to handle z/OS data that would otherwise be unavailable or insecure to access from higher-level languages and
software. As part of Zowe's security model, this server is not accessible over a network but rather empowers the less privileged servers.
It runs as a separate STC, ZWESISTC to run the program ZWESIS01 under its own user ID ZWESIUSR .

Unlike all of the servers described above which run under the ZWESLSTC started task as address spaces for USS processes, the Cross
Memory server has its own separate started task ZWESISTC and its own user ID ZWESIUSR that runs the program ZWESIS01 .

API Gateway

The API Gateway is a proxy server that routes requests from clients on its northbound or upstream edge, such as web browsers or the
Zowe command line interface, to servers on its southbound (downstream) edge that are able to provide data to serve the request. The
API Gateway is also responsible for generating the authentication token used to provide single sign-on (SSO) functionality. The API
Gateway homepage is https://<ZOWE_HOST_IP>:7554 . Following authentication, this URL enables users to navigate to the API

Catalog.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/ . When running on z/OS, the server
uses the jobname suffix of AG.

API Catalog

The API Catalog provides a list of the API services that have registered themselves as catalog tiles. These tiles make it possible to view
the available APIs from Zowe's southbound (downstream) servers, as well as test REST API calls.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1 . When the API

Catalog is running, this server's API documentation is accessible at the API Catalog tile Zowe Applications which can be viewed at

https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/apimediationlayer/apicatalog When running on z/OS, the server

uses the jobname suffix of AC.

API Discovery

The API Discovery server acts as the registration service broker between the API Gateway and its southbound (downstream) servers.
This server can be accessed through the URL https://<ZOWE_HOST_IP>:7552 making it possible to view a list of registered API

services on the API discovery homepage.

When running on z/OS, the server uses the jobname suffix of AD.

Caching service
The Caching service aims to provide an API which offers the possibility to store, retrieve, and delete data associated with keys. The
service is used only by internal Zowe applications and is not exposed to the internet. The Caching service URL is
https://<ZOWE_HOST_IP>:7555 . For more information about the Caching service, see Using the Caching Service.

When the API Gateway is running, this server is accessible at https://<ZOWE_HOST_IP>:7554/cachingservice/api/v1 . When the API

Catalog is running, this server's API documentation is accessible at the API Catalog tile Zowe Applications which can be viewed at

https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/zowe/cachingservice . When running on z/OS, the server uses the

jobname suffix of CS.

Desktop Apps
Zowe provides a number of rich GUI web applications for working with z/OS. Such applications include the Editor for files and
datasets, the JES Explorer for jobs, and the IP Explorer for the TCPIP stack. You can access them through the Zowe desktop.

https://docs.zowe.org/stable/getting-started/user-guide/api-mediation/api-mediation-caching-service

File API and JES API

The File API server provides a set of REST APIs for working with z/OS data sets and Unix files. These APIs can be enabled in Zowe
server configuration.

The JES API server provides a set of REST APIs for working with JES. These APIs can be enabled in Zowe server configuration.

Both the File API and JES API servers are registered as tiles in the API Catalog, so users can view the Swagger definition and test API
requests and responses.

Version: v2.17.x LTS

Zowe Security Overview
Zowe implements comprehensive measures to secure mainframe services and data resources in transition and in rest:

Digital certificates are used by Zowe to facilitate secure electronic communication and data exchange between people, systems,
and devices online.

User identity is authenticated through modern authentication methods such as OIDC/Oauth2, Multi-Factor Authentication (MFA),
JWT, or Personal Access Token (PAT).

User access is authorized by System Authorization Facility (SAF) / External Security Manager (ESM).

Before installation and use of Zowe server-side components, it is practical to first learn about the core security features built into the
Zowe architecture.

This document provides an overview of the security technologies and features implemented by Zowe and links to Zowe practical
guides on how to achieve specific tasks and goals.

Note: If you are familiar with security technologies and concepts such as digital certificates, authentication, authorization, and z/OS
security, you may prefer to skip the introductory sections, and see the Additional resources section at the end of this article to jump
directly to the security related technical guidance provided on how to Set up Zowe, Use Zowe or Extend Zowe.

Review the following sections to learn about how Zowe leverages modern security concepts and technologies:

Digital certificates

User Authentication

Access Authorization

Digital certificates

A Digital Certificate is an electronic file that is tied to a cryptographic (public and private) key pair and authenticates the identity of a
website, individual, organization, user, device or server. The de-facto standard is the x.509 family type of certificates, which are the
foundation behind Public Key Infrastructure (PKI) security. An X.509 certificate binds an identity to a public key using a digital
signature. A certificate contains an identity (a hostname, or an organization, or an individual) and a public key (RSA, DSA, ECDSA,
ed25519, etc.).

A certificate can be self-signed or issued by a Certificate Authority (CA). A CA is a trusted organization which provides infrastructure
for creation, validation and revocation of the certificates according to the contemporary security standards.

Note: For testing purposes of Zowe, it is acceptable to use certificates issued and signed either by the company's local CA, or even
self-signed certificates issued by Zowe security tools specific for the target technology platform. Use of self-signed certificates,
however, is not recommended for production environments.

Tip: Review digital certificates terminology in the Zowe security glossary before getting started with configuring certificates.

Digital certificates usage

https://docs.zowe.org/stable/getting-started/appendix/zowe-security-glossary#certificate-concepts

Zowe uses digital certificates to secure the communication channel between Zowe components as well as between Zowe clients and
Zowe services. Digital client certificates can also be used to validate that a client-user (the service user) identity is known to the
mainframe security facility.

Next Steps:

Read more about digital certificates mechanics in the Use certificates in the Zowe documentation.

Read the Zowe certificate configuration overview article in the Zowe User Guide documentation to understand the various
options for Zowe certificate configuration.

User Authentication
Zowe always authenticates the users accessing its interfaces and services.

Zowe API ML implements a Singls-Sign-On feature which allows users to authenticate once, whereby users can access all mainframe
resources that they are granted access rights to for the period in which the Zowe credentials remain valid.

API ML uses multiple authentication methods - from Basic Auth (username-password), to external Multi-Factor Authentication
providers, and modern authentication protocols, such as OIDC/OAuth2.

Next steps:

For more details on the authentication methods used by Zowe, see the dedicated API ML User Authentication article.

Access Authorization

Authorization is the mechanism by which a security system grants or rejects access to protected resources.

Zowe fully relies on the SAF/ESM for control on the user access to mainframe resources. Authorization is processed by SAF when a
mainframe service attempts to access these services under the identity of the user authenticated by Zowe.

Tip: We recommend you review the core Authorization concepts by reading the related topics in the Zowe Security Glossary.

SAF resource check

In some cases Zowe API ML can check for the authorization of the user on certain endpoints even before the request is propagated to
the target mainframe service. Access to a SAF resource is checked with the installed z/OS External Security Manager (ESM).

Next steps: For detailed information, see the SAF resource checking documentation.

Additional resources

For more information about getting started with certificates including dertermining your certificate configuration use case, importing
certificates, generating certificates and using certificates, see the following resources:

Use-case based certificates configuration scenarios

Generate certificates for Zowe servers

https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/getting-started/zowe-security-overview/zowe-security-authentication
https://en.wikipedia.org/wiki/Authorization
https://en.wikipedia.org/wiki/Authorization
https://docs.zowe.org/stable/getting-started/appendix/zowe-security-glossary
https://docs.zowe.org/stable/getting-started/user-guide/api-mediation/configuration-saf-resource-checking
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/generate-certificates

Import certificates

Configure Zowe to use certificates

https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates

Version: v2.17.x LTS

Glossary of Zowe Security terminology
Zowe implements a number of modern cyber-security concepts. Before getting started with configuring certificates, it is useful to
familiarize yourself with the basic terminology. Read the following definitions for explanation of the security terms related to the core
security technologies applied by Zowe:

Certificate concepts

Certificate verification

Zowe certificate requirements

Certificate setup types

Certificate concepts
Keystore

Truststore

PKCS12

z/OS Key Ring

Server certificate

Client certificate

Self-signed certificates

Keystore

The keystore is the location where Zowe stores certificates that Zowe servers present to clients and other servers. In the simplest case,
the keystore contains one private key and a certificate pair, which can then be used by each Zowe server.

When using a key ring, a single key ring can serve both as a keystore and as a truststore if desired.

Truststore

The truststore is used by Zowe to verify the authenticity of the certificates it encounters, whether communicating with another server,
with one of Zowe own servers, or with a client that presents a certificate. A truststore is composed of Certificate Authority (CA)
certificates which are compared against the CAs that an incoming certificate claims to be signed by. To ensure a certificate is authentic,
Zowe must verify that the certificate's claims are correct. Certificate claims include that the certificate was sent by the host that the
certificate was issued to, and that the cryptographic signature of the authorities the certificate claims to have been signed by match
those signatures found within the truststore. This process helps to ensure that Zowe only communicates with hosts that are trusted
and have been verified as authentic.

When using a key ring, a single key ring can be both a keystore and a truststore if desired.

PKCS12

PKCS12 is a file format that allows a Zowe user to hold many cryptographic objects in one encrypted, password-protected file. This file
format is well-supported across platforms but because it is just a file, you may prefer to use z/OS key rings instead of PKCS12

certificates for ease of administration and maintenance.

z/OS Key Ring

z/OS provides an interface to manage cryptographic objects in "key rings". As opposed to PKCS12 files, using z/OS key rings allows
the crypto objects of many different products to be managed in a uniform manner. z/OS key rings are still encrypted, but do not use
passwords for access. Instead, SAF privileges are used to manage access. Java's key ring API requires that the password field for key
ring access be set to "password", so despite not needing a password, you may see this keyword.

Use of a z/OS keystore is the recommended option for storing certificates if system programmers are already familiar with the
certificate operation and usage. Creating a key ring and connecting the certificate key pair requires elevated permissions. When the
TSO user ID does not have the authority to manipulate key rings and users want to create a Zowe sandbox environment or for testing
purposes, the USS keystore is a good alternative.

Server certificate

Servers need a certificate to identify themselves to clients. Every time you go to an HTTPS website for example, your browser checks
the server certificate and its CA chain to verify that the server you reached is authentic.

Client certificate

Clients do not always need certificates when communicating with servers, but sometimes client certificates can be used wherein the
server verifies authenticity of the client similar to how the client verifies authenticity for the server. When client certificates are unique
to a client, this can be used as a form of authentication to provide convenient yet secure login.

Self-signed certificates

A self-signed certificate is one that is not signed by a CA at all – neither private nor public. In this case, the certificate is signed with its
own private key, instead of requesting verification from a public or a private CA. This arrangement, however, means there is no chain
of trust to guarantee that the host with this certificate is the one you wanted to communicate with. Note that these certificates are not
secure against other hosts masquerading as the one you want to access. As such, it is highly recommended that certificates be verified
against the truststore for production environments.

Certificate verification
When you configure Zowe, it is necessary to decide whether Zowe will perform verification of certificates against its truststore. In the
Zowe configuration YAML, the property zowe.verifyCertificates controls the verification behavior. It can be DISABLED ,

NONSTRICT , or STRICT .

You can set this property either before or after certificate setup, but it is recommended to set zowe.verifyCertificates before

certificate setup because it affects the automation that Zowe can perform during certificate setup.

DISABLED verification

NON-STRICT verification

STRICT verification

DISABLED verification

If you set zowe.verifyCertificates to DISABLED , certificate verification is not performed. This is not recommended for security

reasons, but may be used for proof of concept or when certificates within your environment are self-signed.

If you set DISABLED before certificate setup, Zowe will not automate putting z/OSMF trust objects into the Zowe truststore. This can

result in failure to communicate with z/OSMF if at a later time you enable verification. As such, it is recommended to either set
verification on by default, or to re-initialize the keystore if you choose to turn verification on at a later point.

NON-STRICT verification

If you set zowe.verifyCertificates to NONSTRICT , certificate verification will be performed except for hostname validation. Using

this setting, the certificate Common Name or Subject Alternate Name (SAN) is not checked. Skipping hostname validation facilitates
deployment to environments where certificates are valid but do not contain a valid hostname. This configuration is for development
purposes only and should not be used for production.

STRICT verification

STRICT is the recommended setting for zowe.verifyCertificates . This setting performs maximum verification on all certificates

Zowe sees and uses a Zowe truststore.

Zowe certificate requirements
If you do not yet have certificates, Zowe can create self-signed certificates for you. This is not recommended for production. Note that
the certificates must be valid for use with Zowe.

Extended key usage

Hostname validity

z/OSMF access

Extended key usage

Zowe server certificates must either not have the Extended Key Usage (EKU) attribute, or have both the TLS Web Server

Authentication (1.3.6.1.5.5.7.3.1) and TLS Web Client Authentication (1.3.6.1.5.5.7.3.2) values present within.

Some Zowe components act as a server, some as a client, and some as both - client and server. The component certificate usage for
each of these cases is controlled by the Extended Key Usage (EKU) certificate attribute. Zowe components use a single certificate/the
same certificate for client and server authentication. As such, it is necessary that this certificate is valid for the intended usage/s of the
component - client, server, or both. The EKU certificate extension attribute is not required. If, however, the EKU certificate extension
attribute is specified, it must be defined with the intended usage/s. Otherwise, connection requests will be rejected by the other party.

Hostname validity

The host communicating with a certificate should have its hostname match one of the values of the certificate's Common Name or
Subject Alternate Name (SAN). If this condition is not true for at least one of the certificates seen by Zowe, then you may wish to set
NON-STRICT verification within Zowe configuration.

z/OSMF access

The z/OSMF certificate is verified according to Zowe Certificate verification setting, as is the case with any certificate seen by Zowe.
However, Zowe will also set up a trust relationship with z/OSMF within the Zowe truststore during certificate setup automation if the
certificate setting is set to any value other than DISABLED.

Certificate setup types

Whether importing or letting Zowe generate certificates, the setup for Zowe certificate automation and the configuration to use an
existing keystore and truststore depends upon the content format: file-based (PKCS12) or z/OS key ring-based.

File-based (PKCS12) certificate setup

z/OS key ring-based certificate setup

File-based (PKCS12) certificate setup

Zowe is able to use PKCS12 certificates that are stored in USS. Zowe uses a keystore directory to contain its certificates primarily in

PKCS12 (.p12 , .pfx) file format, but also in PEM (.pem) format. The truststore is in the truststore directory that holds the public

keys and CA chain of servers which Zowe communicates with (for example z/OSMF).

z/OS key ring-based certificate setup

Zowe is able to work with certificates held in a z/OS Key ring.

The JCL member .SZWESAMP(ZWEKRING) contains security commands to create a SAF keyring. By default, this key ring is named

ZoweKeyring . You can use the security commands in this JCL member to generate a Zowe certificate authority (CA) and sign the

server certificate with this CA. The JCL contains commands for all three z/OS security managers: RACF, TopSecret, and ACF2.

There are two ways to configure and submit ZWEKRING :

Copy the JCL ZWEKRING member and customize its values.

Customize the zowe.setup.certificate section in zowe.yaml and use the zwe init certificate command.

You can also use the zwe init certificate command to prepare a customized JCL member using ZWEKRING as a template.

A number of key ring scenarios are supported:

Creation of a local certificate authority (CA) which is used to sign a locally generated certificate. Both the CA and the certificate
are placed in the ZoweKeyring .

Import of an existing certificate already held in z/OS to the ZoweKeyring for use by Zowe.

Creation of a locally generated certificate and signed by an existing certificate authority. The certificate is placed in the key ring.

Version: v2.17.x LTS

Zowe Certificates overview
In order to leverage certificates in Zowe, it is useful to review the key concepts of digital certificates-based security and how Zowe
implements this technology.

Digital certificates definition

Digital certificates usage

PKI (Public Key Infrastructure)

Transport Layer Security (TLS)

Digital certificates types

Certificates storage

Digital certificates definition

A Digital Certificate is an electronic file that is tied to a cryptographic (public and private) key pair and authenticates the identity of a
website, individual, organization, user, device or server. The de facto standard is the x.509 family type of certificates, which are the
foundation behind Public Key Infrastructure (PKI) security.

An X.509 certificate binds an identity to a public key using a digital signature. A certificate contains an identity (a hostname, or an
organization, or an individual) and a public key (RSA, DSA, ECDSA, ed25519, etc.).

Certificates can be self-signed or issued by a Certificate Authority (CA). A CA is an organization which provides infrastructure for the
creation, validation, and revocation of certificates according to contemporary security standards.

NOTE

For testing purposes of Zowe, it is acceptable to use certificates issued and signed either by a company local CA, or certificates
that are signed by a CA created by Zowe security tools specific for the target technology platform. Use of self-signed certificates
is not recommended for production environments.

Digital certificates usage

Digital certificates according to x.509 standard specification are the cornerstone for securing communication channels between clients
and servers.

X.509 Digital certificates are primarly used to implement the following functions:

Verification of the identity of a sender/receiver of an electronic message during TLS handshake.

Encryption/Decryption of the messages between the sender and the receiver.

Identification of client-service users.

Zowe uses digital certificates as a foundational element for both communication and for identity security. Additionally, Zowe provides
a client identity validation functionality based on the ownership of the provided x.509 client certificate and the mainframe security
authentication mechanism.

For more information about how Zowe leverages certificates, see Zowe certificate usage.

To review the various Zowe certificate configuration options, see the Zowe certificate configuration overview.

Public key infrastructure

Public Key Infrastructure (PKI) is a key element of internet security. PKI is both the technology and processes that make up the
framework for encryption to protect and authenticate digital communications. PKI includes software, hardware, policies, and
procedures that are used to create, distribute, manage, store, and revoke digital certificates and manage public-key encryption.

For detailed information about Public Key Infrastructure (PKI), see How Does PKI Work? in the Keyfactor documentation.

Visit the following link to learn more about PKI in the context of the z/OS Cryptographic Services.

Transport Layer Security

Transport Layer Security (TLS) is a networking cryptography protocol that provides authentication, privacy, and data integrity between
two communicating computer applications. TLS is a successor to Secure Socket Layer (SSL), which was deprecated in 2015.

NOTE

While the transition from SSL 3.0 to TLS 1.0 occurred in 1999, the term SSL continues to be in common usage. At the time of this
publication, this technology is still oftentimes referred to as SSL/TLS.

TLS defines a client-server handshake mechanism to establish an encrypted and secure connection, to ensure the authenticity of the
communication between parties. During the handshake, the parties negotiate an exchange algorithm, cipher suites, and exchange key
material to establish a stateful encrypted connection. The exact steps of the TLS handshake depend on the protocol version/s
supported by the client and the server. The current version at the time of this publication is 1.3, while version 1.2 is widely supported.

Being familiar with the key concepts and terms describing TLS security helps to properly set up the Zowe servers network security and
to troubleshoot configuration issues. The following list presents some of the key concepts and terms:

Cipher Suite

Key Exchange

Symmetric Encryption

Asymmetric Encryption

Authentication

Basic vs mutually-authenticated handshake

The following diagram illustrates the TLS handshake steps:

https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/user-guide/configure-certificates
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://www.keyfactor.com/education-center/what-is-pki/#section2
https://www.ibm.com/docs/en/zos/2.3.0?topic=planning-introducing-pki-services
https://en.wikipedia.org/wiki/Transport_Layer_Security

The architecture of Zowe strictly relies on Transport Layer Security (TLS) to secure communication channels between Zowe
components, as well as between client applications and Zowe server components.

For more information, see the TLS requirements in Zowe API ML requirements.

NOTE

When installed on a mainframe system, Zowe is able to utilize AT-TLS implementation if supported by the corresponding z/OS
version/installation. For more information, see Configuring AT-TLS for API Mediation Layer.

https://docs.zowe.org/stable/getting-started/extend/extend-apiml/zowe-api-mediation-layer-security-overview#zowe-api-ml-tls-requirements
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-at-tls

Digital certificates types
Zowe's architecture also distinguishes several aspects of PKI artifacts and their usage. Based on these artifacts and use-cases, users can
determine which certificate type to use. Some certificate types are specific for a given technology, while others are generic and
applicable across a wider spectrum of platforms.

Certificates come in various file formats and can be stored in different certificates storage types.

Digital X.509 certificates can be issued in various file formats such as PEM, DER, PKCS#7 and PKCS#12. PEM and PKCS#7 formats use
Base64 ASCII encoding, while DER and PKCS#12 use binary encoding.

The choice of certificate format depends on the technologies used in the implementation of the server components and on the
certificate storage type. For example, Java servers can use JKS and JCEKS keystores, which are specific for the platform.

Zowe supports:

file-based PKCS12
PKCS12 certificates are the most general and widely deployed certificate format.

z/OS keyring-based keystore (JKS/JCEKS)
JKS/JCEKS certificates are specific types of certificates that depend on the Java environment.

NOTE

Java 9 and higher can also work with PKCS12 certificates.

Certificates storage

There are two options for the storage of certificates:

Keystore and Truststore combination

SAF Keyrings

Keystore and Truststore

Two key concepts to understand storage and verification of certificates are keystores and truststores.

Keystores are used to store certificates and the verification of these certificates.

Truststores are used to store the verification.

Zowe supports keystores and truststores that are either z/OS keyrings (when on z/OS) or PKCS12 files. By default, Zowe reads a
PKCS12 keystore from keystore directory in zowe.yaml. This directory contains a server certificate, the Zowe generated certificate

authority, and a truststore which holds intermediate certificates of servers that Zowe communicates with (for example z/OSMF).

Keystores

Zowe can use PKCS12 certificates stored in USS to encrypt TLS communication between Zowe clients and Zowe z/OS servers, as well
as intra z/OS Zowe server to Zowe server communication. Zowe uses a keystore directory to contain its external certificate, and a

truststore directory to hold the public keys of servers which Zowe communicates with (for example z/OSMF).

Truststores

Truststores are essential to provide secure communication with external services. The truststore serves as a secure repository for
storing certificates and trust anchors. In the context of Zowe, the truststore establishes the trust relationships with external services as
well as manages the relationship between Zowe's components and the certificates presented by the external services.

In addition to utilizing the intra-address space of certificates, Zowe incorporates external services on z/OS to enhance the encryption
of messages transmitted between its servers. These external services, such as z/OSMF or Zowe conformant extensions, have registered
themselves with the API Mediation Layer.

The API Mediation Layer, acting as an intermediary, validates these certificates. When the API ML receives a certificate from an external
service, it examines each certificate in the certificate chain and compares it to the certificates in the truststore.

By leveraging the truststore, Zowe ensures that only trusted and authorized external services can establish communication with its
servers.

SAF Keyring

An alternative to certificate storage with keystores and trustores is to use a SAF Keyring. Use of a SAF Keyring is more secure than
PKCS12 files. This SAF keyring method also makes it possible to import an existing certificate or generate new certificates with Top
Secret, ACF2, and RACF.

For details about SAF Keyring, see the documentation API ML SAF Keyring in the article Certificate management in Zowe API
Mediation Layer.

https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml#api-ml-saf-keyring

Version: v2.17.x LTS

Zowe User Authentication
The API Mediation Layer provides multiple methods which clients can use to authenticate.

Authentication with JSON Web Tokens (JWT)

Authentication with client certificates

Authentication with Personal Access Token (PAT)

Authentication with SAF Identity Tokens

Multi-factor authentication (MFA)

Certificate Authority Advanced Authentication Mainframe (CA AAM)

Authentication with JSON Web Tokens(JWT)

When the user successfully authenticates with the API ML, the client receives a JWT token in exchange. This token can be used by the
client to access REST services behind the API ML Gateway and also for subsequent user authentication. The access JWT Token is signed
with the private key that is configured in the Zowe Identity Provider's certificate store, regardless of whether the token is in a keystore
or keyring.

To utilize Single-Sign-On (SSO), the Zowe API ML client needs to provide an access token to API services in the form of the cookie
apimlAuthenticationToken , or in the Authorization: Bearer HTTP header as described in this authenticated request example.

Authentication with client certificates
If the keyring or a truststore contains at least one valid certificate authority (CA) other than the CA of the API ML, it is possible to use
client certificates issued by this CA to authenticate to the API ML.

For more information, see the Authentication for API ML services documentation

Authentication with Personal Access Token (PAT)
A Personal Access Token (PAT) is a specific scoped JWT with a configurable validity duration. The PAT authentication method is an
alternative to using a client certificate for authentication. It is disabled by default. To enable this functionality, see Enabling single sign
on for clients via personal access token configuration.

Benefits of PAT

Long-lived. The maximum validity is 90 days.

Scoped. Users are required to provide a scope. It is only valid for the specified services.

Secure. If a security breech is suspected, the security administrator can invalidate all the tokens based on criteria as established by
rules.

For more information about PAT, see Authenticating with a Personal Access Token documentation.

https://docs.zowe.org/stable/user-guide/api-mediation-sso
https://github.com/zowe/sample-spring-boot-api-service/blob/master/zowe-rest-api-sample-spring/docs/api-client-authentication.md#authenticated-request
https://docs.zowe.org/stable/extend/extend-apiml/authentication-for-apiml-services
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/authenticating-with-personal-access-token

Authentication with SAF Identity Tokens
The SAF Authentication Provider allows the API Gateway to authenticate the user directly with the z/OS SAF provider that is installed
on the system.

For more information about configuring the token, see Configure signed SAF Identity tokens (IDT).

Multi-factor authentication (MFA)
Multi-factor authentication is provided by third-party products which Zowe is compatible with. The following are known to work with
Zowe:

CA Advanced Authentication Mainframe

IBM Z Multi-Factor Authentication.

Additionally, Zowe API ML can be configured to accept OIDC/OAuth2 user authentication tokens. In this particular case, MFA support
is built into the OIDC provider system. It does not rely on the mainframe MFA technology, but is equally secure.

For details about multi-factor authentication, see the MFA documentation here.

Certificate Authority Advanced Authentication Mainframe (CA AAM)

To add a dynamic element to the authentication, you can configure the Certificate Authority Advanced Authentication Mainframe to
enable multi-factor authentication. For more information about CA AAM, see the Advanced Authentication Mainframe documentation.

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://docs.zowe.org/stable/user-guide/mvd-configuration#multi-factor-authentication-configuration
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html

Version: v2.17.x LTS

High Availability
In order to deploy Zowe in high availability (HA) mode, it is necessary to set up a Parallel Sysplex® environment. A Parallel Sysplex is a
cluster of z/OS® systems that cooperatively use certain hardware and software components to achieve a high-availability workload
processing environment. A production instance with this High Availability setup is required to achieve the necessary availability.

Sysplex architecture and configuration
A Sysplex is required to make sure multiple Zowe instances can work together. For more configuration details, see Configuring Sysplex
for high availability.

To enable high availability when Zowe runs in a Sysplex, it is necessary to meet the following requirements:

The Zowe instance is installed on every LPAR.

The API services are registered to each Zowe instance.

A shared file system is created between LPARs in the Sysplex. For details, see How to share file systems in a Sysplex.

z/OSMF High Availability mode is configured. For details, see Configuring z/OSMF high availability in Sysplex.

The instance on every LPAR is started.

Configuration with high availability

The configuration for the specific instance is composed of the defaults in the main section and the overrides in the haInstances
section of the zowe.yaml configuration file.

In this section, ha-instance represents any Zowe high availability instance ID. Every instance has an internal id and a section with
overrides compared to the main configuration in the beginning of the zowe.yaml file. For more information, see Zowe YAML

configuration reference.

Caching service setup and configuration

Zowe uses the Caching Service to centralize the state data persistent in high availability (HA) mode. This service can be used to share
information between services.

If you are running the Caching Service on z/OS, there are three storage methods with their own characteristics:

Infinispan (recommended)
Part of the Caching service

Does not need separate processes

Highly performant

VSAM
Familiar to z/OS engineers

Slow

Redis
Needs to run in Distributed world separately

https://docs.zowe.org/stable/getting-started/user-guide/configure-sysplex
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://docs.zowe.org/stable/getting-started/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/getting-started/appendix/zowe-yaml-configuration#yaml-configurations---hainstances
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha#vsam
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis#redis-configuration

Good for Kubernetes deployment

Version: v2.17.x LTS

Glossary of Zowe terminology
This glossary is part of a growing list of terms and concepts used in the Zowe ecosystem of projects.

This reference includes both technical as well as organizational terms that are specific to Zowe, the award-winning open source
initiative part of the Linux Foundation's Open Mainframe Project (OMP).

Not finding something you are looking for? Send a message to the Zowe Docs squad in the #zowe-doc Slack channel to discuss
updating this glossary.

NOTE

Security is central to a wide range of functionalities in Zowe. As such, a separate glossary of Zowe Security terminology is
available in the Overview section under Zowe security. For more information, see the Glossary of Zowe Security teminology.

For an overview of security in Zowe, see the Zowe Security policy on zowe.org.

Core Zowe Projects

Zowe API Mediation Layer (API ML)

Provides a reverse proxy and enables REST APIs by providing a single point of access for mainframe service REST APIs like MVS Data
Sets, JES, as well as working with z/OSMF. API ML has dynamic discovery capability for these services and Gateway is also responsible
for generating the authentication token used to provide single sign-on (SSO) functionality.

API Catalog

Displays API services that have been discovered by the API Mediation Layer.

API Discovery Service

As the central repository of active services in the API Mediation Layer ecosystem, the API Discovery Service continuously collects
and aggregates service information to provide status updates. This enables the discoverability of services.

API Gateway

A proxy server that routes requests from clients on its northbound edge (such as web browsers or Zowe CLI) to servers on its
southbound edge that are able to provide data to serve the request.

Also responsible for generating the authentication token used to provide single sign-on (SSO) functionality.

Caching Service

Click here for descriptions of the various components that form the API Mediation Layer.

https://openmainframeproject.slack.com/archives/CC961JYMQ
https://docs.zowe.org/stable/appendix/zowe-glossary/zowe-security-glossary
https://www.zowe.org/security

Designed for Zowe components in a high availability (HA) configuration. The caching service supports the HA of all components
within Zowe, allowing components to be stateless by providing a mechanism to offload their state to a location accessible by all
instances of the service, including those which just started.

Zowe Application Framework

Modernizes and simplifies working on the mainframe via a web visual interface. Functionality is provided through apps and a desktop
user experience called the Zowe Desktop. Base functionality includes apps to work with JES, MVS Data Sets, Unix System Services, as
well as a 3270 Terminal, Virtual Terminal, and an Editor.

Zowe CLI

Provides a command-line interface that lets you interact with the mainframe remotely and use common tools such as Integrated
Development Environments (IDEs), shell commands, bash scripts, and build tools for mainframe development. The core set of
commands includes working with data sets, USS, JES, as well as issuing TSO and console commands. The Zowe CLI is incredibly
popular in modern mainframe education.

Zowe client projects

Includes all the Zowe projects that are installed on the user's PC. Also known as Zowe client-side projects.

Zowe Client SDKs

Allow extenders to build applications on top of existing programmatic APIs such as z/OSMF. Currently supported client SDKs include
Node.js (core), Kotlin/z/OSMF, Python, Swift, and Java.

Zowe Explorer

A Visual Studio Code extension that modernizes the way developers and system administrators interact with z/OS mainframes. Zowe
Explorer lets you interact with data sets, USS files, and jobs that are stored on z/OS. Zowe Explorer is incredibly popular in modern
mainframe education.

Zowe server components

Includes all the Zowe components that are installed on z/OS. Also known as Zowe z/OS components or Zowe server-side components.

Zowe Systems Services Server (ZSS)

Working closely with ZIS, ZSS serves as one of the primary, authenticated back-ends that communicates with z/OS and provides Zowe
with a number of APIs: z/OS Unix files and data sets, control of the plug-ins and services lifecycle, security management, etc. The Zowe
Desktop especially delegates a number of its services to ZSS which it accesses through the default http port 7557 .

ZSS is written in C and uses native calls to z/OS to provide its services.

Architecture and other components

Configuration Manager

Works closely with the Zowe Launcher to manage the configuration of Zowe across its lifecycle. Interacted with primarily via zwe
command

Core component

The definition of a core component is governed by the Technical Steering Committee (TSC), but typically, it is a packaged, foundational
piece that is part of base Zowe.

From the perspective of a conformant support provider, providing support for Zowe refers to providing support for each core
component of Zowe (although a provider may place their own limitations on what they support).

A core component is usually actively maintained by one or more squads. A component has a component manifest file that helps
identify it with the rest of Zowe.

Explorer

When used by itself, it often refers to the core Zowe component for Visual Studio Code, Zowe Explorer. However, the term Explorer is a
part of multiple titles across Zowe.

Extension

Generally used to describe additional, non-default Zowe plug-ins or components. See plug-in for additional context.

Imperative CLI Framework

Also known as Imperative, the code framework that is used to build plug-ins for Zowe CLI.

Plug-in

A more general term used to describe a modular piece of some component. Depending on component or squad context, a plug-in is
sometimes referred to as an app, extension, plug-in, etc.

A component may have multiple plug-ins, sometimes working together to form a single purpose or user experience, but an individual
plug-in belongs to a single component. See extension for additional context.

Secure credential store

Secret storage functionality embedded in core Zowe CLI and Zowe Explorer starting from Zowe V2.

Securely stores configured private credentials in the secure vault available on your client operating system. Examples of such vaults
include Windows Credential Manager on Microsoft Windows, and Passwords and Keys on Ubuntu Linux.

A separate plug-in of the same name used in Zowe V1 CLI.

Service

A service provides one or more APIs, and is identified by a service ID. Note that sometimes the term service name can be used to
mean service ID.

The default service ID is provided by the service developer in the service configuration file. A system administrator can replace the
service ID with a deployment environment specific name using additional configuration that is external to the service deployment unit.
Most often, this is configured in a JAR or WAR file.

https://docs.zowe.org/stable/appendix/server-component-manifest/

Services are deployed using one or more service instances, which share the same service ID and implementation.

Team configuration

A method of storing and managing Zowe CLI and Zowe Explorer team and user profiles introduced in Zowe Version 2.

This method saves team-specific profiles in the zowe.config.json configuration file and user-specific profiles in the

zowe.config.user.json configuration file. The location of the configuration file determines whether its profiles are applied globally

or per project.

Web Explorers

A suite of web apps on the Zowe Desktop that are part of the Zowe Application Framework and the core Zowe server installation.
They include the JES, MVS, USS, and IP Explorers. Not related to Zowe Explorer.

ZIS (Zowe Interprocess Services)

An APF-authorized server application that provides privileged services to Zowe in a secure manner. For security reasons, it is not an
HTTP server. Instead, this server has a trust relationship with ZSS.

Other Zowe components can work through ZSS in order to handle z/OS data that would otherwise be unavailable or insecure to
access from higher-level languages and software.

zLUX (V1 only)

This is an older, no-longer-used name for the Zowe Application Framework. Note that unreasonable-to-change references still exist
(such as GitHub repository names). Other synonyms/similar names include MVD (Mainframe Virtual Desktop) and zlux.

Zowe App Server

Refers to the Node.js-powered Application Server and is part of the Zowe Application Framework core project. It hosts the web
content of the Application Framework, and provides the Zowe Desktop, which is accessible through a web browser.

Zowe Chat

An incubator focused on working with the mainframe from popular chat clients such as Mattermost®, Microsoft Teams®, and Slack®.

Zowe Component

Zowe is a collection of both client and server code. You can install only some of Zowe, or all of it, depending on your needs. Zowe
splits the major sections of the code into components, with each serving an important purpose.

Server components are packaged in a standardized way to include all services and plug-ins in one deliverable. Extensions to Zowe can
also be delivered as third-party server components. For more information about how these extensions can use a manifest file, see
Zowe component manifest.

Zowe Desktop

Refers to the desktop UI that is part of the Zowe Application Framework core component. The Zowe Desktop includes a number of
apps that run inside the App Framework, such as JES, MVS, and USS Explorers, as well as a 3270 Terminal, Virtual Terminal, and an
Editor.

https://docs.zowe.org/stable/extend/packaging-zos-extensions/#zowe-component-manifest

Zowe Embedded Browser for RMF/SMF and APIs (ZEBRA)

Provides re-usable and industry-compliant JSON-formatted RMF/SMF data records so that other ISV SW and users can exploit them
using open-source SW for many ways. For more information, see the ZEBRA documentation or visit Real ZEBRA Use Cases in Large
Production Systems in the Open Mainframe Project website.

Zowe install packaging

The set of programs (for example, zwe command) and utilities (for example, JCL, scripts) which manage the Zowe server configuration

and components. The infrastructure standardizes the packaging of components and controls how they are started, stopped, and how
configuration is provided to them.

Zowe IntelliJ Plug-in

Uses the IntelliJ IDE to provide the ability to work with z/OS data sets and USS files, and to explore and manage JES jobs.

Zowe Launcher

A server-side program necessary for high availability/fault tolerance (HA/FT). It starts the Zowe server components and monitors their
processes so that if a component fails to start or crashes, the launcher restarts it. The restarting of a component has limits to prevent
loops in case of a component that has uncorrectable problems.

Community

Open Mainframe Project (OMP)

An organization which hosts and promotes development of open source software for the benefit of the IBM z mainframe community,
including but not limited to z/OS. Zowe(.org) is one of several programs in this project. See the Open Mainframe Project website for
more information.

Squad

A group of people contributing and participating in the Zowe project. Such a group owns one or more projects.

Every squad is required to have a representative on the Technical Steering Committee (TSC), and participate in relevant working
groups. For more information about active Zowe squads, see Current squads.

Technical Steering Committee (TSC)

The governing body that is responsible for the overall planning, development, and technical feedback assessment of Zowe. The TSC
meets every Thursday to go over squad updates and discuss issues regarding the Zowe initiative. To get notified of upcoming
meetings and agendas, join the TSC Slack channel.

Zowe Conformance Program

The Zowe Support Provider Conformance Program gives vendors the ability to showcase their Zowe support competencies via well
defined criteria. It is administered by the Linux Foundation and Open Mainframe Project.

Installation and configuration

https://github.com/zowe/zebra/tree/main/Documentation
https://openmainframeproject.org/blog/real-zebra-use-cases-in-large-production-systems-video/
https://www.openmainframeproject.org/
https://github.com/Zowe/community/blob/master/Technical-Steering-Committee/squads.md#current-squads
https://openmainframeproject.slack.com/archives/C01H6CY0ZD1

Base profile

A type of team configuration profile that stores connection information for use with one or more services. Your service profiles can
pull information from base profiles as needed, to specify a common username and password only once.

The base profile can optionally store tokens to connect to Zowe API Mediation Layer, which improves security by enabling Multi-
Factor Authentication (MFA) and Single Sign-on (SSO).

Convenience build

The Zowe installation file for Zowe z/OS components that is distributed as a PAX file in z/OS Unix and contains the runtimes and
scripts to install and launch the z/OS runtime. It is the most common method to install Zowe.

Extension directory

The standard z/OS Unix directory where Zowe extensions, or additional components, plug-ins, etc., outside the default install are
stored. It is specified in the Zowe configuration file via zowe.extensionDirectory .

Instance.env (V1 only)

The Zowe instance directory contains a instance.env file that stores the Zowe configuration data. The data is read each time Zowe is
started. You can modify instance.env to configure the Zowe runtime. For more information about updating this configuration data,

see Updating the instance.env configuration file.

Log directory

The standard z/OS Unix directory where Zowe logs are stored. It is specified in the Zowe configuration file via zowe.logDirectory .

OMVS

Use of z/OS UNIX services requires a z/OS UNIX security context, referred to as an OMVS segment, for the user ID associated with any
unit of work requesting these services. To learn more consult IBM Documentation.

Runtime directory

The z/OS Unix directory for the Zowe runtime, specified in the Zowe configuration file via zowe.runtimeDirectory . Also the parent

directory of the zwe command.

Service profile

A type of team configuration profile that stores connection information for a specific mainframe service, such as IBM z/OSMF. Plug-ins
can introduce other service profile types, such as the CICS profile to connect to IBM CICS.

SMP/E

The Zowe installation for Zowe z/OS components that is distributed as an SMP/E package, identified by FMID, and contains the
runtimes and the scripts to install and launch the z/OS runtime. The initial package is installed, and then a PTF is applied. It is the
second most common method to install Zowe.

SMP/E with z/OSMF workflow

https://docs.zowe.org/V1.28.x/user-guide/configure-instance-directory#updating-the-instanceenv-configuration-file
https://www.ibm.com/docs/en/zos/2.5.0?topic=profiles-omvs-segment-in-user

A similar process as SMP/E, except done through the z/OSMF web interface as a Zowe SMP/E workflow. It is the third most common
way to install Zowe.

Started task (STC)

A type of runnable/running program on z/OS and is the primary way of running Zowe. For more information about when to use
started tasks, see Determining whether to use a started task.

Zowe V2 has two started tasks:

ZWESLSTC: The primary Zowe STC. In Zowe V1, it was just the HA/FT primary STC.

ZWESISTC: The STC for the Zowe cross memory server (referred to as ZIS, formally XMEM)

ZWESVSTC (outdated): V1 only

Workspace directory

The standard z/OS Unix directory where Zowe server component and extension configuration is stored. In V1, this was located within
the instance directory. In V2 it is specified in the Zowe configuration file via zowe.workspaceDirectory .

Zowe configuration file

The Zowe V2 replacement for instance.env in V1. The Zowe configuration file is a YAML file that is required to configure the Zowe

runtime. It is used across every step in Zowe, from configuration to install to start.

Sometimes referred to as the Zowe.yaml file. For more information on various attributes, see Zowe YAML configuration file reference.

Zowe instance directory (V1 only)

Also known as <INSTANCE_DIR> . Contains information that is specific to a launch of Zowe. It contains configuration settings that

determine how an instance of the Zowe server is started, such as ports that are used or paths to dependent Java and Node.js runtimes.

The instance directory also contains a log directory where different microservices write trace data for diagnosis, as well as a workspace
and shell scripts to start and stop Zowe.

Zowe runtime

Refers to the full, unarchived set of binaries, executable files, scripts, and other elements that are run when Zowe is started.

Sample library

The cross memory server runtime artifacts, the JCL for the started tasks, the parmlib, and members containing sample configuration
commands are found in the SZWESAMP PDS sample library. For more information, see PDS sample library and PDSE load library.

ZWEADMIN

A user group on the system that ZWESVUSR and ZWESIUSR should belong to. It must have a valid OMVS segment.

ZWESIUSR

A started task ID used to run the PROCLIB ZWESISTC that launches the cross memory server (also known as ZIS). It must have a valid
OMVS segment. For more information, see ZWESIUSR requirements.

https://docs.zowe.org/stable/appendix/zowe-glossary#smp/e
https://www.ibm.com/docs/en/zos/2.1.0?topic=tasks-determining-whether-use-started-task
https://docs.zowe.org/stable/appendix/Zowe-yaml-configuration/
https://docs.zowe.org/stable/user-guide/configure-xmem-server/#pds-sample-library-and-pdse-load-library
https://docs.zowe.org/stable/appendix/user-guide/systemrequirements-zos.md/#zwesiusr

ZWESVUSR

A started task ID used to run the PROCLIB ZWESLSTC. The task starts a USS environment using BPXBATSL that executes server
components such as the Application Framework, the API ML, and ZSS. To work with USS, the user ID ZWESVUSR must have a valid
OMVS segment. For more information, see ZWESVUSR requirements.

Plug-ins and extensions

API Mediation Layer

API Catalog

Displays API services that have been discovered by the API Mediation Layer.

Zowe Application Framework

3270 Terminal

An applicationin the Zowe Desktop that provides a user interface that emulates the basic functions of IBM 3270 family terminals.

File Tree

Formally known as the File Explorer, the FT refers to a re-usable widget existing in multiple apps across the Zowe Desktop to display
z/OS Unix files and data sets.

IP Explorer

An application in the Zowe Desktop you can use to monitor the TCP/IP stacks, and view active connections and reserved ports.

JES Explorer

An application in the Zowe Desktop to interact with z/OS UNIX files.

MVS (Multiple Virtual Storage) Explorer

An application in the Zowe Desktop to interact with z/OS data sets. Though still supported, active development has been moved to
the Zowe Editor.

USS Explorer

An application in the Zowe Desktop to interact with z/OS UNIX files. Though still supported, active development has been moved to
the Zowe Editor.

Virtual (VT) Terminal

An application in the Zowe Desktop that provides a user interface that emulates the basic functions of DEC VT family terminals.

Zowe Editor

An application in the Zowe Desktop to interact with z/OS data sets and Unix files. It uses the File Tree.

https://docs.zowe.org/stable/user-guide/systemrequirements-zos#zwesvusr

Zowe CLI Extensions

IBM® CICS® Plug-in for Zowe CLI

Extends the Zowe CLI to interact with CICS programs and transactions.

IBM® Db2® Plug-in for Zowe CLI

Enables interaction with Db2 for z/OS to perform tasks through Zowe CLI and integrate with modern development tools.

Use and development

API Mediation Layer

Micronaut Enabler

A guide which helps to simplify the process of onboarding a REST service with the API ML, using Micronaut and Gradle.

Node.js Enabler

An NPM package which helps to simplify the process of onboarding a REST service written in Node.js with the API ML.

Plain Java Enabler (PJE)

A library which helps to simplify the process of onboarding a REST service with the API ML, serving the needs of Java developers who
are not using either Spring Boot, Spring Framework, or Spring Cloud Netflix.

Sprint Boot Enablers

A collection of enablers which help to simplify the process of onboarding a REST service with the API ML using various versions of
Spring framework.

Zowe Application Framework

Accessing the Desktop

The Zowe Desktop is accessed through the API ML. The Desktop URL uses the following format:

App2App

A feature of the Zowe environment where one application plug-in can communicate with another. The Zowe Application Framework
provides constructs that facilitate this ability. For more information, see Application-to-application communication.

Config Service

A part of the Application Framework which allows plug-ins and the framework itself to store user configuration as JSON or binary
formats. The configuration is stored in a hierarchy in which company-wide and system-wide defaults can exist for all users, and users
may override the defaults if policy allows it. What can be stored and what can be overridden depends on plug-in definition and
administrative configuration.

https://micronaut.io/
https://gradle.org/
https://docs.zowe.org/stable/appendix/extend/extend-desktop/mvd-apptoappcommunication

Version: v2.17.x LTS

Zowe FAQ
Check out the following FAQs to learn more about the purpose and function of Zowe™.

Zowe FAQ

Zowe CLI FAQ

Zowe Explorer FAQ

Zowe FAQ

What is Zowe?

Zowe is an open source project within the Open Mainframe Project that is part of The Linux Foundation. The Zowe project
provides modern software interfaces on IBM z/OS to address the needs of a variety of modern users. These interfaces include a
new web graphical user interface, a script-able command-line interface, extensions to existing REST APIs, and new REST APIs on
z/OS.

Who is the target audience for using Zowe?

Zowe technology can be used by a variety of mainframe IT and non-IT professionals. The target audience is primarily application
developers and system programmers, but the Zowe Application Framework is the basis for developing web browser interactions
with z/OS that can be used by anyone.

What language is Zowe written in?

Zowe consists of several components. The primary languages are Java and JavaScript. Zowe CLI and Desktop are written in
TypeScript. ZSS is written in C, while the cross memory server is written in metal C.

What is the licensing for Zowe?

Zowe source code is licensed under EPL2.0. For license text click here and for additional information click here.

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://www.openmainframeproject.org/
https://www.linuxfoundation.org/
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.txt
https://www.eclipse.org/legal/epl-2.0/faq.php

In the simplest terms (taken from the FAQs above) - "...if you have modified EPL-2.0 licensed source code and you distribute that
code or binaries built from that code outside your company, you must make the source code available under the EPL-2.0."

Why is Zowe licensed using EPL2.0?

The Open Mainframe Project wants to encourage adoption and innovation, and also let the community share new source code
across the Zowe ecosystem. The open source code can be used by anyone, provided that they adhere to the licensing terms.

What are some examples of how Zowe technology might be used by z/OS products and
applications?

The Zowe Desktop (web user interface) can be used in many ways, such as to provide custom graphical dashboards that monitor
data for z/OS products and applications.

Zowe CLI can also be used in many ways, such as for simple job submission, data set manipulation, or for writing complex scripts
for use in mainframe-based DevOps pipelines.

The increased capabilities of RESTful APIs on z/OS allows APIs to be used in programmable ways to interact with z/OS services.

What is the best way to get started with Zowe?

Zowe provides a convenience build that includes the components released-to-date, as well as IP being considered for
contribution, in an easy to install package on Zowe.org. The convenience build can be easily installed and the Zowe capabilities
seen in action.

To install the complete Zowe solution, see Installing Zowe.

To get up and running with the Zowe CLI component quickly, see Zowe CLI quick start.

What are the prerequisites for Zowe?

Prerequisites vary by component used, but in most cases the primary prerequisites are Java and NodeJS on z/OS and the z/OS
Management Facility enabled and configured. For a complete list of software requirements listed by component, see System
requirements for z/OS components and System requirements for Zowe CLI.

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://zowe.org/
https://docs.zowe.org/stable/user-guide/installandconfig
https://docs.zowe.org/stable/getting-started/cli-getting-started
https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/systemrequirements-cli

What's the difference between using Zowe with or without Docker?

Technical Preview

Docker is a download option for Zowe that allows you to run certain Zowe server components outside of z/OS. The Docker image
contains the Zowe components that do not have the requirement of having to run on z/OS: The App server, API Mediation Layer,
and the USS/MVS/JES Explorers.

Configurating components with Docker is similar to the procedures you would follow without Docker, however tasks such as
installation and running with Docker are a bit different, as these tasks become Linux oriented, rather than utilizing Jobs and STCs.

NOTE

z/OS is still required when using the Docker image. Depending on which components of Zowe you use, you'll still need to
set up z/OS Management Facility as well as Zowe's ZSS and Cross memory servers.

Is the Zowe CLI packaged within the Zowe Docker download?

Technical Preview

At this time, the Docker image referred to in this documentation contains only Zowe server components. It is possible to make a
Docker image that contains the Zowe CLI, so additional Zowe content, such as the CLI, may have Docker as a distribution option
later.

If you are interested in improvements such as this one, please be sure to express that interest to the Zowe community!

Does ZOWE support z/OS ZIIP processors?

Only the parts of Zowe that involve Java code are ZIIP enabled. The API Mediation Layer composed of the API Gateway, Discovery
and Catalog servers along with any Java-based services that work with them such as the Jobs and Datasets servers are ZIIP
enabled. Also, the CLI and VSCode Explorer make large use of z/OSMF, which is Java so they are ZIIP enabled as well. More
details on portions of Zowe which are Java (ZIIP) enabled can be found here.

This leaves C and NodeJS code which are not ZIIP enabled, BUT, we have a tech preview available currently that allows execution
of Java as well as NodeJS code, on Linux or zLinux via Docker. With the tech preview, only the C code remains on z/OS, which is
not ZIIP enabled.

How is access security managed on z/OS?

Click to hide answer

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://www.zowe.org/download.html

Zowe components use typical z/OS System authorization facility (SAF) calls for security.

How is access to the Zowe open source managed?

The source code for Zowe is maintained on an Open Mainframe Project GitHub server. Everyone has read access. "Committers"
on the project have authority to alter the source code to make fixes or enhancements. A list of Committers is documented in
Committers to the Zowe project.

How do I get involved in the open source development?

The best way to get started is to join a Zowe Slack channel and/or email distribution list and begin learning about the current
capabilities, then contribute to future development.

For more information about emailing lists, community calendar, meeting minutes, and more, see the Zowe Community GitHub
repo.

For information and tutorials about extending Zowe with a new plug-in or application, see Extending on Zowe Docs.

Where can I submit an idea for a future enhancement to Zowe?

Go to the Zowe Community ReadMe file for information on requesting a bug fix or enhancement. Members of the Zowe
community can then review your issue to post feedback or vote their support. Issues are continuously monitored by Zowe squads
for improvement ideas.

When will Zowe be completed?

Zowe will continue to evolve in the coming years based on new ideas and new contributions from a growing community.

Can I try Zowe without a z/OS instance?

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://github.com/zowe/community/blob/master/COMMITTERS.md
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://github.com/zowe/community#submit-an-issue

IBM has contributed a free hands-on tutorial for Zowe. Visit the Zowe Tutorial page to learn about adding new applications to
the Zowe Desktop and and how to enable communication with other Zowe components.

The Zowe community is also currently working to provide a vendor-neutral site for an open z/OS build and sandbox
environment.

Zowe is also compatible with IBM z/OSMF Lite for non-production use. For more information, see Configuring z/OSMF Lite on
Zowe Docs.

Zowe CLI FAQ

Why might I use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?

For developers new to the mainframe, command-line interfaces might be more familiar than an ISPF interface. Zowe CLI lets
developers be productive from day-one by using familiar tools. Zowe CLI also lets developers write scripts that automate a
sequence of mainframe actions. The scripts can then be executed from off-platform automation tools such as Jenkins automation
server, or manually during development.

With what tools is Zowe CLI compatible?

Zowe CLI is very flexible; developers can integrate with modern tools that work best for them. It can work in conjunction with
popular build and testing tools such as Gulp, Gradle, Mocha, and Junit. Zowe CLI runs on a variety of operating systems, including
Windows, macOS, and Linux. Zowe CLI scripts can be abstracted into automation tools such as Jenkins and TravisCI.

Where can I use the CLI?

Usage Scenario Example

Interactive use, in a command
prompt or bash terminal.

Perform one-off tasks such as submitting a batch job.

Interactive use, in an IDE terminal Download a data set, make local changes in your editor, then upload the changed

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://developer.ibm.com/tutorials/zowe-step-by-step-tutorial/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite

Usage Scenario Example

dataset back to the mainframe.

Scripting, to simplify repetitive tasks
Write a shell script that submits a job, waits for the job to complete, then returns the
output.

Scripting, for use in automated
pipelines

Add a script to your Jenkins (or other automation tool) pipeline to move artifacts
from a mainframe development system to a test system.

Which method should I use to install Zowe CLI?

You can install Zowe CLI using the following methods:

Local package installation: The local package method lets you install Zowe CLI from a zipped file that contains the core
application and all plug-ins. When you use the local package method, you can install Zowe CLI in an offline environment. We
recommend that you download the package and distribute it internally if your site does not have internet access.

Online NPM registry: The online NPM (Node Package Manager) registry method unpacks all of the files that are necessary
to install Zowe CLI using the command line. When you use the online registry method, you need an internet connection to
install Zowe CLI

How can I get Zowe CLI to run faster?

Zowe CLI runs significantly faster when you run it in daemon mode. Daemon mode significantly improves the performance
of Zowe CLI commands by running Zowe CLI as a persistent background process. For more information, see Using daemon
mode.

How can I manage profiles for my projects and teams?

Zowe CLI V2 introduces team profiles. Using team profiles helps to improve the initial setup of Zowe CLI by making service
connection details easier to share and easier to store within projects. For more information, see Using team profiles.

Does Zowe CLI support multi-factor authentication (MFA)?

Click to hide answer

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles

Yes, Zowe CLI supports MFA through the API Mediation Layer. Without the API ML, an MFA code can be used in place of a
password for testing single requests, but storing the MFA code for future requests does not work because the code expires
rapidly.

When mainframe services are routed through the API ML, users can log in to the API ML gateway with an MFA code to obtain a
long-lived API ML authentication token that can be stored for future requests.

How can I get help with using Zowe CLI?

You can get help for any command, action, or option in Zowe CLI by issuing the command 'zowe --help'.

For information about the available commands in Zowe CLI, see Command Groups.

If you have questions, the Zowe Slack space is the place to ask our community!

How can I use Zowe CLI to automate mainframe actions?

You can automate a sequence of Zowe CLI commands by writing bash scripts. You can then run your scripts in an automation
server such as Jenkins. For example, you might write a script that moves your Cobol code to a mainframe test system before
another script runs the automated tests.

Zowe CLI lets you manipulate data sets, submit jobs, provision test environments, and interact with mainframe systems and
source control management, all of which can help you develop robust continuous integration/delivery.

How can I contribute to Zowe CLI?

As a developer, you can extend Zowe CLI in the following ways:

Build a plug-in for Zowe CLI

Contribute code to the core Zowe CLI

Fix bugs in Zowe CLI or plug-in code, submit enhancement requests via GitHub issues, and raise your ideas with the
community in Slack.

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/getting-started/user-guide/cli-using-understanding-core-command-groups
https://openmainframeproject.slack.com/

Note: For more information, see Developing for Zowe CLI.

Zowe Explorer FAQ

Why might I use Zowe Explorer versus a traditional ISPF interface to perform mainframe tasks?

The Zowe Explorer VSCode extension provides developers new to the mainframe with a modern UI, allowing you to access and
work with the data set, USS, and job functionalities in a fast and streamlined manner. In addition, Zowe Explorer enables you to
work with Zowe CLI profiles and issue TSO/MVS commands.

How can I get started with Zowe Explorer?

First of all, make sure you fulfill the following Zowe Explorer software requirements:

Get access to z/OSMF.

Install VSCode.

Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs REST interface. For more
information, see z/OS Requirements.

For development, install Node.js v14.0 or later.

Once the software requirements are fulfilled, create a Zowe Explorer profile.

Follow these steps:

1. Navigate to the explorer tree.

2. Click the + button next to the DATA SETS, USS, or JOBS bar.

3. Select the Create a New Connection to z/OS option.

4. Follow the instructions, and enter all required information to complete the profile creation.

You can also watch Getting Started with Zowe Explorer to understand how to use the basic features of the extension.

Where can I use Zowe Explorer?

You can use Zowe Explorer either in VSCode or in Theia. For more information about Zowe Explorer in Theia, see Developing for
Theia.

Click to hide answer

Click to hide answer

Click to hide answer

https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#how-can-i-contribute
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements
https://nodejs.org/en/download/
https://www.youtube.com/watch?v=G_WCsFZIWt4
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://github.com/zowe/zowe-explorer-vscode/wiki/Developing-for-Theia

How do I get help with using Zowe Explorer?

Use the Zowe Explorer channel in Slack to ask the Zowe Explorer community for help.

Open a question or issue directly in the Zowe Explorer GitHub repository.

How can I use Secure Credential Storage for Zowe Explorer?

The Secure Credential Store Plug-in is no longer required for Zowe Explorer.

Secure credential storage functionality is now contained in the Zowe CLI core application, which stores credentials securely by
default.

What if Secure Credential Storage does not work in my environment?

When an environment does not support Secure Credential Storage, it is possible to disable it. See Disabling Secure Credential
Storage of credentials for more information.

What if I do not want Zowe Explorer to store my credentials?

Although not recommended in all cases, it is possible to disable Zowe Explorer's credential management functionality. See
Preventing Zowe Explorer from storing credentials for more information.

What types of profiles can I create for Zowe Explorer?

Zowe Explorer V2 supports using Service Profiles, Base Profiles, and Team Profiles. For more information, see Using V1 profiles
and Team configurations in the Using Zowe CLI section.

Does Zowe Explorer support multi-factor authentication (MFA)?

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://openmainframeproject.slack.com/archives/CUVE37Z5F
https://github.com/zowe/zowe-explorer-vscode/issues
https://docs.zowe.org/stable/user-guide/ze-usage#disabling-secure-credential-storage-of-credentials
https://docs.zowe.org/stable/user-guide/ze-usage#preventing-zowe-explorer-from-storing-credentials
https://docs.zowe.org/stable/user-guide/cli-using-using-profiles-v1
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles

Yes, Zowe Explorer supports MFA through the API Mediation Layer. Without the API ML, an MFA code can be used in place of a
password for testing single requests, but storing the MFA code for future requests does not work because the code expires
rapidly.

When mainframe services are routed through the API ML, users can log in to the API ML gateway with an MFA code to obtain a
long-lived API ML authentication token that can be stored for future requests.

Is it possible to change the detected language of a file or data set opened in Zowe Explorer?

Yes, you can configure Visual Studio Code to use a specific language for a particular file extension or data set qualifier. To set file
associations, see Add a file extension to a language.

How can I use FTP as my back-end service for Zowe Explorer?

See the Zowe FTP extension README in GitHub for information about how to install FTP from the Visual Studio Code
Marketplace and use it as your back-end service for working with UNIX files.

How can I contribute to Zowe Explorer?

As a developer, you may contribute to Zowe Explorer in the following ways:

Build a Zowe Explorer extension.

Contribute code to core Zowe Explorer.

Fix bugs in Zowe Explorer, submit enhancement requests via GitHub issues, and raise your ideas with the community in Slack.

Note: For more information, see Extending Zowe Explorer.

Zowe IntelliJ plug-in FAQ

Why might I use Zowe IntelliJ plug-in versus a traditional ISPF interface to perform mainframe
tasks?

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://code.visualstudio.com/docs/languages/overview#_add-a-file-extension-to-a-language
https://github.com/zowe/zowe-explorer-ftp-extension/#readme
https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer

Zowe IntelliJ plug-in allows you to access and work with data sets, members and jobs directly from your IntelliJ-based IDE.

How can I get started with Zowe IntelliJ plug-in?

Install the plug-in in your IntelliJ-based IDE directly from marketplace or download it from here.

Where can I use Zowe IntelliJ plug-in?

You can use it in any IntelliJ-based IDE.

How do I get help with using Zowe IntelliJ plug-in?

You can read detailed user guide and find any information you need here. Also, you can ask any questions in the Zowe Slack
channel #zowe-explorer-intellij.

How can I create, edit and delete z/OSMF connection?

To create a connection, expand plug-in panel on an IDE sidebar (on the right side of your screen) and press the "wrench"
pictogram, or go to File -> Settings (CTRL+ALT+S), select Zowe Explorer (Zowe IntelliJ plugin) and then switch to the z/OSMF
connection tab. Press the “+” button and fill inn all necessary fields.

How can I contribute to Zowe IntelliJ plug-in?

If you have something to introduce but there is no related issue in the project repo, then you can either create the issue by
yourself or contact us to help you with it. See more information in the CONTRIBUTION.md file.

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

Click to hide answer

https://plugins.jetbrains.com/plugin/18688-zowe-explorer
https://plugins.jetbrains.com/plugin/18688-zowe-explorer/user-guide
https://openmainframeproject.slack.com/archives/C020BGPSU0M
https://github.com/zowe/zowe-explorer-intellij/blob/main/CONTRIBUTING.md

Version: v2.17.x LTS

Zowe V2 FAQ

Where can I find the V1 and V2 LTS conformance criteria?
The Zowe Squads have prepared XLS spreadsheets with conformance criteria for all Zowe extensions including: CLI, APIs, App
Framework, and Explorer for VS Code. The spreadsheets clearly show the prior / V1 criteria alongside the new / V2 criteria. Please be
aware, there are additions, deletions, and CHANGES to the criteria. In some cases the change is simply that a BEST PRACTICE has been
deemed REQUIRED. Use the included fill color key to identify new changes for V2, reworded changes, or changes from V1 removed in
V2. See the Changes to the Conformance Criteria section at Zowe.org/vNext.

Whats the difference between "server.json" and "example-zowe.yaml"?
The previous Zowe V1.x config, "server.json", has been removed from V2 and has been replaced with a new yaml configuration file.
The app server will no longer support instances/workspaces which only contain a "server.json" config file and will fallback to a default
configuration. In addition to the app server, ZSS will no longer support "server.json".

The yaml Zowe configuration file contains configurations for the setup, install, and initialization of Zowe as well as for individual
components. This file allows users to customize dataset names, security related configs, certificate setup/config, job name & job prefix,
various runtime configs, high availability config, as well as individual component configurations.

For more information on Zowe setup and the yaml configuration, run the following command in the command line:

zwe init --help

What are the new default ports?
Four of the default Zowe ports have changed: the app server, zss, the jobs API, and the files API. The new default app server port is
7556 (previously 8544) and the new zss port is 7557 (previously 8542). The new jobs API port is 7558 (previously 8545) and the new
files API is 7559 (previously 8547). The JES/USS/MVS Explorer UI servers have been removed and thus no longer require port
configurations.

How do I access Zowe through the API Mediation Layer in V2?

In pervious V1.X versions of Zowe, the desktop could be accessed via the API Medation Layer by navigating to
https://${zowe.externalDomains[0]}:{zowe.externalPort}//ui/v1/zlux . In Zowe V2, the route to access the desktop has

changed to https://${zowe.externalDomains[0]}:{zowe.externalPort}/zlux/ui/v1 . Such routing structure is applicable to
other clients connected to the API Gateway. For example, the API Catalog may be accessed via
https://${zowe.externalDomains[0]}:{zowe.externalPort}/apicatalog/ui/v1 .

What new frameworks are supported in V2?

The Zowe app framework now supports the more modern Angular 12, Corejs 3 and Typescript 4.

https://www.zowe.org/vnext#conformance-changes

Why aren't the explorers appearing on my desktop anymore?
By default, the explorers will not longer appear on the desktop if the instance is not configured to use the API Mediation Layer.

Version: v2.17.x LTS

Zowe V2 office hours videos
Watch the series of Zowe office hours videos to learn more about the new features and enhancements in Zowe Version 2 release.

Office hours for Zowe extenders
The following videos walk you through Zowe V2 updates from an extender's perspective. You can start with general information and
dive deeper in other sections for more details.

General information

Zowe V2 Office HouZowe V2 Office Hou……

General information

Zowe V2 Office HouZowe V2 Office Hou……

Updates for extenders

Zowe V2 Office HoZowe V2 Office Ho

Wrap-up session

Zowe component updates

Zowe V2 OfficZowe V2 Offic……

Zowe CLI

Zowe V2 OfficZowe V2 Offic……

Zowe API Mediation Layer

Zowe V2 OfficZowe V2 Offic……

Zowe Application Framework

ZowZow

Zowe

Installation and V2 conformance

https://www.youtube.com/watch?v=sd634LJtKIk
https://www.youtube.com/watch?v=kIfRwjFaa60
https://www.youtube.com/watch?v=0POzncbTmx4
https://www.youtube.com/watch?v=kI9JpTP6IUg
https://www.youtube.com/watch?v=0POzncbTmx4
https://www.youtube.com/watch?v=wKAhkGQ2HOQ
https://www.youtube.com/watch?v=Q3cd1cOD2Qw

Zowe V2 Office Hours (Zowe Extenders) - SSZowe V2 Office Hours (Zowe Extenders) - SS……

SSO and APIML SSO Conformance

Zowe V2 Office Hours (ZowZowe V2 Office Hours (Zow

Systems and installatio

Office hours for Zowe consumers

The following office hours walk you through Zowe V2 updates from a consumer's perspective. Watch these videos to learn more
about the enhancements that are introduced to each core component.

Zowe component updates

Zowe V2 OfficZowe V2 Offic……

Zowe CLI

Zowe V2 OfficZowe V2 Offic……

Zowe API Mediation Layer

Zowe V2 OfficZowe V2 Offic……

Zowe Application Framework

ZowZow

Zowe

https://www.youtube.com/watch?v=6bYhh1RQuAo
https://www.youtube.com/watch?v=LjufWJDYcjg
https://www.youtube.com/watch?v=ih52PzPncrw
https://www.youtube.com/watch?v=cH9SpWknHsY
https://www.youtube.com/watch?v=1BFGtv95eC0
https://www.youtube.com/watch?v=44klrbtNd-8

Version: v2.17.x LTS

Zowe CLI quick start
Get started with Zowe™ CLI quickly and easily.

This article presumes that your role is that of a systems administrator or you possess prerequisite knowledge of command-line tools
and writing scripts. If you prefer more detailed instructions, see Installing Zowe CLI.

Installing
The following topics describe the Zowe CLI system requirements and the various methods to use to install Zowe CLI.

Software Requirements

Before you install Zowe CLI, download and install Node.js and npm. Use an LTS version of Node.js that is compatible with your version
of npm. For a list of compatible versions, see Node.js Previous Releases.

(Linux only): On headless Linux, follow the procedure documented in the SCS plug-in Readme.

Installing Zowe CLI core from public npm

Issue the following command to install the core CLI.

Installing CLI plug-ins

The command installs most open-source plug-ins, but the IBM Db2 plug-in requires additional configuration to install.

For more information, see Installing plug-ins.

Issuing your first commands
Issue zowe --help to display full command help. Append --help (alias -h) to any command to see available command actions and

options.

Optionally, you can view the Zowe CLI web help in a browser window. For more information, see Displaying help.

All Zowe CLI commands start with zowe followed by the name of the core command group. For example, zowe plugins -h . To
interact with the mainframe, type zowe followed by a command group, action, and object. Use options to specify your connection

details such as password and system name.

Listing all data sets under a high-level qualifier (HLQ)

Example:

Downloading a partitioned data-set (PDS) member to local file

Example:

https://docs.zowe.org/stable/user-guide/cli-installcli
https://nodejs.org/en/download/releases/
https://github.com/zowe/zowe-cli-scs-plugin/blob/master/README.md#software-requirements
https://docs.zowe.org/stable/user-guide/cli-db2plugin#installing
https://docs.zowe.org/stable/user-guide/cli-installplugins
https://docs.zowe.org/stable/user-guide/cli-using-displaying-help
https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups

See Understanding core command groups for a list of available functionality.

Team profiles

Zowe CLI V2-LTS now supports team profiles. The process of setting up team profiles is simple and can be rolled out easily accross
your organization. We highly recommend that you configure team profiles to support your Zowe CLI implementation. For more
information, see Using team profiles.

Using profiles
Zowe profiles let you store configuration details such as username, password, host, and port for a mainframe system. Switch between
profiles to quickly target different subsystems and avoid typing connection details on every command.

Profile types

Most command groups require a zosmf-profile , but some plug-ins add their own profile types. For example, the CICS plug-in has a

cics-profile . The profile type that a command requires is defined in the PROFILE OPTIONS section of the help response.

Tip: The first zosmf profile that you create becomes your default profile. If you don't specify any options on a command, the default

profile is used. Issue zowe profiles -h to learn about listing profiles and setting defaults.

Creating zosmf profiles

Notes:

The port defaults to 443 if you omit the --port option. Specify a different port if your host system does not use port 443.

If z/OSMF is configured for high availability in Sysplex, create the CLI zosmf-profile with DVIPA address/hostname to ensure
availability of REST services. For more information, see Configuring z/OSMF high availability in Sysplex.

Using zosmf profiles

For detailed information about issuing commands, using profiles, and more, see Using CLI.

Writing scripts

You can write Zowe CLI scripts to streamline your daily development processes or conduct mainframe actions from an off-platform
automation tool such as Jenkins or TravisCI.

Example:

You want to delete a list of temporary datasets. Use Zowe CLI to download the list, loop through the list, and delete each data set
using the zowe zos-files delete command.

For more information, see Writing scripts.

https://docs.zowe.org/stable/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/cli-using-writing-scripts

Next steps
You successfully installed Zowe CLI, issued your first commands, and wrote a simple script! Next, you might want to perform the
following tasks:

Issue the zowe --help command to explore the product functionality, or review the online web help.

Learn how to configure Zowe CLI run Zowe CLI in daemon mode. Daemon mode significantly improves the performance of Zowe
CLI commands by running Zowe CLI as a persistent background process.

Learn about configuring environment variables to store configuration options.

Learn about integrating with API Mediation Layer.

Learn about how to write scripts and integrate them with automation server, such as Jenkins.

See what plug-ins are available for the CLI.

Learn about developing for the CLI (contributing to core and developing plug-ins).

https://docs.zowe.org/stable/user-guide/cli-using-displaying-help
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml
https://docs.zowe.org/stable/user-guide/cli-using-writing-scripts
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials

Version: v2.17.x LTS

Migrating Zowe server component from V1 to V2
This doc guides you through migrating an existing Zowe server component from version 1 to version 2.

To make Zowe server component compatible with Zowe version 2, you must update the following configurations.

Component manifest

Lifecycle scripts

Environment variables

Packaging one component deliverable for both Zowe v1 and v2

Component manifest
In Zowe v2, the component must define a manifest file and package it into the extension's root directory. This manifest file is used by
Zowe to understand how this component should be installed, configured, and started. For detailed information of this file, see Server
Component Manifest File Reference.

Lifecycle scripts
In Zowe v2, lifecycle scripts can be located anywhere in your component directory. However, you must explicitly define them in the
commands section of the component manifest file.

Environment variables
Zowe v1 and v2 environment variables are not exact match. There are the following differences:

Some variables in Zowe v1 are removed in v2.

Some are separated into two or more variables.

Zowe v2 defines more configuration options than v1.

Review the following table for a detailed mapping of Zowe v1 and v2 variables.

Zowe v1 Variable Zowe v2 YAML Configuration

APIML_ALLOW_ENCODED_SLASHES components.gateway.apiml.service.allowEncodedSlashes ZWE_

APIML_CORS_ENABLED components.gateway.apiml.service.corsEnabled ZWE_

APIML_DEBUG_MODE_ENABLED components.gateway.debug , etc ZWE_

https://docs.zowe.org/stable/appendix/server-component-manifest

Zowe v1 Variable Zowe v2 YAML Configuration

APIML_ENABLE_SSO Removed in v2 Rem

APIML_GATEWAY_EXTERNAL_MAPPER components.gateway.apiml.security.x509.externalMapperUrl ZWE_

APIML_GATEWAY_INTERNAL_HOST Not configurable in v2 Not

APIML_GATEWAY_INTERNAL_PORT components.gateway.server.internal.port ZWE_

APIML_GATEWAY_TIMEOUT_MILLIS components.gateway.apiml.gateway.timeoutMillis ZWE_

APIML_MAX_CONNECTIONS_PER_ROUTE components.gateway.server.maxConnectionsPerRoute ZWE_

APIML_MAX_TOTAL_CONNECTIONS components.gateway.server.maxTotalConnections ZWE_

APIML_PREFER_IP_ADDRESS Removed in v2 Rem

APIML_SECURITY_AUTH_PROVIDER components.gateway.apiml.security.auth.provider ZWE_

APIML_SECURITY_AUTHORIZATION_ENDPOINT_URL components.gateway.apiml.security.authorization.endpoint.url ZWE_

APIML_SECURITY_X509_ENABLED components.gateway.apiml.security.x509.enabled ZWE_

APIML_SECURITY_ZOSMF_APPLID zOSMF.applId ZOSM

CATALOG_PORT components.api-catalog.port ZWE_

DISCOVERY_PORT components.discovery.port ZWE_

EXTERNAL_CERTIFICATE_AUTHORITIES zowe.certificate.pem.certificateAuthorities ZWE_

EXTERNAL_COMPONENTS Removed in v2 Rem

FILES_API_PORT components.files-api.port ZWE_

GATEWAY_PORT components.gateway.port ZWE_

Zowe v1 Variable Zowe v2 YAML Configuration

INSTANCE_DIR Removed in v2 ZWE_

JAVA_HOME java.home JAVA

JES_EXPLORER_UI_PORT Removed in v2 Rem

JOBS_API_PORT components.jobs-api.port ZWE_

KEY_ALIAS zowe.certificate.keystore.alias ZWE_

KEYSTORE_CERTIFICATE_AUTHORITY zowe.certificate.pem.certificateAuthorities ZWE_

KEYSTORE_CERTIFICATE zowe.certificate.pem.certificate ZWE_

KEYSTORE_DIRECTORY zowe.setup.certificate.pkcs12.directory ZWE_

KEYSTORE_KEY zowe.certificate.pem.key ZWE_

KEYSTORE_PASSWORD
zowe.certificate.keystore.password and

zowe.certificate.truststore.password

ZWE_

ZWE_

KEYSTORE_TYPE
zowe.certificate.keystore.type and

zowe.certificate.truststore.type

ZWE_

ZWE_

KEYSTORE zowe.certificate.keystore.file ZWE_

LAUNCH_COMPONENT_GROUPS Removed in v2 Rem

MVS_EXPLORER_UI_PORT Removed in v2 Rem

PKCS11_TOKEN_LABEL Removed in v2 Rem

PKCS11_TOKEN_NAME Removed in v2 Rem

Zowe v1 Variable Zowe v2 YAML Configuration

ROOT_DIR zowe.runtimeDirectory ZWE_

SKIP_NODE Removed in v2 Rem

STATIC_DEF_CONFIG_DIR - ZWE_

TRUSTSTORE zowe.certificate.truststore.file ZWE_

USS_EXPLORER_UI_PORT Removed in v2 Rem

ZOSMF_HOST zOSMF.host ZOSM

ZOSMF_PORT zOSMF.port ZOSM

ZOWE_APIM_NONSTRICT_VERIFY_CERTIFICATES zowe.verifyCertificates ZWE_

ZOWE_APIM_VERIFY_CERTIFICATES zowe.verifyCertificates ZWE_

ZOWE_EXPLORER_FRAME_ANCESTORS Removed in v2 Rem

ZOWE_EXPLORER_HOST zowe.externalDomains or haInstances.<ha-instance>.hostname
ZWE_

ZWE_

inst

ZOWE_INSTANCE Removed in v2 Rem

ZOWE_IP_ADDRESS Removed in v2 Rem

ZOWE_PREFIX zowe.job.prefix ZWE_

Zowe v1 Variable Zowe v2 YAML Configuration

ZOWE_ZLUX_SECURITY_TYPE - -

ZOWE_ZLUX_SERVER_HTTPS_PORT - -

ZOWE_ZLUX_SSH_PORT - -

ZOWE_ZLUX_TELNET_PORT - -

ZOWE_ZSS_SERVER_PORT - -

ZOWE_ZSS_SERVER_TLS - -

ZOWE_ZSS_XMEM_SERVER_NAME - -

ZWE_CACHING_EVICTION_STRATEGY components.caching-service.storage.evictionStrategy ZWE_

ZWE_CACHING_SERVICE_PERSISTENT components.caching-service.storage.mode ZWE_

ZWE_CACHING_SERVICE_PORT components.caching-service.port ZWE_

ZWE_CACHING_SERVICE_VSAM_DATASET components.caching-service.storage.vsam.name ZWE_

ZWE_CACHING_STORAGE_SIZE components.caching-service.storage.size ZWE_

ZWE_DISCOVERY_SERVICES_LIST - ZWE_

ZWE_DISCOVERY_SERVICES_REPLICAS components.discovery.replicas ZWE_

ZWE_EXTENSION_DIR zowe.extensionDirectory ZWE_

ZWE_EXTERNAL_HOSTS zowe.externalDomains ZWE_

ZWE_EXTERNAL_PORT zowe.externalPort ZWE_

ZWE_LAUNCH_COMPONENTS Combined information of components.<component>.enabled with

value of true

ZWE_

Zowe v1 Variable Zowe v2 YAML Configuration

ZWE_LOG_LEVEL_ZWELS zowe.launchScript.logLevel ZWE_

ZWEAD_EXTERNAL_STATIC_DEF_DIRECTORIES Removed in v2 Rem

ZWES_ZIS_LOADLIB zowe.setup.dataset.authLoadlib ZWE_

ZWES_ZIS_PARMLIB_MEMBER - -

ZWES_ZIS_PARMLIB zowe.setup.dataset.parmlib ZWE_

ZWES_ZIS_PLUGINLIB zowe.setup.dataset.authPluginLib ZWE_

Packaging one component deliverable for both Zowe v1 and v2
It is recommended that you create a dedicated package of extensions for Zowe v2, which is the most straight-forward way to address
all of the breaking changes introduced in v2. We understand that this method presents the challenge of maintaining two sets of
packages. If you prefer not to maintain two sets of packages, it's still possible to maintain one version of an extension which works for
both Zowe v1 and v2. However, the lifecycle code will be complicated and in this case, comprehensive testing should be performed.

CAUTION

The Zowe v2 App Framework desktop is upgraded from Angular version 6 to angular version 12 for support and security -
websites have a "1 version of a library" limitation. This means that plug-ins dependent upon Angular must be coded for either v6
or v12 [not both] thus the single version approach is not applicable.

If the lifecycle scripts are the main concern, the following steps outline requirements and recommendations for the single version
approach:

Packaging manifest.yaml is required. This is a hard requirement for Zowe v2. If you define lifecycle scripts with default names,

for example, use bin/start.sh as commands.start , it should work for v1.

Revisit all environment variables used in the lifecycle scripts and apply fallback variables. For example, if you use $ROOT_DIR in

Zowe v1, this should be changed to ${ZWE_zowe_runtimeDirectory:-${ROOT_DIR}} to make it compatible with both versions.

Other variables like $EXPLORER_HOST should be changed to ${ZWE_haInstance_hostname:-${EXPLORER_HOST}} or

${ZWE_externalDomains_0:-${EXPLORER_HOST}} based on purpose.

In Zowe v2, we recommend you to define extension configurations in the manifest.yaml configs section and use

${ZWE_configs_*} variables to access them. This feature does not exist in Zowe v1. So if you use ${ZWE_configs_*} variables, it

should fall back to the matching environment variable used in v1.

In Zowe v2, we recommend you to define a commands.install lifecycle script to handle extension installation. This lifecycle script

will be executed by zwe components install . In v1, this also exists if you use the zowe-install-components.sh utility to install

a Zowe extension. So if you want one extension package to work for both Zowe v1 and v2, this install lifecycle script should also
be compatible with both v1 and v2.

A new v2 variable ${ZWE_VERSION} may help you determine the Zowe version number. This variable does not exist in Zowe v1. By

knowing the Zowe version, the lifecycle scripts can implement logic to source v1 or v2 dedicated scripts to avoid handling
fallbacks in the same script. This could help avoid complicated compatibility version checks, and it could be easier in the future if
you decide to drop Zowe v1.

Version: v2.17.x LTS

Zowe learning resources
Learn more about Zowe from these blog posts, videos, and other resources.

Blogs
Zowe blogs on Medium

Zowe blogs on Open Mainframe Project website

Want to contribute a blog? Details for how to contribute to the Zowe blogs on Medium site are at Zowe Blog Guidelines.

Videos

Zowe VS Code ExtensionZowe VS Code Extension

As well as Zowe videos owned and managed by the community, there are a number of external youtubers who host Zowe related
content.

Zowe Demos playlist from Bill Pereira

Mainframe Bytes channel from Jessielaine Punongbayan

Webinars
Find out what's happening with Zowe in the Zowe Quarterly Update Webinar Series.

Zowe Quarterly Update Webinar: October 2021

Zowe Quarterly Update Webinar: July 2021

Zowe Quarterly Update Webinar: April 2021

https://medium.com/zowe
https://www.openmainframeproject.org/category/blog/zowe
https://medium.com/zowe
https://github.com/zowe/community/blob/master/blogging/blog_guidelines.md
https://www.youtube.com/watch?list=PL8REpLGaY9QE_9d57tw3KQdwSVLKuTpUZ&v=la1_Ss27fn8
https://www.youtube.com/embed?listType=playlist&list=PL8REpLGaY9QE_9d57tw3KQdwSVLKuTpUZ
https://www.youtube.com/playlist?list=PLM85SdWDWtebJ13Kww8rxKlDlWe72D7b3
https://www.youtube.com/channel/UCZrvxFwT1GpvJuFRyqc5uWg
https://youtu.be/b0Xo6WIy3vc
https://youtu.be/T3Z4hMwElII
https://youtu.be/9rQCcZGVDzQ

Zowe Quarterly Update Webinar: January 2021

Zowe Quarterly Update Webinar: October 2020

The OMP Youtube channel also offers other webinars about Zowe.

Treat Yourself to a Guided, Comprehensive Tour of Zowe Desktop Applications

Zowe Webinar Feb. 22, 2019

Open Mainframe Project Webinar: Zowe Virtual Hackathon

Community

Join us on Slack

Slack invite link

Introduction to Zowe Slack channels

Learn more about the community

Zowe community GitHub repo

Find out information about Zowe sub-projects, GitHub repos, mailing lists, community meeting minutes, contribution guidelines,
and so on.

Connect with the community through meetings

Zowe meeting calendar

You can join one of the Zowe meetings to get latest Zowe updates and get involved in different squads and initiatives.

Training
Courses

Zowe Fundamentals

Interskill Learning offers a free training course that introduces the components that comprise Zowe and the benefits of using
Zowe and how its capabilities can be extended.

Trials

Zowe trial

The Zowe trial hosted by IBM is a fully configured z/OS environment with Zowe preinstalled and set up along with a set of
integrated easy-to-follow tutorials that walk you through the basics of Zowe and gives you hands-on experience of extending
Zowe. This no-charge trial is available in two hours for three days.

Get started with the Zowe Web UI

https://youtu.be/ZEwd8wZvbIw
https://youtu.be/GbAFO5vzBhw
https://www.youtube.com/channel/UC-WTXQQtz2m5iTflJLK59aw/videos
https://youtu.be/cbEVbcsaGCs
https://youtu.be/XixEltbRmds
https://youtu.be/zIPzaQK2bfU
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md#slack
https://github.com/zowe/community/blob/master/README.md
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://interskill.com/course/zowe-training/
https://early-access.ibm.com/software/support/trial/cst/welcomepage.wss?siteId=936&tabId=2216&w=1&mhsrc=ibmsearch_a&mhq=Zowe%20trial
https://developer.ibm.com/components/ibmz/tutorials/zowe-step-by-step-tutorial/

This online tutorial hosted by IBM guides you to add new apps to the Zowe Web UI. It provides a public hosted Zowe instance
that allows you to perform the steps in a z/OS environment.

Version: v2.17.x LTS

Installing Zowe
The installation of Zowe™ consists of the following processes:

Installation of the Zowe server-side components.

You can install the components either on z/OS only or you can install the components both on z/OS and on Docker.

Installation of Zowe client-side components.

You can install Zowe CLI or Zowe Explorer, a Visual Studio Code extension powered by Zowe CLI.

The Zowe server components provide a web desktop that runs a number of applications such as API Mediation Layer that includes the
Single Sign-on (SSO) capability, organization of the multiple Zowe servers under a single website, and other useful features for z/OS
developers.

Because Zowe is a set of components, before installing Zowe, use this guide to determine which components you want to install and
where you want to install them.

Consider the following scenarios:

If you plan to use Zowe CLI on PC only, you may not need to install the Zowe server components.

Note: Some CLI plug-ins require the installation of components on z/OS. If you plan to use core Zowe CLI groups from your PC,
the z/OS you connect to does not require any components of Zowe to be installed on z/OS, unless you want to take advantage of
advanced authentication methods such as single sign-on or multi-factor authentication.

If you use the Docker technical preview to run the Linux parts of Zowe in a container, you only need to configure the Zowe z/OS
component to start the ZSS server.

Version: v2.17.x LTS

Zowe server-side installation overview
Installation of Zowe™ server-side components on z/OS, consists of the following two parts:

Zowe runtime

Zowe Cross Memory Server (ZIS)

Zowe runtime
The Zowe runtime consists of the following three components:

Zowe Application Framework
Zowe Application Framework modernizes and simplifies working on the mainframe via a web visual interface. Functionality is
provided through apps and a desktop user experience, which is referred to as the Zowe Desktop. Base functionality includes apps
to work with JES, MVS Data Sets, Unix System Services, as well as a 3270 Terminal, Virtual Terminal, and an Editor.

Zowe API Mediation Layer (API ML)
Zowe API ML provides a reverse proxy and enables REST APIs by providing a single point of access for mainframe service REST
APIs like MVS Data Sets, JES, as well as working with z/OSMF. Zowe API ML has dynamic discovery capability for these services
and Gateway is also responsible for generating the authentication token used to provide single sign-on (SSO) functionality.

Z System Services Server (ZSS)
ZSS serves as one of the primary, authenticated backends that communicates with z/OS and works closely with the Zowe Cross
Memory Server (ZIS). ZSS provides Zowe with a number of APIs including z/OS Unix files and data sets, control of the plug-ins
and services lifecycle, security management, and other APIs. The Zowe Desktop delegates a number of services to ZSS which can
then be accessed through the default http port 7557 . ZSS is written in C and uses native calls to z/OS to provide its services.

The Zowe Cross Memory Server (ZIS)
After the installation of Zowe runtime, install the Zowe Cross Memory Server (ZIS).

The Zowe Cross Memory Server, also referred to as Zowe Interprocess Services (ZIS) is an APF authorized server application that
provides privileged services to Zowe in a secure manner. For security reasons, ZIS is not an HTTP server. Instead, this server has a trust
relationship with ZSS.

Other Zowe components can work through ZSS to handle z/OS data that would otherwise be unavailable or where access to these
data could be vulnerable to security breaches.

Roles and responsibilities for server-side component installation
To avoid interuptions in the installation of Zowe™ server-side components, it is useful to be aware of the roles required to perform
various tasks in the installation and configuration process.

Security administrator

To configure Zowe security for production environments, it is likely that your organization's security administrator will be required to
perform specific tasks. For more information, see Addressing security requirements.

Storage administrator

Before starting installation, notify your storage administrator to reserve the required space for USS, directory storage space, and any
other storage requrements to install Zowe. For more information, see Addressing storage requirements.

Network administrator

Notify your organization's network administrator to assign port numbers, reserve these port numbers, and arrange them for you. For
more information about network setup, see Addressing network requirements.

System programmer

In most cases, the system programmer performs the Zowe installation and configuration, and starts Zowe. Ensure that your system
programmers have general knowledge about SMP/E, z/OSMF workflows, and regular maintanance procedures. In many cases, the
system programmer also prepares jobs for other administrators.

End-to-end installation
The following diagram illustrates the full ecosystem for installing Zowe server-side components for z/OS.

https://docs.zowe.org/stable/user-guide/address-security-requirements#tasks-performed-by-your-security-administrator
https://docs.zowe.org/stable/user-guide/address-storage-requirements
https://docs.zowe.org/stable/user-guide/address-network-requirements

Stage 1: Prepare for installation
Begin the installation process by familiarizing yourself with the following topics which are covered in the section Preparing for
installation:

Zowe's hardware and software requirements

The zwe utility used for installing, configuring, and managing Zowe

The configuration file used for Zowe, zowe.yaml

Stage 2: Installing the Zowe z/OS runtime

https://docs.zowe.org/stable/user-guide/installandconfig

1. Ensure that the software requirements described in Preparing for installation are met.

2. Choose your method for installing Zowe on z/OS.

Each method to perform Zowe server-side component installation contains the same contents. Choose the method based on your
needs. The Zowe z/OS binaries are distributed in the following formats:

Convenience build
The Zowe z/OS binaries are packaged as a PAX file which is a full product install. Transfer these binaries to a USS directory
and expand the contents. Use the zwe command zwe install to extract a number of PDS members which contain load

modules, JCL scripts, and PARMLIB entries.

SMP/E build
Zowe z/OS binaries are packaged as the following files that you can download. You install this build through SMP/E.

A pax.Z file, which contains an archive (compressed copy) of the FMIDs to be installed.

A readme file, which contains a sample job to decompress the pax.Z file, transform this file into a format that SMP/E can
process, and invoke SMP/E to extract and expand the compressed SMP/E input data sets.

Portable Software Instance (PSWI)
You can acquire and install the Zowe z/OS PAX file as a portable software instance (PSWI) using z/OSMF.

NOTE

While the procedures to obtain and install the convenience build, SMP/E build or PSWI are different, the procedure to configure
a Zowe runtime is the same, and does not depend on how the build is obtained and installed.

1. Obtain and install the Zowe build.

For more information about how to obtain and install the convenience build, see Installing Zowe runtime from a convenience
build.

For more information about how to obtain and install the SMP/E build, see Installing Zowe SMP/E overview.

For more information about how to obtain and install the PSWI, see Installing Zowe from a Portable Software Instance.

https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/installandconfig#zwe-server-command
https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/stable/user-guide/install-zowe-smpe-overview
https://docs.zowe.org/stable/user-guide/install-zowe-pswi

Successful installation of either a convenience build or an SMP/E build creates a zFS folder that contains the following artifacts:

The unconfigured Zowe runtime directory

The utility library SZWEEXEC that contains utilities

The SAMPLIB library SZWESAMP that contains sample members

The load library SZWEAUTH that contains load modules

The steps to prepare the z/OS environment to launch Zowe are the same for all installation methods.

Stage 3: Configuring the Zowe z/OS runtime

Choose from the following methods to configure the Zowe runtime:

Use a combination of JCL and the zwe command zwe init

Use z/OSMF Workflows

TIP

We recommend you open the links to this configuration procedure in new tabs.

The steps to initialize the system are the same independent of whether you obtained Zowe from a .pax convenience build, or an
SMP/E distribution.

NOTE

https://docs.zowe.org/stable/user-guide/initialize-zos-system
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow

The zwe init command runs the subcommands in sequence automatically. You can choose to run the subcommands one by

one to define each step based on your need. If you encounter any failures with zwe init command, you can pick up the failed

subcommands step specifically and rerun this subcommand.

The following procedure outlines the steps to configure the Zowe z/OS runtime, and the corresponding zwe init subcommands.

1. Prepare the zowe.yaml configuration file if the file does not already exist.

2. Prepare the custom MVS data sets. Copy the data sets provided with Zowe to custom data sets.
(Uses the command zwe init mvs)

3. Initialize Zowe security configurations. Create the user IDs and security manager settings.
(Uses the command zwe init security)

NOTE

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2, you can skip this security configuration
step unless told otherwise in the release documentation.

4. Perform APF authorization of load libraries. These load libraries contain the modules required to perform z/OS priviledged
security calls.
(Uses the command zwe init apfauth)

5. Configure Zowe to use TLS certificates
(Uses the command zwe init certificate)

6. Create the VSAM data sets used by the Zowe API Mediation Layer caching service. Note that this step is only required if you are
configuring Zowe for cross LPAR sysplex high availability.
(Uses the command zwe init vsam)

7. Install Zowe main started tasks.
(Uses command zwe init stc)

Once you complete the Zowe z/OS runtime, you can verify the installation to determine that Zowe is installed correctly on z/OS.

TIP

For testing purposes, it is not necessary to set up certificates when configuring the API Mediation Layer. You can configure
Zowe without certificate setup and run Zowe with verifyCertificates: DISABLED .

For production environments, certificates are required. Ensure that certificates for each of the following services are issued
by the Certificate Authority (CA) and that all keyrings contain the public part of the certificate for the relevant CA.

z/OSMF

Zowe

The service that is onboarded to Zowe

Stage 4: (Optional) Customizing the configuration

Now that you have the permissions, certificates, files, and datasets necessary to run Zowe, you may wish to customize your Zowe
configuration. Customization can be performed to change various attributes including the following:

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/initialize-mvs-datasets
https://docs.zowe.org/stable/user-guide/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/user-guide/initialize-vsam-dataset
https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview#installing-zowe-main-started-tasks-zwe-init-stc
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install

Enabling or disabling components so you only run what you need

Changing the network ports Zowe runs on to suit your environment

Customizing the behavior of a component, such as turning on optional features or logging

TIP

We recommended that the first customization you perform is to set zwe to use the Configuration Manager

See the Zowe YAML configuration file reference for other customization options.

Stage 5: (Optional) Installing and managing extensions
Before installing extensions, we recommend you start zowe.

After Zowe is customized according to your needs, you can leverage more Zowe functionalities by installing extensions. These
extensions can be optional components from the Zowe project or from other vendors.

For more information about installing and managing extensions, see Zowe server component and extension management.

How to troubleshoot problems with the installation
If you encounter unexpected behavior when installing or verifying the Zowe runtime on z/OS, see the Troubleshooting section for tips.

For more information on zwe , refer to the zwe appendix.

For more information on the server configuration file, see the Zowe YAML configuration file reference.

Next step

Before starting the installation process, first review the article Preparing for installation and the address the requirements outlined in
the sub-articles in this section.

https://docs.zowe.org/stable/user-guide/configmgr-using
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/install-configure-zos-extensions
https://docs.zowe.org/stable/troubleshoot/troubleshooting
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/installandconfig

Version: v2.17.x LTS

Preparing for installation
Review this overview article to familiarize yourself with key concepts used in the Zowe server-side installation process. After you get
familiar with these key concepts, review the articles in this section to prepare your system for installation.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR, STORAGE ADMINISTRATOR

To prepare for Zowe server-side installation, we recommend that your installation team review the installation and configuration tasks
and the indicated required roles to perform specific procedures. Doing so can help you complete the process without encountering
delays waiting for tasks to be completed at the last minute.

Key concepts in Zowe server-side installation

Before you begin the installation process, it is useful to understand the following key concepts and features used to perform the
installation.

z/OS UNIX System Services (USS)

zFS is a UNIX file system where Zowe runtime files and folders are installed. Zowe uses a zFS directory to contain its northbound
certificate keys as well as a truststore for its southbound keys if the administrator chooses to use PKCS#12 keystore for certificate
storage.

For more information about USS, see Addressing UNIX System Servies (USS) Requirements.

TIP

Zowe runs in USS and makes heavy use of shell scripts and TCP/IP sockets, which creates temporary files and ENQUEUES within
the /tmp directory. It is not likely that the increased volume of temporary files and ENQUEUES will impact your system, as this
volume is on the scale of a few thousand temporary files and ENQUEUES, which are subsequently freed after configuration and
startup.

If, in your specific case, this increase in the /tmp directory results in impacts to your system, or you are concerned about the
possible impact of this increased volume in the /tmp directory, we recommend you update the following property in the
zowe.yaml to move the created files and ENQUEUES to different directory:

Runtime directory

The runtime directory contains the binaries, executable files, scripts, and other elements that are run when Zowe is started. Creating a
Zowe runtime directory involves setting up the necessary environment for Zowe to run on your system.

You can create a runtime directory in one of the following ways:

Create a directory and extract Zowe convenience build into this directory.

Install the Zowe SMP/E FMID AZWE002 using the JCL members in the REL4 member.

https://docs.zowe.org/stable/user-guide/configure-uss

Execute the z/OSMF workflow script ZWERF01 contained in the SMP/E FMID AZWE002.

During execution of Zowe, the runtime directory contents are not modified. Maintenance or Zowe APAR releases replaces the contents
of the runtime directory.

NOTE

Multiple instances of Zowe can be started from the same Zowe z/OS runtime. Each launch of Zowe has its own
configuration, usually mentioned as Zowe YAML configuration file or zowe.yaml, and zFS directory that is known as a
workspace directory.

Example of a runtime directory:

For Zowe in a high availability configuration, there will be only one workspace directory which must be created on a shared file
system (zFS directory) where all LPARs in a Sysplex can access.

(If not using containerization) Zowe optionally uses a zFS directory to contain its northbound certificate keys as well as a
truststore for its southbound keys if the administrator chooses to use PKCS#12 keystore for certificate storage. Northbound keys
are one presented to clients of the Zowe desktop or Zowe API Gateway, and southbound keys are for servers that the Zowe API
gateway connects to. The certificate directory is not part of the Zowe runtime so that it can be shared between multiple Zowe
runtimes and have its permissions secured independently.

Zowe has the following started tasks:

ZWESISTC is a cross memory server that the Zowe desktop uses to perform APF-authorized code. More details on the cross

memory server are described in Configuring the Zowe cross memory server.

ZWESASTC is a cross memory Auxiliary server that is used under some situations in support of a Zowe extension. Auxiliary

server is started, controlled, and stopped by the cross memory server, so no need to start it manually. More details are
described in Zowe auxiliary service

ZWESLSTC brings up other parts of the Zowe runtime on z/OS as requested. This may include Desktop, API mediation layer,

ZSS, and more, but when using containerization likely only ZSS will be used here. It can be used for a single Zowe instance
deployment and can also be used for Zowe high availability deployment in Sysplex. It brings up and stops Zowe instances, or
specific Zowe components without restarting the entire Zowe instances.

In order for above started tasks to run correctly, security manager configuration needs to be performed. This is documented
in Configuring the z/OS system for Zowe and a sample JCL member ZWESECUR is shipped with Zowe that contains

commands for RACF, TopSecret, and ACF2 security managers.

Notes:

To start the API Mediation Layer as a standalone component, see API Mediation Layer as a standalone component.

If you plan to use API ML with basic authentication and JSON web token authentication, you need to run only ZWESLSTC . No

need to run ZWESISTC and ZWESASTC .

If you plan to use API ML with x509 client-side certificate authentication, you need to run ZWESISTC and ZWESLSTC .

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-api-mediation-standalone

Topology of the Zowe z/OS launch process

Runtime directory

The runtime directory contains the binaries and executable files. You can create a runtime directory in one of the following ways:

Create a directory and extract Zowe convenience build into it.

Installing the Zowe SMP/E FMID AZWE002 using the JCL members in the REL4 member.

Executing the z/OSMF worklow script ZWERF01 contained in the SMP/E FMID AZWE002.

During execution of Zowe, the runtime directory contents are not modified. Maintenance or APAR release for Zowe replaces the
contents of the runtime directory and are rollup PTFs.

A typical Zowe runtime directory looks like this:

zwe command

The zwe command is provided in the <RUNTIME_DIR>/bin directory.

The zwe init command is a combination of the following subcommands. Each subcommand defines a configuration.

mvs
Copies the data sets provided with Zowe to custom data sets.

security
Creates the user IDs and security manager settings.

apfauth
APF authorizes the LOADLIB containing the modules that need to perform z/OS privileged security calls.

certificate
Configures Zowe to use TLS certificates.

vsam
Configures the VSAM files needed to run the Zowe caching service used for high availability (HA)

stc
Configures the system to launch the Zowe started task.

In combination, these commands initialize Zowe, manage Zowe instances, and perform common tasks.

TIPS:

The zwe command has built in help that can be retrieved with the -h suffix. Use zwe -h to see all supported zwe
commands.

For more information about zwe see zwe in the appendix.

If you expect to have only one copy of the Zowe runtime on your system, it is convenient to be able to access a copy of zwe
from your user at any location within USS. Add this Zowe bin directory to your PATH environment variable to execute the

zwe command without having to fully qualify its location. To update your PATH, run the following command:

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/

This command updates the PATH for the current shell. To make this update persistent, you can add the line to your

~/.profile file, or the ~/.bash_profile file if you are using a bash shell. To make this update system wide, update the

/etc/.profile file. Once the PATH is updated, you can execute the zwe command from any USS directory. For the
remainder of the documentation when zwe command is referenced, it is assumed that it has been added to your PATH .

You may not want to add zwe to your PATH if you have multiple copies of the Zowe runtime, as this can confuse which one

you are utilizing.

Zowe started tasks

Zowe has the following started tasks:

ZWESISTC

This started task corresponds to a cross memory server that the Zowe desktop uses to perform APF-authorized code. For more
information about the cross memory server, and the cross memory auxiliary server ZWESASTC see Configuring the Zowe cross

memory server.

ZWESASTC

This started task corresponds to a cross memory auxiliary server that is used under some situations in support of a Zowe
extension. The auxiliary server is started, controlled, and stopped by the cross memory server, and does not need to be started
manually.

ZWESLSTC

This started task brings up other features of the Zowe runtime on z/OS upon request. Features may include Desktop, API
Mediation Layer, ZSS, and more. When using containerization, it is likely that the only feature will be ZSS. This task can be used
for a single Zowe instance deployment, and can also be used for Zowe high availability deployment in Sysplex. This task brings up
and stops Zowe instances, or specific Zowe components without restarting the entire Zowe instances.

IMPORTANT

In order for the above started tasks to run correctly, the security administrator permissions are required. For more
information, see Configuring the z/OS system for Zowe.

Note that the sample JCL member ZWESECUR is shipped with Zowe and contains commands for RACF, TopSecret, and ACF2
security managers.

z/OS Data sets used by Zowe

After Zowe is properly installed, the following data sets are created on z/OS under the prefix you defined:

<prefix>.SZWEAUTH

This data set contains authorized binaries used by Zowe components. In particular, ZIS needs this data set to run.

<prefix>.SZWELOAD

This data set contains binaries that do not need authorization. In particular, this data set contains a version of configuration
manager that can be accessed within REXX.

<prefix>.SZWEEXEC

This data set contains few utility executables will be used by Zowe.

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-zos-system

<prefix>.SZWESAMP

This data set contains sample JCLs to help you configure or start Zowe.

If you install Zowe with the convenience build, these data sets are created by zwe install command. If you install Zowe with SMP/E

or equivalent methods, these data sets are created during installation and you are not required to run the zwe install command.

Note that the aforementioned data sets are overwritten during the upgrade process.

Zowe configuration and runtime also use other data sets to store customization. These data sets are not overwritten during upgrade.

zowe.setup.datasets.parmlib

This data set defined in Zowe configuration contains user customized PARMLIB members.

zowe.setup.datasets.jcllib

This data set defined in Zowe configuration contains user customized JCLs or JCLs generated by zwe init command.

zowe.setup.datasets.authLoadlib

This data set defined in Zowe configuration is optional. If the user chooses to copy out load libraries from <prefix>.SZWEAUTH ,
these libraries are placed here. With this option, you have better control on what will be APF authorized other than authorize
whole <prefix>.SZWEAUTH .

zowe.setup.datasets.authPluginLib

This data set defined in Zowe configuration contains extra load libraries used by ZIS plugins.

zowe.setup.datasets.loadlib

This data set defined in Zowe configuration contains load libraries that do not need authorization, such as a version of the
configuration manager that can be used within REXX.

Zowe configuration file (zowe.yaml)

Zowe uses a YAML format configuration. If you store the configuration on USS, this file is usually referred as zowe.yaml .

This configuration file has the following requirements:

The Zowe runtime user, usually referred as ZWESVUSR , must have read permission to this file.

If you plan to run Zowe in Sysplex, all Zowe high availability instances must share the same configuration file. As such, this
configuration file should be placed in a shared file system (zFS directory) where all LPARs in a Sysplex can access.

The Zowe configuration file may contain sensitive configuration information so it should be protected against malicious access.

To create this configuration, you can copy from example-zowe.yaml located in Zowe runtime directory. Note that the

zowe.runtimeDirectory definition in the configuration file should match the Zowe runtime directory mentioned previously.

To learn more about this Zowe configuration file, see the Zowe YAML configuration file reference.

ZOWE.YAML CONFIGURATION TIPS:

When you execute the zwe command, the --config or -c argument is used to pass the location of a zowe.yaml file.

To avoid passing --config or -c to every zwe command, you can define ZWE_CLI_PARAMETER_CONFIG environment
variable points to the location of zowe.yaml.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

For example, after defining export ZWE_CLI_PARAMETER_CONFIG=/path/to/my/zowe.yaml , you can simply type zwe start
instead of the full command zwe start -c /path/to/my/zowe.yaml .

If you are new to the example-zowe.yaml configuration file, you can start with entries that are marked with

COMMONLY_CUSTOMIZED . It highlights most of the common configurations, such as directories, host and domain name,

service ports, certificate setup, and z/OSMF, which are critical for standing a new Zowe instance.

Workspace directory

The workspace directory is required to launch Zowe. It is automatically created when you start Zowe. More than one workspace
directory can be created and used to launch multiple instances of Zowe sharing the same runtime directory. It is not recommended to
create workspace directory manually in order to avoid permission conflicts.

Zowe instances are started by running the server command zwe start . This creates a started task with the PROCLIB member

ZWESLSTC that is provided with the samplib SZWESAMP created during the installation of Zowe. The JCL member ZWESLSTC starts

Zowe launcher under which it launches Zowe components address spaces.

Zowe enables read and write permission to both Zowe runtime user (ZWESVUSR by default) and Zowe admin group (ZWEADMIN by

default) for Zowe workspace directory.

If you plan to run Zowe in Sysplex, all Zowe high availability instances must share the same workspace directory, which means it
should be placed in a shared file system (zFS directory) where all LPARs in a Sysplex can access.

The workspace directory should be defined in your Zowe configuration file as zowe.workspaceDirectory .

Log directory

Some Zowe components write logs to a file system. The directory is created automatically when you start Zowe and the content is
automatically managed by Zowe components. It is not recommended to create a log directory manually in order to avoid permission
conflicts.

Multiple Zowe instances can define different log directories. It is not necessary that these log directories be shared in Sysplex
deployment like the workspace directory.

The log directory should be defined in your Zowe configuration file as zowe.logDirectory .

Keystore directory

Zowe uses certificates to enable transport layer security. The system administrator can choose to use z/OS Keyring or PKCS#12
keystore for certificate storage. A keystore directory is created and used if PKCS#12 keystore is chosen.

Example of a PKCS#12 keystore directory:

To generate a keystore directory, you need proper zowe.setup.certificate configuration defined in the Zowe configuration file.
Execute the server command zwe init certificate . To learn more about this command, see the Reference of zwe init certificate in

the appendix.

Extension directory

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate

Zowe allows server extensions to expand Zowe core functionalities. The extensions are required to be installed in a central location so
Zowe runtime can find and recognize them.

Similar to Zowe runtime directory, this extension directory should be created by the administrators perform Zowe installation and
configuration task. Zowe runtime user, typically ZWESVUSR requires read-only permission to this directory.

The extension directory should be created by system administrator and defined in your Zowe configuration file as
zowe.extensionDirectory .

Zowe uses zwe components install command to install Zowe server extensions. This command creates sub-directories or symbolic

links under the extension directory.

Next step
Review and address the specific requirements in the Prepare for Installation section before beginning installation of Zowe server-side
components for z/OS.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install

Version: v2.17.x LTS

Zowe z/OS components installation checklist
Use this checklist to guide you through the installation and configuration of Zowe server-side components for z/OS.

Preparing for installation

Task Results
Time

Estimate

Review the Zowe server-side
installation overview

Knowledge about the basic installation stages and the roles and
responsibilities to perform the installation

25 minutes

Prepare for installation Knowledge about the key-concepts in server-side installation 25 minutes

Address pre-installation
requirements

The following pre-installation requirements are addressed:
 * z/OS
 * Node.js
 * security
 * USS
 * storage
 * network
 * z/OSMF
 (recommended for full functionality)
 * z/OSMF HA
 (required for production)

1 day

Installing the Zowe z/OS runtime
Choose from the following installation options to install Zowe server-side components for z/OS.

Task Results
Time

Estimate

Option 1: Install Zowe with SMP/E

Option 2: Install Zowe with z/OSMF from a portable
software instance

Option 3: Install Zowe SMP/E build with z/OSMF workflow

Option 4: Install Zowe via a convenience build (PAX file)

Executables and binaries are unpaxed on the
mainframe

1 hour

https://docs.zowe.org/stable/user-guide/install-zos
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/installandconfig
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/install-nodejs-zos
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/address-security-requirements
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/configure-uss
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/address-storage-requirements
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/address-network-requirements
https://docs.zowe.org/stable/user-guide/systemrequirements-zos#zosmf-optional
https://docs.zowe.org/stable/user-guide/zowe-ha-overview
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/install-zowe-smpe
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/install-zowe-pswi
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/install-zowe-smpe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build

Configuring Zowe z/OS Components
Choose the following options to initialize Zowe z/OS runtime:

Task Results
Time

Estimate

Option 1: Configure Zowe with zwe
init

Option 2: Configure Zowe with
z/OSMF workflows

* All datasets are created and populated.
* Started tasks are copied to system libraries.

Important: Security administrator permissions are required for some
zwe init sub-commands to pass.

1 hour

Configuring security
Configure Zowe and your z/OS system to run Zowe with z/OS.

Task Results
Time

Estimate

Review Configuring security
Knowledge about which tasks need to be performed by the security
administrator.

10 minutes

Initialize Zowe security configurations The JCL member to configure the z/OS system is created. 10 minutes

Perform APF authorization of load
libraries

APF authorization is granted to load libraries. 10 minutes

Address z/OS requirements for Zowe Your z/OS and security product are configured. 2 hours

Assign security permissions to users Zowe user is created and is assigned all required permissions. 30 minutes

Configuring certificates

Zowe is able to use PKCS12 certificates or certificates held in a z/OS Keyring.

Task Results
Time

Estimate

Read the article Zowe certificate configuration overview. Then use one of the
following options:

Option 1: Choose the certificate configuration scenario that best applies to
your use case, and follow the configuration procedure and scenario template.

Your certificates are
configured and stored
securely.

2 hours

https://docs.zowe.org/stable/user-guide/initialize-zos-system
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow
https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/user-guide/zos-components-installation-checklist/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios

Task Results
Time

Estimate

Option 2: Set up Zowe certificates using workflows

Configuring the Zowe cross memory server (ZIS)

The Zowe cross memory server (ZIS) provides privileged cross-memory services to the Zowe Desktop and runs as an APF-authorized
program.

NOTE

To start Zowe without the desktop (for example to launch just the API Mediation Layer), you do not need to install and configure
the cross memory server and can skip this step.

Task Results
Time

Estimate

Configure the Zowe cross
memory server (ZIS)

* JCL member ZWESISTC is copied from SZWESAMP installation PDS to a PDS on

the JES concatenation path.
* The PDSE Load Library SZWEAUTH is APF-authorized, or the load module

ZWESIS01 is copied to an existing APF Auth LoadLib.

* The JCL member ZWESISTC DD statements are updated to point to the

location of ZWESIS01 and ZWESIP00 .

30 minutes

Configuring High Availability (optional)
You can configure your system to enable HA. This configuration is not required to run a single instance of Zowe.

Task Results
Time

Estimate

Configure Sysplex for high availability The Parallel Sysplex environment is set up. 30 minutes

Configure z/OSMF for high availability in
Sysplex

The z/OSMF server is set up to provide continuous availability of
REST services.

30 minutes

Configure the Caching Service for HA State data persistent in HA mode is centralized. 30 minutes

Define the haInstances section in your

zowe.yaml

A dedicated section for haInstances is created in your

zowe.yaml file.
30 minutes

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/certificates-setup
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-sysplex
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration/#yaml-configurations---hainstances

Starting and Stopping Zowe

Start/Stop Step Task Results
Time

Estimate

Start and stop the cross
memory server ZWESISTC on

z/OS

The ZWESISTC task starts and

stops the ZWESASTC task as

needed

The cross memory server is run as a started
task from the JCL in the PROCLIB member
ZWESISTC

5 minutes

Start and stop the Zowe main
server ZWESLSTC on z/OS

Option 1: Use zwe to start and
stop the main Zowe server

Option 2: Manually start and
stop the Zowe main server
ZWESLSTC

You started or stopped Zowe main server
ZWESLSTC on z/OS with zwe or manually

20 minutes

Verifying Zowe installation on z/OS

Verification Step Task Results
Time

Estimate

Verify Zowe Application
Framework installation

Open the Zowe Desktop from a supported
browser

You should be able to open the
Zowe Desktop from a supported
browser.

20 minutes

Verify API Mediation
installation

Use a REST API client to review the value of the
status variable of the API Catalog service routed
through the API Gateway

See the example presented in
Verify API Mediation installation

15 minutes

Verify z/OS Services
installation

Zowe z/OS services usually are registered with
Zowe APIML Discovery

You should see JSON format data
of all jobs running on the system

15 minutes

https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-the-cross-memory-server-zwesistc-on-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-with-zwe-server-command
https://docs.zowe.org/stable/user-guide/start-zowe-zos#starting-and-stopping-zowe-main-server-zweslstc-on-zos-manually
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-zowe-application-framework-installation
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-api-mediation-installation
https://docs.zowe.org/stable/user-guide/verify-zowe-runtime-install#verifying-zos-services-installation

Version: v2.17.x LTS

Addressing z/OS requirements
Before installing Zowe™ z/OS components, ensure that your z/OS environment meets the prerequisites. The prerequisites you need to
install depend on what Zowe z/OS components you want to use and how you want to install and configure Zowe on z/OS. Assess your
installation scenario and install the prerequisites that meet your needs.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

All Zowe server components can be installed on a z/OS environment, while some can alternatively be installed on Linux or zLinux via
Docker. The components provide a number of services that are accessed through a web browser such as an API catalog and a web
desktop.

z/OS system requirements
Be sure your z/OS system meets the following prerequisites:

z/OS

z/OS version is in active support, such as Version 2.4, 2.5, and 3.1

NOTES:

Zowe Version 2.11 or higher is required when using z/OS Version 3.1.

z/OS V2.3 reached end of support on 30 September, 2022. For more information, see the z/OS v2.3 lifecycle details.

zFS volume has at least 1200 mb of free space for Zowe server components, the corresponding keystore, instance configuration
files and logs, and third-party plug-ins.

System Display and Search Facility (SDSF)

During the installation of Zowe, SDSF is used to interface with JES and send MVS commands such as zwe init certificate ,

zwe start , and zwe stop . Ensure that you have SDSF installed on z/OS.

Not having SDSF installed may result in the following error message:

IRX0043I Error running /Zowe/bin/utils/opercmd.rex, line 130: Routine not found

NOTE

The zwe init certificate step is only required if users anticipate the installation process to generate a keyring for them. If

this setup has been completed beforehand, or if Zowe utilizes an existing keyring, zwe init certificate is unnecessary.

Alternative utilities such as Sysview can be used to perform similar functions to SDSF such as zwe start and zwe stop

commands. These commands primarily manage the submission of the Zowe Started Task and its parameters, such as submitting
haInstance= , if applicable.

https://www.ibm.com/support/pages/zos23x-withdrawal-notification

For more information about SDSF, see the Abstract for z/OS SDSF Operation and Customization in the IBM documentation.

(Optional, recommended) z/OS OpenSSH

Some features of Zowe require SSH, such as the SSH terminal of the Desktop. Install and manage Zowe via SSH, as an alternative
to OMVS over TN3270.

(Optional) Parallel Sysplex.

To deploy Zowe for high availability, a Parallel Sysplex environment is recommended. For more information, see Configuring
Sysplex for high availability.

Mainframe Resources Consumption

During Zowe startup, there is high resource consumption in order for Zowe to be operational as soon as possible. Subsequent
resource consumption depends on the processing load of Zowe services. When Zowe is idle, resource consumption is relatively lower.

Resource consumption during Zowe startup

CPU consumption
Zowe consumes approximately 300 CPU seconds on the z15 T01 processor during startup. Approximately 50 percent of CPU
consumption is zIIP eligible.

I/O
Zowe performs approximately 5,000,000 I/O operations during startup.

Resource consumption when Zowe is idling

CPU consumption
Zowe consumes approximately 90 CPU seconds on the z15 T01 processor during 1 hour of operation when no external load is
processed. Approximately 60 percent of CPU consumption is zIIP eligible.

I/O
Zowe performs approximately 17,000 I/O operations during 1 hour of operation when no external load is processed.

NOTE

Zowe consumption reference data were measured with the default Zowe configuration. The following components were enabled:

Gateway

Discovery Service

API Catalog

Caching Service

ZSS

Zowe Desktop

Node.js

https://docs.zowe.org/stable/user-guide/configure-sysplex

Node.js v16.x, v18.x, or v20.x is required during installation. After installation, it is only required when running the app-server
component, unless you are running a version of Zowe older than v2.16.0

Node is not included with z/OS so must be installed separately. To install Node.js on z/OS, follow the instructions in Addressing
Node.js requirements.

TIP

If you are a software vendor building extensions for Zowe, we recommend you tag your plug-ins. For more information, see
Tagging on z/OS.

Java

IBM SDK for Java Technology Edition V8

z/OSMF (Optional)

(Optional, recommended) IBM z/OS Management Facility (z/OSMF) Version 2.4, Version 2.5, or Version 3.1.

z/OSMF is included with z/OS so does not need to be separately installed. If z/OSMF is present, Zowe detects z/OSMF during
configuration and uses z/OSMF for the following purposes:

Authenticating TSO users and generating a single sign-on JSON Web Token (JWT). Ensure that the z/OSMF JWT Support is
available via APAR and associated PTFs. If z/OSMF is not available, Zowe is still able to provide SSO by generating its own
JWT and making direct SAF calls.

REST API services for Files (Data Sets and USS), JES, and z/OSMF workflows. These are used by some Zowe applications such
as the Zowe Explorers in the Zowe Desktop. If z/OSMF REST APIs are not present, other Zowe desktop application, such as
the File Editor that provides access to USS directories and files as well as MVS data sets and members, will work through the
Zowe Z Secure Services (ZSS) component to access z/OS resources.

RECOMMENDATIONS

For production use of Zowe, we recommend configuring z/OSMF to leverage Zowe functionalities that require z/OSMF.
For more information, see Configuring z/OSMF.

For non-production use of Zowe (such as development, proof-of-concept, demo), you can customize the configuration
of z/OSMF to create z/OS MF Lite to simplify your setup of z/OSMF. z/OS MF Lite only supports selected REST services
(JES, DataSet/File, TSO and Workflow), resulting in considerable improvements in startup time as well as a reduction in
steps to set up z/OSMF. For information about how to set up z/OSMF Lite, see Configuring z/OSMF Lite (non-
production environment).

https://docs.zowe.org/stable/user-guide/install-nodejs-zos
https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins#tagging-plugin-files-on-z-os
https://www.ibm.com/support/pages/apar/PH12143
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite

Version: v2.17.x LTS

Addressing Node.js requirements
Before you install Zowe™ on z/OS, you must install IBM SDK for Node.js on the same z/OS server that hosts the Zowe Application
Server and z/OS Explorer Services. Review the information in this topic to obtain and install Node.js.

REQUIRED ROLE: SYSTEM PROGRAMMER

NOTE

Node.js is required when installing the Zowe servers on z/OS. Node.js is not required if using Docker instead of z/OS, or if
running Zowe without the app-server enabled on v2.16.0 or higher.

Supported Node.js versions

How to obtain IBM SDK for Node.js - z/OS

Hardware and software prerequisites

Installing the PAX edition of Node.js - z/OS

Installing the SMP/E edition of Node.js - z/OS

Supported Node.js versions
The following Node.js versions are supported to run Zowe. See the Hardware and software prerequisites section for the prerequisites
that are required by Zowe.

The corresponding IBM SDK for Node.js - z/OS documentation lists all the prerequisites for Node.js. Some software packages, which
might be listed as prerequisites there, are NOT required by Zowe. Specifically, you do NOT need to install Python, Make, Perl, or
C/C++ runtime or compiler. If you can run node --version successfully, you have installed the prerequisites required by Zowe.

NOTE

IBM SDK for Node.js withdrew v16 from marketing on September 4, 2023. The v14 service ended on September 30, 2022.

v16.x

z/OS V2R4: PTFs UI64830, UI64837, UI64839, UI64940, UI65567.

z/OS V2R5: PTFs UI64830, UI64837,UI64940.

v18.x

z/OS V2R4: PTFs UI78913, UI81096, UI78103, UI80155, UI83490

z/OS V2R5: PTFs UI78912, UI81095, UI80156, UI83424

V20.x

z/OS V2R4: PTFs UI80106, UI81096, UI78103, UI80155, UI83490

z/OS V2R5: PTFs UI78912, UI81095, UI80156, UI83424

https://www.ibm.com/docs/en/sdk-nodejs-zos
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH14559
https://www.ibm.com/support/pages/apar/PH16038
https://www.ibm.com/support/pages/apar/PH17481
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH15674
https://www.ibm.com/support/pages/apar/PH16038

z/OS V3R1: No PTFs needed.

How to obtain IBM SDK for Node.js - z/OS

You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

Order the SMP/E edition through your IBM representative if that is your standard way to order IBM software.

Order the SMP/E edition through IBM Shopz with optional paid support available.

Download PAX file format at ibm.com/products/sdk-nodejs-compiler-zos. IBM defect Support is not available for this format.

For more information, see the blog "Options on how to obtain IBM Open Enterprise SDK for Node.js".

Hardware and software prerequisites

To install Node.js for Zowe, the following requirements must be met.

The corresponding IBM SDK for Node.js - z/OS documentation lists all the prerequisites for Node.js. Some software packages, which
might be listed as prerequisites there, are NOT required by Zowe. Specifically, you do NOT need to install Python, Make, Perl, or
C/C++ runtime or compiler.

If you run node --version successfully, you installed the Node.js prerequisites required by Zowe.

Hardware:

IBM zEnterprise® 196 (z196) or newer

Software:

z/OS UNIX System Services enabled

Integrated Cryptographic Service Facility (ICSF) configured and started

ICSF is required for Node.js to operate successfully on z/OS. If you have not configured your z/OS environment for ICSF, see
Cryptographic Services ICSF: System Programmer's Guide. To see whether ICSF has been started, check whether the started task
ICSF or CSF is active.

Installing the PAX edition of Node.js - z/OS
Follow these steps to install the PAX edition of Node.js - z/OS to run Zowe.

1. Download the pax.Z file to a z/OS machine.

2. Extract the pax.Z file inside an installation directory of your choice.
For example:

pax -rf <path_to_pax.Z_file> -x pax

3. Add the full path of your installation directory to your PATH environment variable:

https://www.ibm.com/products/sdk-nodejs-compiler-zos
https://community.ibm.com/community/user/ibmz-and-linuxone/blogs/bruce-armstrong/2022/07/27/options-on-how-to-obtain-ibm-open-enterprise-sdk-f
https://www.ibm.com/docs/en/sdk-nodejs-zos
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/abstract.htm

4. Run the following command from the command line to verify the installation.

If Node.js is installed correctly, the version of Node.js is displayed. If it is intalled correctly, you will see the version information on
your device.

5. After you install Node.js, set the NODE_HOME environment variable to the directory where Node.js is installed. For example,

NODE_HOME=/proj/mvd/node/installs/node-v6.14.4-os390-s390x .

Installing the SMP/E edition of Node.js - z/OS
To install the SMP/E edition of Node.js, see the documentation for IBM SDK for Node.js - z/OS. Remember that the software packages
Perl, Python, Make, or C/C++ runtime or compiler that the Node.js documentation might mention are NOT needed by Zowe.

https://www.ibm.com/docs/en/sdk-nodejs-zos

Version: v2.17.x LTS

Addressing security requirements

ROLES REQUIRED: SECURITY ADMINISTRATOR

During configuration of server-side components, it is necessary to configure various system security settings. Your organization may
require your security administrator to complete steps to configure Zowe security. As a system administrator/programmer, first consult
with your security administrator before you start the installation process.

NOTE

This article addresses configuring Zowe security during the Zowe z/OS components installation process, and does not address
security configuration to extend Zowe. For more information about security configuration to extend Zowe, see the following
articles:

Digital certificates

User Authentication

Access Authorization

Tasks performed by your security administrator
To configure Zowe security, your organization's security administrator is required to perform various tasks. Some of the tasks apply to
general Zowe configuration, while other tasks are required during installation if you plan to use specific Zowe components or features.

The following required configuration tasks are performed by your organization's security administrator during the post-installation
configuration:

Initialize Zowe security configurations

Perform APF authorization of load libraries

Configure the z/OS system for Zowe

Configure address space job naming

Assign security permissions of users

If your Zowe server-side installation includes the features listed in the following table, consult your security administrator to perform
the associated security tasks after installation:

Feature of a Zowe server-side component Configuration Task

If using Top Secret as your security manager
Note: No specific configuration is necessary for security
managers other than Top Secret.

Configuring multi-user address space (for TSS only)

High Availability
Configuring ZWESLSTC to run Zowe high availability instances
under ZWESVUSR user ID

https://docs.zowe.org/stable/user-guide/getting-started/zowe-security-overview#digital-certificates
https://docs.zowe.org/stable/user-guide/getting-started/zowe-security-overview#user-authentication
https://docs.zowe.org/stable/user-guide/getting-started/zowe-security-overview#access-authorization
https://docs.zowe.org/stable/user-guide/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-user-ids-and-groups-for-the-zowe-started-tasks
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-address-space-job-naming
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-multi-user-address-space-for-tss-only
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-zweslstc-to-run-zowe-high-availability-instances-under-zwesvusr-user-id

Feature of a Zowe server-side component Configuration Task

z/OSMF authentication or onboarding of z/OSMF service Granting users permission to access z/OSMF

ZSS component enabled (required for API ML certificate and
identity mapping)

Configuring an ICSF cryptographic services environment
and
Configuring security environment switching

API Mediation Layer certificate mapping
Configuring main Zowe server to use client certificate identity
mapping

API Mediation Layer identity mapping
Configuring main Zowe server to use distributed identity
mapping

API Mediation Layer Identity Tokens (IDT) Configuring signed SAF Identity tokens (IDT)

Cross memory server (ZIS)

Configuring the cross memory server for SAF
and
Configuring cross memory server load module
and
Configuring cross-memory server SAF configuration

Assign security permissions to users

As a security administrator, assign users (ZWESVUSR and ZWESIUSR) and the ZWEADMIN security group permissions required to

perform specific tasks.

For more information about assigning these permissions, see Assigning security permissions to users.

https://docs.zowe.org/stable/user-guide/address-security-requirements/assign-security-permissions-to-users/#granting-users-permission-to-access-zosmf
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-cross-memory-server-for-saf
https://docs.zowe.org/stable/user-guide/configure-xmem-server#load-module
https://docs.zowe.org/stable/user-guide/configure-xmem-server#saf-configuration
https://docs.zowe.org/stable/user-guide/address-security-requirements/assign-security-permissions-to-users

Version: v2.17.x LTS

(Recommended) Addressing authentication
requirements
The following features are not required, but are recommended with additional prerequisites.

ROLES REQUIRED: SECURITY ADMINISTRATOR

Multi-Factor Authentication (MFA)

Multi-factor authentication (MFA) is supported for several Zowe components, including the Zowe Desktop, API Mediation Layer, and
Zowe Application Framework. Multi-factor authentication is provided by third-party products with which Zowe is compatible. The
following MFA products are known to work with Zowe:

Advanced Authentication Mainframe 2.0

IBM Z Multi-Factor Authentication.

To support the multi-factor authentication, it is necessary to apply z/OSMF APAR PH39582.

For information about using MFA in Zowe Application Framework, see Application Framework Multi-Factor Authentication.

IMPORTANT

Multi-factor authentication requires configuration with Single-Sign-On (SSO). Ensure that SSO is configured before you use MFA
in Zowe.

Single Sign On (SSO)

Zowe has an SSO scheme with the goal that each time you use multiple Zowe components you should only be prompted to login
once.

Requirements:

IBM z/OS Management Facility (z/OSMF)

For more information about single sign on (SSO), see Zowe API Mediation Layer Single Sign On Overview.

API Mediation Layer OIDC Authentication

Zowe requires ACF2 APAR LU01316 to be applied when using the ACF2 security manager.

For more information about OIDC authentication, see Zowe API Mediation Layer OIDC Authentication.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://www.ibm.com/support/pages/apar/PH39582
https://docs.zowe.org/stable/user-guide/mvd-configuration#multi-factor-authentication-configuration
https://docs.zowe.org/stable/user-guide/address-authentication-requirements/api-mediation-sso
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-oidc-authentication

Version: v2.17.x LTS

Addressing UNIX System Services (USS) Requirements
The Zowe z/OS component runtime requires UNIX System Services (USS) to be configured. As shown in the Zowe architecture, a
number of servers run under UNIX System Services (USS) on z/OS. Review this topic for knowledge and considerations about USS
when you install and configure Zowe.

REQUIRED ROLE: SECURITY ADMINISTRATOR

What is USS?

The UNIX System Services element of z/OS® is a UNIX operating environment, which is implemented within the z/OS operating
system. It is also known as z/OS UNIX. z/OS UNIX files are organized in a hierarchy, as in a UNIX system. All files are members of a
directory, and each directory in turn is a member of another directory at a higher level in the hierarchy. The highest level of the
hierarchy is the root directory. The z/OS UNIX files system is also known as zFS. This zFS directory is the location where the Zowe
runtime files and folders are installed.

For more information on USS, see the following resources:

Introduction to z/OS UNIX for z/OS 2.2

Introduction to z/OS UNIX for z/OS 2.3

Introduction to z/OS UNIX for z/OS 2.4

Setting up USS for the first time

If you have not enabled USS for your z/OS environment before, the SMP/E distribution of Zowe provides a number of JCL jobs to
assist with this purpose. You can consult with your USS administrator if you need more information such as the USS file system.

Language environment
To ensure that Zowe has enough memory, the recommended HEAP64 site should be large enough.

OMVS segment

An OMVS segment is required for users (ZWESVUSR or ZWESIUSR) who install Zowe to run Zowe scripts.

TIP

For information about OMVS segments, see the article The OMVS segment in user profiles in the IBM documentation.

If the user profile does not have an OMVS segment, the following messages can occur:

When you access USS through TSO OMVS, the following message is thrown:

https://docs.zowe.org/stable/getting-started/zowe-architecture
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxb200/int.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/int.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxb200/int.htm

When you access USS through SSH, the following message is thrown:

Address space region size

Java as a prerequisite for Zowe requires a suitable z/OS region size to operate successfully while you install and configure Zowe. It is
suggested that you do not restrict the region size, but allow Java to use what is necessary. Restricting the region size might cause
failures with storage-related error messages such as the following one:

You can fix the storage-related issue by making one of the following changes:

ASSIZEMAX parameter
The ASSIZEMAX parameter is the maximum size of the process's virtual memory (address space) in bytes.

To specify the JVM maximum address space size on a per-user basis, set the ASSIZEMAX configuration parameter to the value

2147483647 .

NOTE

Running a shell script via TSO OMVS will run the shell in the TSO address space, unless you specify _BPX_SHAREAS=NO when

invoking OMVS. If you are using TSO OMVS to install Zowe, you will need export _BPX_SHAREAS=NO to make the

ASSIZEMAX change effective.

SIZE parameter of TSO segment
Set SIZE operand of TSO segment to the value 2096128 .

NOTE

If you set export _BPX_SHAREAS=YES in your shell setup as recommended, Java will run in the TSO address space and the

SIZE change will work.

ulimit -A
The maximum address space size for the process should be at least 250 M, in units of 1024 bytes. For example, ulimit -A

250000 .

NOTE

Running ulimit -a displays the current process limits.

Temporary files management
Zowe server components require the use of temporary files. By default, these temporary files are written to the global /tmp directory

in the USS file system. This section describes options to customize the destination directory for all Zowe server components.

How to customize temporary files

Three environment variables control the directory used to place these temporary files:

TMPDIR

This is the main environment variable, it controls the directory used for most USS operations.

TEMP_DIR

This variable controls some installation specific files, such as the location to perform transformations on zowe.yaml.

CATALINA_TMPDIR

This variable controls the destination directory of Tomcat java servers used in some core components.

Customizing temporary files in STC

Global environment variables can be customized directly in the Zowe STC, zowe.setup.security.stcs.zowe in the zowe.yaml . The

default started task name value is ZWESLSTC .

To add environment variables, follow these steps:

1. Open the STC.

2. Find STDENV DD inline statements.

3. Add a new line for each environment variable.
Example:

Customizing temporary files in zowe.yaml

Edit your installation zowe.yaml file and add values under property zowe.environments .

Example:

NOTE

If the variable is defined in both the zowe.yaml and the STC member, the definition from zowe.yaml has priority.

Version: v2.17.x LTS

Addressing storage requirements

ROLES REQUIRED: STORAGE ADMINISTRATOR, SYSTEM PROGRAMMER

Ensure that you have sufficient storage depending on the installation method. Review the storage requirements according to your
installation method as presented in this article.

Installing with SMP/E
Before installing Zowe SMP/E, review the DASD storage requirements.

Installing Zowe runtime from a convenience build
Before installing Zowe runtime from a convenience build, see the storage requirements associated with MVS datasets.

Memory requirements for API Mediation Layer

Zowe API ML components have following memory requirements:

Component name Memory usage

Gateway service 256MB

Discovery service 256MB

API Catalog 512MB

Metrics service 512MB

Caching service 512MB

https://docs.zowe.org/stable/user-guide/user-guide/install-zowe-smpe/#dasd-storage-requirements
https://docs.zowe.org/stable/user-guide/user-guide/install-zowe-zos-convenience-build/#step-5-install-the-mvs-data-sets

Version: v2.17.x LTS

Addressing network requirements
Review the following table during installation of Zowe server-side components to determine which TCP ports are required. Values
presented in the table are default values. You can change the values by updating variable values in the zowe.yaml file.

REQUIRED ROLES: NETWORK ADMINISTRATOR, SYSTEM PROGRAMMER

For more information about variable names in the following table, see the Zowe YAML configuration file reference in the References
section.

Port
number

zowe.yaml variable name Purpose

2157 NA

The port at which the key server in Infinispan is listening. If the port is
not available, the next port is probed, up to port+5. Used by the key
server (server) to create an SSLServerSocket and by clients to connect
to the key server.

7098
zowe.components.caching-
service.storage.infinispan.jgroups.port

Bind port for the socket that is used to form an Infinispan cluster.

7552 zowe.components.api-catalog.port
Used to view API swagger / openAPI specifications for registered API
services in the API Catalog.

7553 zowe.components.discovery.port
Discovery server port which dynamic API services can issue APIs to
register or unregister themselves.

7554 zowe.components.gateway.port

The northbound edge of the API Gateway used to accept client
requests before routing them to registered API services. This port
must be exposed outside the z/OS network so clients (web browsers,
VS Code, processes running the Zowe CLI) can reach the gateway.

7555 zowe.components.caching-service.port
Port of the caching service that is used to share state between
different Zowe instances in a high availability topology.

7556 zowe.components.app-server.port
The Zowe Desktop (also known as ZLUX) port used to log in through
web browsers.

7557 zowe.components.zss.port
Z Secure Services (ZSS) provides REST API services to ZLUX, used by
the File Editor application and other ZLUX applications in the Zowe
Desktop.

7558 zowe.components.jobs-api.port
Port of the service that provides REST APIs to z/OS jobs used by the
JES Explorer.

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

Port
number

zowe.yaml variable name Purpose

7559 zowe.components.files-api.port
Port of the service that provides REST APIs to MVS and USS file
systems.

N/A zowe.components.explorer-jes
Port of the JES Explorer GUI for viewing and working with jobs in the
Zowe Desktop.

N/A zowe.components.explorer-mvs
Port of the MVS Explorer GUI for working with data sets in the Zowe
Desktop.

N/A zowe.components.explorer-uss
Port of the USS Explorer GUI for working with USS in the Zowe
Desktop.

Version: v2.17.x LTS

Addressing browser requirements
Review the following browser requirements to avoid browser-specific issues when running particular server-side components.

REQUIRED ROLE: SYSTEM PROGRAMMER

Zowe Desktop requirements (client PC)

The Zowe Desktop is powered by the Application Framework which has server prereqs depending on where it is installed.

The Zowe Desktop runs inside of a browser. No browser extensions or plugins are required. The Zowe Desktop supports Google
Chrome, Mozilla Firefox, Apple Safari, and Microsoft Edge releases that are at most 1 year old, except when the newest release is older.
For Firefox, both the regular and Extended Support Release (ESR) versions are supported under this rule.

If you do not see your browser listed here, please contact the Zowe community so that it can be validated and included.

Browser limitations in API Catalog

It is recommended to use Google Chrome when accessing the API Catalog of API Mediation Layer. Errors might occur if you access API
Catalog with Firefox.

https://github.com/zowe/community/blob/master/README.md#slack

Version: v2.17.x LTS

Installing Zowe via Zowe Server Install Wizard
The Zowe Server Install Wizard 1.0 is an installation wizard for Zowe server-side components available on Microsoft Windows, macOS,
and Linux systems. Performing Zowe installation via the Wizard streamlines the installation process and is an alternative to performing
manual Zowe server-side component installation. Review this article for details about installing Zowe server-side components via the
Wizard, setting up the Wizard connection to z/OS, and details including sample JCLs for the Install Wizard initialization steps. There is
also a troubleshooting section in case you encounter issues when installing Zowe via the Install Wizard.

NOTE

The Zowe Server Install Wizard is currently available only as a technical preview. This preview includes some of the installation
options. Future releases will include more options including validation and discovery properties that can assist with Zowe server
installation.

This technical preview includes the following features:

Install a PAX or SMP/E edition of Zowe (including offline PAX upload)

Apply zwe init to perform configuration. JCL preview and z/OSMF Workflows support is currently not available in this

technical preview.

Use of certificates (PKCS12 or Keyring formats) generated by Zowe. The use of your organizations certificate without
requiring manual edits to the zowe.yaml file is currently not supported.

Future Wizard releases will include post-install configuration tasks including customizing the behavior of individual Zowe
components, and the enablement of tracing. Currently, these tasks must be performed manually in the zowe.yaml file.

TIP

To review open issues, ask questions, find solutions, and report bugs, see Issues in the Zowe Server Install Wizard GitHub
repository.

Benefits of Wizard Installation

Prerequisites of the Wizard

Downloading the Wizard

Installing Zowe server-side components
Connecting the Wizard to z/OS

Setting z/OSMF Attributes (optional)

Choosing the Server Installation Type

Configuring the Zowe Server

Final Review

Troubleshooting
Failure to establish a TLS connection

Unable to continue with Wizard installation

Benefits of Wizard installation

https://github.com/zowe/zen/issues

Reduces the need for YAML editing in z/OS Unix by handling these operations for you based on inputs to the prompts presented
in the Wizard UI.

Inputs to the prompts are validated, so that invalid input or typos entered in most commands are prevented.

The separation of duties for steps to be performed by a security administrator is made easier, whereby a system programmer or
system administrator can skip particular steps where elevated user permissions are required, whereupon security administrators
can perform such steps outside of the Wizard.

Results for each step and the YAML configuration output can be reviewed for reference alongside activites performed outside of
the Wizard, or for future use.

Prerequisites of the Wizard
Zowe version 2.16.0 or above for SMP/E as well as .PAX

Microsoft Windows, Apple macOS, or a Linux with an X11 or Wayland server display, which can install programs from .rpm or .deb
formats

An FTP or FTPS connection to z/OS for Zowe installation

An account on z/OS that has access to z/OS UNIX for Zowe installation

A security administrator to configure required permissions in z/OS and z/OSMF

A security administrator to generate certificates for Zowe

A network administrator to open ports used by Zowe

Downloading the Wizard

To download the latest version of the Wizard, visit Zowe.org. Ensure that you download the appropriate file extension type according
to your operating system:

Operating System File Extension Type

Microsoft Windows .exe

Apple macOS .dmg

Linux (debian-based) .deb

Linux (RedHat or SuSE-based) .rpm

Installing Zowe server-side components

Once the Wizard is installed, use the procedure as presented in the Wizard. The following steps outline the procedure and provide
additional details.

1. On the landing page of the Zowe Server Installation Wizard, select from the two presented options:

https://www.zowe.org/download.html

New Zowe Installation
This option directs you to the Connection window. Provide details as presented in the following table: Connecting the Wizard to
z/OS.

Zowe Installation Dry Run
This option allows you to follow the installation steps without running the installation.

Connecting the Wizard to z/OS

2. Set the following fields according to your environment:

Field name Description

Host Value for the target z/OS system for Zowe Installation. For example, mainframe.yourcompany.com

FTP Port The FTP Port number for internal use. The default port is 21. If not specified, the Wizard uses the default port.

User Name Your z/OS username.

Password Your z/OS password.

3. Select Use FTP with TLS. This is the recommended option. Provide details as described in the following table:

Field name Description

Min TLS Select the minimum TLS version to accept the certificate from the server.

Max TLS Select the maximum TLS version to accept the certificate from the server.

4. (Optional) You can select Accept all certificates. Note that selecting all certificiates disables certificate verification. Checking this
option is not recommended.

5. Click VALIDATE CREDENTIALS.

6. Click Continue.

7. In the Before you start window, review the instructions. Customize the job statement, or use the default.

8. In the Job statement field, customize the job statement as necessary and click SAVE AND VALIDATE.

9. Further down the Planning page, provide details for z/OS Unix locations (including Node and Java), identifiers, and z/OSMF
details.

Setting z/OSMF Attributes (optional)

Provide details for z/OSMF.

1. After specifying all the mandatory details, click VALIDATE LOCATIONS.

You will receive a confirmation message for Java and Node.js locations.

2. Click Continue to Installation Options.

Choosing the Server Installation Type
1. In the Installation Type window, select one of the following three installation types in the Wizard:

Download the latest Zowe convenience build in .PAX format from zowe.org using the Wizard without visiting the website.

i. Click License Agreement.

ii. On the End User License Agreement for Zowe page, click AGREE.

iii. In Download Zowe Pax, click UNPAX and BEGIN DOWNLOAD. Ensure that all statuses finish before continuing to the
next step.

Use this option to upload a local (already downloaded) Zowe .PAX file.

i. Click UPLOAD PAX.

ii. Select downloaded PAX file, and click Open.

Use this option to install Zowe through a SMP/E build outside the wizard.

i. Provide the location of the Runtime Directory.

ii. Click VALIDATE LOCATION.
Note: When using SMP/E installation, in the Initialization window, under the Installation tab, confirm the dataset names
used during installation.

iii. Click Save.

2. Click Continue to Component Installation.

Configuring the Zowe Server

Perform Zowe server configuration in the Wizard by providing inputs to the prompts for configuration values. Some steps may require
an administrator with sufficient privileges to complete the step.

The following actions can be performed during Wizard configuration:

View/Edit Yaml
This option lets you preview or adjust the YAML configuration that is used by Zowe. The prompts of the Wizard are used to

Download Zowe convenience build PAX from internet

Upload Zowe PAX for offline install

SMP/E

https://zowe.org/

automatically generate the YAML contents, but you also have the options to review, edit, or import and export contents of the
YAML file. This option also allows you to copy the YAML in its current state, which can than be sent to an administrator that is
authorized to perform the task. Copying the YAML also includes a relevant JCL sample and explanation for the particular step.

View Job Output
This option presents the results of the jobs that were submitted. Details are provided if a job fails or returns a warning. This option
allows you to collect the job content which can be provide to an administrator without submitting it. Each value entered is
validated against the schema.

Skip
This option makes it possible to skip an installation step that you cannot perform such as an administrative security action that
you cannot perform yourself. This option makes it possible to complete an action external to the Wizard.

The following table presents the steps in the installation, detailed descriptions of the steps, and corresponding sample JCLs:

Install Wizard
Initalization

Step
Description Sample JCL

Installation

Purpose:
Create datasets for Zowe's PARMLIB content and non-ZFS extension content
for a given Zowe Instance

Action:
1. Allocate the PDSE FB80 dataset with at least 15 tracks named from Zowe
parameter zowe.setup.dataset.parmlib

2. Allocate the PDSE FB80 dataset with at least 30 tracks named from Zowe
parameter zowe.setup.dataset.authPluginLib

3. Copy the ZWESIP00 member from
zowe.setup.dataset.prefix .SZWESAMP into

zowe.setup.dataset.parmlib

ZWEIMVS

APF Auth

Purpose:
Zowe contains one privileged component, ZIS, which enables the security
model. The majority of Zowe is unprivileged and in key 8. The load library
for the ZIS component and its extension library must be set as APF
authorized and run in key 4. This enables ZIS and components that depend
on ZIS.

Action:
1. APF authorize the datasets defined at
zowe.setup.dataset.authLoadlib and

zowe.setup.dataset.authPluginLib .

2. Define PPT entries for the members ZWESIS01 and ZWESAUX as Key 4,
NOSWAP in the SCHEDxx member of the system PARMLIB.

ZWEIAPF

https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIMVS
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIAPF

Install Wizard
Initalization

Step
Description Sample JCL

Security

Purpose:
The STC accounts for Zowe need permissions for operating servers, and
users need permissions for interacting with the servers.

Action:
Set SAF permissions for accounts

RACF: ZWEIRAC

TSS: ZWEITSS

ACF2: ZWEIACF

Security (z/OS v2.4 ONLY) Create Zowe SAF Resource Class

This is not needed on z/OS
v2.5+. On z/OS v2.4, the SAF
resource class for Zowe is not
included, and must be
created. See these samples
for examples:

RACF: ZWEIRACZ

TSS: ZWEITSSZ

ACF2: ZWEIACFZ

Certificates
Option 1

Zowe creates a keyring and populates it with a newly generated certificate
and certificate authority. The certificate would be seen as "self-signed" by
clients unless import of the CA to clients is performed.

RACF: ZWEIKRR1

TSS: ZWEIKRT1

ACF2: ZWEIKRA1

Certificates
Option 2

Zowe creates a keyring and populates the keyring by connecting pre-
existing certificates and CAs that you specify.

RACF: ZWEIKRR2

TSS: ZWEIKRT2

ACF2: ZWEIKRA2

Certificates
Option 3

Zowe creates a keyring and populates the keyring by importing PKCS12
content from a dataset that you specify.

RACF: ZWEIKRR3

TSS: ZWEIKRT3

ACF2: ZWEIKRA3

STC Purpose:
ZWESLSTC is the job for running Zowe's webservers. ZWESISTC runs the APF
authorized cross-memory server. The ZWESASTC job is started by ZWESISTC
on an as-needed basis.

ZWEISTC

https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users#security-permissions-reference-table
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIRAC
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEITSS
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIACF
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIRACZ
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEITSSZ
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEITACFZ
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRR1
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRT1
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRA1
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRR2
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRT2
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRA2
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRR3
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRT3
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEIKRA3
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWEISTC

Install Wizard
Initalization

Step
Description Sample JCL

Action:
Copy the members ZWESLSTC, ZWESISTC, and ZWESASTC into your desired
PROCLIB. If the job names are customized, modify the job name YAML
values in zowe.setup.security.stcs

(Optional)
VSAM for
Caching Service
(NYI)

Purpose:
To use VSAM as your storage method for the Caching Service. Note that
Infinispan is the recommended storage method. For more information, see
Using VSAM as a storage solution through the Caching service.

Action:
Create a RLM or NONRLM dataset for the Caching service, and set the name
as the value for components.caching-service.storage.vsam.name

ZWECSVSM

Final Review
After completing the steps presented in the Wizard, a summary is provided indicating which steps were completed, skipped, or have
errors. Errors are stored and can be reviewed in View Job Output. You can revisit any step to retry performing the step. You also have
the option to export the final generated YAML file.

Troubleshooting

Failure to establish a TLS connection

When attempting to establish a TLS connection, you may encounter the following message:

If you receive this message, go back to the Connection page and attempt to re-establish the connection. If the connection cannot be
established, restart the Wizard.

Unable to continue with Wizard installation

If you encounter strange behavior that prohibits you from continuing with Wizard installation, we recommend you follow this
procedure:

1. View the Job output within the Wizard.

2. If the error is not clear from the Job output, view the output of the log file according to your platform:

%USERPROFILE%\AppData\Roaming{app name}\logs\main.log

For Windows

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam
https://github.com/zowe/zowe-install-packaging/tree/feature/v3/jcl/files/SZWESAMP/ZWECSVSM

~/Library/Logs/{app name}/main.log

~/.config/{app name}/logs/main.log

If you are still unsure how to proceed, you can optionally make a backup of these log files, and then use the following procedure to
remove the Wizard's cache.

1. Close the Wizard.

2. Follow the steps according to your operating system:

i. Open File Explorer. In the address bar type %APPDATA% . This takes you to the directory where your app data is stored.
The typical directory path is C:\Users[Your User Name]\AppData\Roaming .

ii. Locate the folder corresponding to zowe-install-wizard .

i. Open Finder. In the menu bar select Go > Go to Folder.

ii. Type ~/Library/Application Support/ and press Enter.

iii. Locate the folder corresponding to zowe-install-wizard

i. Open a terminal or file manager.

ii. Navigate to ~/.config/ , which is where most apps store their configuration data.

iii. In the terminal, enter the following command: cd ~/.config/ .

iv. Locate the folder corresponding to zowe-install-wizard .

3. Delete this folder to remove all stored data.

For macOS

For Linux

For Windows

For macOS

For Linux

4. Restart the Wizard.

Unable to save setting to zowe.yaml via the Wizard's UI or editor

The accurate updating & saving to YAML in the UI may not always work as intended. If you have issues saving a specific setting to the

Zowe configuration YAML via the Wizard's UI or editor (or an advanced setting is not available to be edited), it is recommended to

make a manual edit to the configuration YAML file in z/OS Unix & then proceed with the Wizard as intended.

Version: v2.17.x LTS

Installing Zowe SMP/E overview
This program directory is intended for system programmers who are responsible for program installation and maintenance. It contains
information about the material and procedures associated with the installation of Zowe Open Source Project (Base). This publication
refers to Zowe Open Source Project (Base) as Zowe.

End-to-end installation diagram

Zowe FMIDs

Zowe consists of the following FMIDs:

AZWE002

Program materials

Basic Machine-Readable Materials are materials that are supplied under the base license and are required for the use of the product.

Basic machine-readable material

The distribution medium for this program is via downloadable files. This program is in SMP/E RELFILE format and is installed using
SMP/E. See Installation instructions for more information about how to install the program.

Program source materials

No program source materials or viewable program listings are provided for Zowe in the SMP/E installation package. However,
program source materials can be downloaded from the Zowe GitHub repositories at https://github.com/zowe/.

Publications useful during installation

Publications listed below are helpful during the installation of Zowe.

Publication Title Form Number

IBM SMP/E for z/OS User's Guide SA23-2277

IBM SMP/E for z/OS Commands SA23-2275

IBM SMP/E for z/OS Reference SA23-2276

IBM SMP/E for z/OS Messages, Codes, and Diagnosis GA32-0883

These and other publications can be obtained from IBM Publications Center.

Program support
This section describes the support available for Zowe.

Because this is an alpha release of the Zowe FMID package for early testing and adoption, no formal support is offered. Support is
available through the Zowe community. See Community Engagement for details. Slack is the preferred interaction channel.

Additional support may be available through other entities outside of the Open Mainframe Project and Linux Foundation which offers
no warranty and provides the package under the terms of the EPL v2.0 license.

https://github.com/zowe/
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232277/$file/gim3000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232275/$file/gim1000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232276/$file/gim2000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3ga320883/$file/gim0000_v2r3.pdf
https://www.ibm.com/resources/publications/?mhsrc=ibmsearch_a&mhq=publications
https://github.com/zowe/community/blob/master/README.md#communication-channels

Statement of support procedures

Report any problems which you feel might be an error in the product materials to the Zowe community via the Zowe GitHub
community repo at https://github.com/zowe/community/issues/new/choose. You may be asked to gather and submit additional
diagnostics to assist the Zowe Community for analysis and resolution.

Program and service level information

This section identifies the program and relevant service levels of Zowe. The program level refers to the APAR fixes that have been
incorporated into the program. The service level refers to the PTFs that have been incorporated into the program.

Program level information

All issues of previous releases of Zowe that were resolved before August 2019 have been incorporated into this packaging of Zowe.

Service level information

The Zowe SMP/E package is a distribution of Zowe version 2.0.0 with an FMID of AZWE002.

Subsequent releases of the Zowe z/OS components are delivered as rollup PTFs on zowe.org.

Installation requirements and considerations

The following sections identify the system requirements for installing and activating Zowe. The following terminology is used:

Driving System: the system on which SMP/E is executed to install the program.

Target system: the system on which the program is configured and run.

Use separate driving and target systems in the following situations:

When you install a new level of a product that is already installed, the new level of the product will replace the old one. By
installing the new level onto a separate target system, you can test the new level and keep the old one in production at the same
time.

When you install a product that shares libraries or load modules with other products, the installation can disrupt the other
products. By installing the product onto a separate target system, you can assess these impacts without disrupting your
production system.

Driving system requirements

This section describes the environment of the driving system required to install Zowe.

Driving system machine requirements

The driving system can be run in any hardware environment that supports the required software.

Driving system programming requirements

https://github.com/zowe/community/issues/new/choose
https://www.zowe.org/download.html

Program
Number

Product
Name

Minimum
VRM

Minimum Service Level will satisfy
these APARs

Included in the shipped
product?

5650-ZOS z/OS V2.2.0 or later N/A No

Notes:

SMP/E is a requirement for Installation and is an element of z/OS but can also be ordered as a separate product, 5655-G44,
minimally V03.06.00.

Installation might require migration to a new z/OS release to be service supported. See https://www-
01.ibm.com/software/support/lifecycle/index_z.html.

Zowe is installed into a file system, either HFS or zFS. Before installing Zowe, you must ensure that the target system file system data
sets are available for processing on the driving system. OMVS must be active on the driving system and the target system file data
sets must be mounted on the driving system.

If you plan to install Zowe in a zFS file system, this requires that zFS be active on the driving system. Information on activating and
using zFS can be found in z/OS Distributed File Service zSeries File System Administration (SC24-5989).

Target system requirements

This section describes the environment of the target system required to install and use Zowe.

Zowe installs in the z/OS (Z038) SREL.

Target system machine requirements

The target system can run in any hardware environment that supports the required software.

Target system programming requirements

Installation requisites

Installation requisites identify products that are required and must be present on the system or products that are not required but
should be present on the system for the successful installation of Zowe.

Mandatory installation requisites identify products that are required on the system for the successful installation of Zowe. These
products are specified as PREs or REQs.

Zowe has no mandatory installation requisites.

Conditional installation requisites identify products that are not required for successful installation of Zowe but can resolve such
things as certain warning messages at installation time. These products are specified as IF REQs.

Zowe has no conditional installation requisites.

Operational requisites

Operational requisites are products that are required and must be present on the system, or, products that are not required but
should be present on the system for Zowe to operate all or part of its functions.

https://www-01.ibm.com/software/support/lifecycle/index_z.html
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3SC236887/$file/ioea700_v2r3.pdf

Mandatory operational requisites identify products that are required for this product to operate its basic functions. The following table
lists the target system mandatory operational requisites for Zowe.

Program Number Product Name and Minimum VRM/Service Level

5650-ZOS IBM z/OS Management Facility V2.2.0 or higher

5655-SDK IBM SDK for Node.js - z/OS V12 or higher

5655-DGH IBM 64-bit SDK for z/OS Java Technology Edition V8.0.0

Conditional operational requisites identify products that are not required for Zowe to operate its basic functions but are required at
run time for Zowe to operate specific functions. These products are specified as IF REQs. Zowe has no conditional operational
requisites.

Toleration/coexistence requisites

Toleration/coexistence requisites identify products that must be present on sharing systems. These systems can be other systems in a

multi-system environment (not necessarily Parallel SysplexTM), a shared DASD environment (such as test and production), or systems
that reuse the same DASD environment at different time intervals.

Zowe has no toleration/coexistence requisites.

Incompatibility (negative) requisites

Negative requisites identify products that must not be installed on the same system as Zowe.

Zowe has no negative requisites.

DASD storage requirements

Zowe libraries can reside on all supported DASD types.

Total DASD space required by Zowe

Library Type
Total Space Required in 3390

Trks
Description

Target 45 Tracks /

Distribution 12045 Tracks /

File System(s) 21000 Tracks /

Web
Download

38666 Tracks
These are temporary data sets, which can be removed after the SMP/E
install.

Notes:

1. For non-RECFM U data sets, we recommend using system-determined block sizes for efficient DASD utilization. For RECFM U data
sets, we recommend using a block size of 32760, which is most efficient from the performance and DASD utilization perspective.

2. Abbreviations used for data set types are shown as follows.

U - Unique data set, allocated by this product and used by only this product. This table provides all the required information
to determine the correct storage for this data set. You do not need to refer to other tables or program directories for the data
set size.

S - Shared data set, allocated by this product and used by this product and other products. To determine the correct storage
needed for this data set, add the storage size given in this table to those given in other tables (perhaps in other program
directories). If the data set already exists, it must have enough free space to accommodate the storage size given in this table.

E - Existing shared data set, used by this product and other products. This data set is not allocated by this product. To
determine the correct storage for this data set, add the storage size given in this table to those given in other tables (perhaps
in other program directories). If the data set already exists, it must have enough free space to accommodate the storage size
given in this table.

If you currently have a previous release of Zowe installed in these libraries, the installation of this release will delete the old
release and reclaim the space that was used by the old release and any service that had been installed. You can determine
whether these libraries have enough space by deleting the old release with a dummy function, compressing the libraries, and
comparing the space requirements with the free space in the libraries.

For more information about the names and sizes of the required data sets, see Allocate SMP/E target and distribution libraries.

3. Abbreviations used for the file system path type are as follows.

N - New path, created by this product.

X - Path created by this product, but might already exist from a previous release.

P - Previously existing path, created by another product.

4. All target and distribution libraries listed have the following attributes:

The default name of the data set can be changed.

The default block size of the data set can be changed.

The data set can be merged with another data set that has equivalent characteristics.

The data set can be either a PDS or a PDSE, with some exceptions. If the value in the "ORG" column specifies "PDS", the data
set must be a PDS. If the value in "DIR Blks" column specifies "N/A", the data set must be a PDSE.

5. All target libraries listed have the following attributes:

These data sets can be SMS-managed, but they are not required to be SMS-managed.

These data sets are not required to reside on the IPL volume.

The values in the "Member Type" column are not necessarily the actual SMP/E element types that are identified in the
SMPMCS.

6. All target libraries that are listed and contain load modules have the following attributes:

These data sets cannot be in the LPA, with some exceptions. If the value in the "Member Type" column specifies "LPA", it is
advised to place the data set in the LPA.

These data sets can be in the LNKLST.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe#allocate-smpe-target-and-distributions-libraries

These data sets are not required to be APF-authorized, with some exceptions. If the value in the "Member Type" column
specifies "APF", the data set must be APF-authorized.

Storage requirements for SMP/E work data sets

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

SMPWRK6 S PDS FB 80 (300,3000) 50

SYSUT1 U SEQ -- -- (300,3000) 0

In the table above, (20,200) specifies a primary allocation of 20 tracks, and a secondary allocation of 200 tracks.

Storage requirements for SMP/E data sets

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

SMPPTS S PDSE FB 80 (12000,3000) 50

The following figures describe the target and distribution libraries and file system paths required to install Zowe. The storage
requirements of Zowe must be added to the storage required by other programs that have data in the same library or path.

Note: Use the data in these tables to determine which libraries can be merged into common data sets. In addition, since some ALIAS
names may not be unique, ensure that no naming conflicts will be introduced before merging libraries.

Storage requirements for Zowe target libraries

Note: These target libraries are not required for the initial FMID install of Zowe SMP/E but will be required for subsequent SYSMODS
so are included here for future reference.

Library
DDNAME

Member Type
Target

Volume
Type Org RECFM LRECL

No. of 3390
Trks

No. of DIR
Blks

SZWEAUTH
APF Load
Modules

ANY U PDSE U 0 15 N/A

SZWESAMP Samples ANY U PDSE FB 80 15 5

SZWELOAD Load Modules ANY U PDSE U 0 30 N/A

Zowe file system paths

DDNAME TYPE Path Name

SZWEZFS X /usr/lpp/zowe/SMPE

Storage requirements for Zowe distribution libraries

Note: These target libraries are not required for the initial alpha drop of Zowe SMP/E but will be required for subsequent drops so are
included here for future reference.

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

AZWEAUTH U PDSE U 0 15 N/A

AZWESAMP U PDSE FB 80 15 5

AZWEZFS U PDSE VB 6995 12000 30

The following figures list data sets that are not used by Zowe, but are required as input for SMP/E.

Data Set Name TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

hlq.ZOWE.AZWE002.F1 U PDSE FB 80 5 N/A

hlq.ZOWE.AZWE002.F2 U PDSE FB 80 5 N/A

hlq.ZOWE.AZWE002.F3 U PDSE U 0 30 N/A

hlq.ZOWE.AZWE002.F4 U PDSE VB 6995 9900 N/A

hlq.ZOWE.AZWE002.SMPMCS U SEQ FB 80 1 N/A

z/OS UNIX file system U zFS N/A N/A 28715 N/A

Note: These are temporary data sets, which can be removed after the SMP/E installation.

FMIDs deleted

Installing Zowe might result in the deletion of other FMIDs.

To see which FMIDs will be deleted, examine the ++VER statement in the SMPMCS of the product. If you do not want to delete these

FMIDs now, install Zowe into separate SMP/E target and distribution zones.

Note: These FMIDs are not automatically deleted from the Global Zone. If you want to delete these FMIDs from the Global Zone, use
the SMP/E REJECT NOFMID DELETEFMID command. See the SMP/E Commands book for details.

Special considerations

Zowe has no special considerations for the target system.

For details about installing Zowe SMP/E, see Installing Zowe via SMP/E instructions.

https://docs.zowe.org/stable/user-guide/install-zowe-smpe

Version: v2.17.x LTS

Installing Zowe via SMP/E instructions
Review this article and the procedures to install and activate the functions of Zowe server-side components using SMP/E.

REQUIRED ROLES: SYSTEM PROGRAMMER

NOTES:

To install Zowe into its own SMP/E environment, consult the SMP/E manuals for instructions on creating and initializing the
SMPCSI and SMP/E control data sets.

You can use the sample jobs that are provided to perform part or all of the installation tasks. The SMP/E jobs assume that all
DDDEF entries that are required for SMP/E execution have been defined in appropriate zones.

You can use the SMP/E dialogs instead of the sample jobs to accomplish the SMP/E installation steps.

TIP

You can now perform Zowe installation via the Zowe Server Install Wizard. Using the wizard streamlines the installation process
and is an alternative to performing manual Zowe server-side component installation. For more information about the wizard, see
Installing Zowe via Zowe Server Install Wizard.

SMP/E considerations for installing Zowe

Use the SMP/E RECEIVE, APPLY, and ACCEPT commands to install this release of Zowe.

SMP/E options subentry values

The recommended values for certain SMP/E CSI subentries are shown in the following table. Using values lower than the
recommended values can result in failures in the installation. DSSPACE is a subentry in the GLOBAL options entry. PEMAX is a subentry

of the GENERAL entry in the GLOBAL options entry. See the SMP/E manuals for instructions on updating the global zone.

Subentry Value Comment

DSSPACE (1200,1200,1400) Space allocation

PEMAX SMP/E Default IBM recommends using the SMP/E default for PEMAX.

Overview of the installation steps

Follow these high-level steps to download and install Zowe Open Source Project (Base).

1. Download and unzip the Zowe SMP/E package.

2. Allocate the file system to hold the download package.

3. Upload the download package to the host

https://docs.zowe.org/stable/user-guide/install-zowe-server-install-wizard

4. Extract and expand the compress SMPMCS and RELFILEs

5. Customize sample installation jobs

6. Create SMP/E environment (optional)

7. Perform SMP/E RECEIVE

8. Allocate SMP/E target and distribution libraries

9. Allocate, create and mount ZSF files (Optional)

10. Allocate z/OS UNIX paths

11. Create DDDEF Entries

12. Perform SMP/E APPLY

13. Perform SMP/E ACCEPT

14. Run REPORT CROSSZONE

15. Cleaning up obsolete data sets, paths, and DDDEFs

Download and unzip the Zowe SMP/E package

To download the Zowe SMP/E package, open your web browser and go to the Zowe Download website. Click the Zowe SMP/E FMID
AZWE002 button to save the file to a folder on your desktop.

You will receive one ZIP package on your desktop. Extract the following files from the package. You may need to use the unzip
command at a terminal rather than an unzip utility. For example, run unzip zowe-smpe-package-2.1.0.zip in your terminal.

AZWE002.pax.Z (binary)

The SMP/E input data sets to install Zowe are provided as compressed files in AZWE002.pax.Z. This pax archive file holds the
SMP/E MCS and RELFILEs.

AZWE002.readme.txt (text)

The README file AZWE002.readme.txt is a single JCL file containing a job with the job steps you need to begin the installation,
including comprehensive comments on how to tailor them. There is a sample job step that executes the z/OS UNIX System
Services pax command to extract package archives. This job also executes the GIMUNZIP program to expand the package
archives so that the data sets can be processed by SMP/E.

AZWE002.hml (text)

The Program Directory for the Zowe Open Source Project.

Allocate the file system to hold the download package

You can either create a new z/OS UNIX file system (zFS) or create a new directory in an existing file system to place AZWE002.pax.Z.
The directory that will contain the download package must reside on the z/OS system where the function will be installed.

To create a new file system, and directory, for the download package, you can use the following sample JCL (FILESYS).

Copy and paste the sample JCL into a separate data set, uncomment the job, and modify the job to update required parameters
before submitting the job.

https://www.zowe.org/download.html

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Upload the download package to the host

Upload the AZWE002.readme.txt file in text format and the AZWE002.pax.Z file in binary format from your workstation to the z/OS

UNIX file system. The instructions in this section are also in the AZWE002.readme.txt file that you downloaded.

IMPORTANT

Ensure you download the pax file in a different file system than where you put Zowe runtime.

There are many ways to transfer the files or make these files available to the z/OS system where the package will be installed. The
following sample dialog uses FTP from a Microsoft Windows command line to perform the transfer. This method is applicable when
the z/OS host is configured as an FTP host/server and the workstation is an FTP client. Commands or other customizations entered by
the user are in bold, and the following values are assumed.

NOTE

If you are not sure which protocol or port to use to transfer the files, or for other access requirements, consult with your network
administrator.

User enters: Values

mvsaddr TCP/IP address or hostname of the z/OS system

tsouid Your TSO user ID

tsopw Your TSO password

d: Location of the downloaded files

@zfs_path@ z/OS UNIX path where to store the files. This matches the @zfs_path@ variable you specified in the previous step.

IMPORTANT

The AZWE002.pax.Z file must be uploaded to the z/OS driving system in binary format. Not using binary format causes the

subsequent UNPAX step to fail.

NOTE

This file tranfer can take a long time to run, depending on the capacity of your system, and on what other jobs are running.

Sample FTP upload scenario:

TIP

If you are unable to connect with ftp and only able to use sftp, use sftp at the command prompt instead of ftp

As sftp only supports binary file transfer, the ascii and binary commands should be omitted. After you transfer the
AZWE002.readme.txt file, this file will be in an ASCII codepage so you need to convert the file to EBCDIC before it can be used.

To convert AZWE002.readme.txt to EBCDIC , log in to the distribution system using ssh and run the ICONV command.

Extract and expand the compressed SMPMCS and RELFILEs

The AZWE002.readme.txt file uploaded in the previous step holds a sample JCL to expand the compressed SMPMCS and RELFILEs

from the uploaded AZWE002.pax.Z file into data sets for use by the SMP/E RECEIVE job. The JCL is repeated here for your

convenience.

@zfs_path@ matches the variable that you specified in the previous step.

If the oshell command gets a RC=256 and message "pax: checksum error on tape (got ee2e, expected 0)", then the archive file

was not uploaded to the host in binary format.

GIMUNZIP allocates data sets to match the definitions of the original data sets. You might encounter errors if your SMS ACS
routines alter the attributes used by GIMUNZIP. If this occurs, specify a non-SMS managed volume for the GINUMZIP allocation
of the data sets. For example:

Normally, your Automatic Class Selection (ACS) routines decide which volumes to use. Depending on your ACS configuration, and
whether your system has constraints on disk space, units, or volumes, some supplied SMP/E jobs might fail due to volume
allocation errors. See GIMUNZIP for more details.

GIMUNZIP

The GIMUNZIP job may issue allocation error messages for SYSUT1 similar to these:

The job will end with RC=12. If this happens, add a TEMPDS control statement to the existing SYSIN as shown below:

&VOLSER
Specifies the DISK volume with sufficient free space to hold temporary copies of the RELFILES. As a guide, this may require 1,000
cylinders, or approximately 650 MB.

Customize sample installation jobs

The following sample installation jobs are provided in hlq.ZOWE.AZWE002.F1 , or equivalent, as part of the project to help you install

Zowe:

Job Name Job Type Description RELFILE

ZWE1SMPE SMP/E (Optional) Sample job to create an SMP/E environment ZOWE.AZWE002.F1

ZWE2RCVE RECEIVE Sample SMP/E RECEIVE job ZOWE.AZWE002.F1

Job Name Job Type Description RELFILE

ZWE3ALOC ALLOCATE Sample job to allocate target and distribution libraries ZOWE.AZWE002.F1

ZWE4ZFS ALLOMZFS
(Optional) Sample job to allocate, create mountpoint, and mount zFS data
sets

ZOWE.AZWE002.F1

ZWE5MKD MKDIR
Sample job to invoke the supplied ZWEMKDIR EXEC to allocate file system
paths

ZOWE.AZWE002.F1

ZWE6DDEF DDDEF Sample job to define SMP/E DDDEFs ZOWE.AZWE002.F1

ZWE7APLY APPLY Sample SMP/E APPLY job ZOWE.AZWE002.F1

ZWE8ACPT ACCEPT Sample SMP/E ACCEPT job ZOWE.AZWE002.F1

NOTE

When Zowe is downloaded from the web, the RELFILE data set name is prefixed by your chosen high-level qualifier, as
documented in the Extract and expand the compressed SMPMCS and RELFILEs section.

Follow these steps to access the sample installation jobs.

1. Performing an SMP/E RECEIVE. See Perform SMP/E RECEIVE.

2. Copy the jobs from the RELFILES to a working data set for editing and submission.

Alteratively, you can copy the sample installation jobs from the product files by submitting the job in the following example.

Before you submit the job, add a job statement and change the lowercase parameters to uppercase values to meet the requirements
of your site.

Example:

Customize the statements is this job statement with the following values:

IN:

filevol
Specifies the volume serial of the DASD device where the downloaded files reside.

OUT:

jcl-library-name
Specifies the name of the output data set where the sample jobs are stored.

dasdvol
Specifies the volume serial of the DASD device where the output data set resides. Uncomment the statement is a volume
serial must be provided.

The following supplied jobs might fail due to disk space allocation errors for GIMUNZIP. Review the following sections for example
error and actions that you can take to resolve the error.

ZWE2RCVE

ZWE1SMPE and ZWE4ZFS

ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

ZWE2RCVE

Add space and directory allocations to this SMPCNTL statement in the preceding ZWE1SMPE job:

Result:

ZWE1SMPE and ZWE4ZFS

Example error:

Action
Uncomment the VOLUMES(...) control statements and refer to the comments at the start of the JCL job for related necessary

changes.

ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

Example error:

Action
Uncomment the VOL=SER=&... control statements and refer to the comments at the start of the JCL job for related necessary

changes.

Create SMP/E environment (Optional)

A sample job ZWE1SMPE is provided or you may choose to use your own JCL. If you are using an existing CSI, do not run the sample
job ZWE1SMPE. If you choose to use the sample job provided, edit and submit ZWE1SMPE. Consult the instructions in the sample job
for more information.

NOTE

To use the default of letting your Automatic Class Selection (ACS) routines decide which volume to use, comment out the
following line in the sample job ZWE1SMPE .

// SET CSIVOL=#csivol

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Perform SMP/E RECEIVE

Edit and submit sample job ZWE2RCVE to perform the SMP/E RECEIVE for Zowe. Consult the instructions in the sample job for more
information.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Allocate SMP/E target and distributions libraries

Edit and submit sample job ZWE3ALOC to allocate the SMP/E target and distribution libraries for Zowe. Consult the instructions in the
sample job for more information.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Allocate, create and mount ZSF files (Optional)

This job allocates, creates a mountpoint, and mounts zFS data sets.

If you plan to install Zowe into a new z/OS UNIX file system, you can edit and submit the optional ZWE4ZFS job to perform the
following tasks. Consult the instructions in the sample job for more information.

Create the z/OS UNIX file system

Create a mountpoint

Mount the z/OS UNIX file system on the mountpoint

The recommended z/OS UNIX file system type is zFS. The recommended mountpoint is _/usr/lpp/zowe ._

Before running the sample job to create the z/OS UNIX file system, ensure that OMVS is active on the driving system. zFS must be
active on the driving system if you are installing Zowe into a file system that is zFS.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to mount the new file system at
IPL time. This action can be helpful if an IPL occurs before the installation is completed.

Customize the statements is this job statement with the following values:

#dsn
Specifies the name of the data set holding the z/OS UNIX file system.

/usr/lpp/zowe
Specifies the name of the mountpoint where the z/OS UNIX file system will be mounted.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Allocate z/OS UNIX paths

The target system HFS or zFS data set must be mounted on the driving system when running the sample ZWE5MKD job since the job
will create paths in the HFS or zFS.

Before running the sample job to create the paths in the file system, ensure that OMVS is active on the driving system and that the
target system's HFS, or zFS file system is mounted on the driving system. zFS must be active on the driving system if you are installing
Zowe into a file system that is zFS.

If you plan to install Zowe into a new HFS or zFS file system, you must create the mountpoint and mount the new file system on the
driving system for Zowe.

The recommended mountpoint is /usr/lpp/zowe.

Edit and submit sample job ZWE5MKD to allocate the HFS or zFS paths for Zowe. Consult the instructions in the sample job for more
information.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to mount the new file system at
IPL time. This action can be helpful if an IPL occurs before the installation is completed.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Create DDDEF entries

Edit and submit sample job ZWE6DDEF to create DDDEF entries for the SMP/E target and distribution libraries for Zowe. Consult the
instructions in the sample job for more information.

EXPECTED RESULTS

You will receive a return code of 0 if this job runs correctly.

Perform SMP/E APPLY

In this step, you run the sample job ZWE7APLY to apply Zowe. This step can take a long time to run, depending on the capacity of
your system, and on what other jobs are running.

Follow these steps

1. Ensure that you have the latest HOLDDATA; then edit and submit sample job ZWE7APLY to perform an SMP/E APPLY CHECK for
Zowe. Consult the instructions in the sample job for more information.

The latest HOLDDATA is available through several different portals, and may identify HIPER and FIXCAT APARs for the FMIDs you will
be installing. Use the APPLY CHECK command to assist you to determine whether any HIPER or FIXCAT APARs are applicable to the
FMIDs you are installing.

If there are any applicable HIPER of FIXCAT APARs, the APPLY CHECK also identifies fixing PTFs that will resolve the APARs, if a fixing
PTF is available.

You should install the FMIDs regardless of the status of unresolved HIPER or FIXCAT APARs. However, do not deploy the software until
the unresolved HIPER and FIXCAT APARs have been analyzed to determine their applicability. Before deploying the software either
ensure fixing PTFs are applied to resolve all HIPER or FIXCAT APARs, or ensure the problems reported by all HIPER or FIXCAT APARs are
not applicable to your environment.

TIP

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID, REQ, and IFREQ on the
APPLY CHECK. The SMP/E root cause analysis identifies the cause only of errors and not of warnings (SMP/E treats bypassed PRE,
ID, REQ, and IFREQ conditions as warnings, instead of errors).

Sample APPLY commands

Review the following sample APPLY commands:

APPLY CHECK
To ensure that all recommended and critical services are installed with the FMIDs, receive the latest HOLDDATA and use the
APPLY CHECK.

Example:

NOTE

Some HIPER APARs might not have fixing PTFs available yet. You should analyze the symptom flags for the unresolved HIPER
APARs to determine if the reported problem is applicable to your environment and if you should bypass the specific ERROR
HOLDs in order to continue the installation of the FMIDs.

This method requires more initial research, but can provide resolution for all HPERs that have fixing PTFs available and not in
a PE chain. Unresolved PEs or HIPERs might still exist and require the use of BYPASS.

APPLY CHECK with operand
To install the FMIDs without regard for unresolved HIPER APARs, add the BYPASS(HOLDCLASS(HIPER)) operand to the APPLY
CHECK command. Using this command and operand enables you to install FMIDs, even though one or more unresolved HIPER
APARs exist. After the FMIDs are installed, use the SMP/E REPORT ERRSYSMODS command to identify unresolved HIPER APARs
and any fixing PTFs.

NOTES:

This method is quicker, but requires subsequent review of the Exception SYSMOD report produced by the REPORT
ERRSYSMODS command to investigate any unresolved HIPERs. If you have received the latest HOLDDATA, you can also
choose to use the REPORT MISSINGFIX command and specify Fix Category IBM.PRODUCTINSTALL-REQUIREDSERVICE to
investigate missing recommended service.

If you bypass HOLDs during the installation of the FMIDs because fixing PTFs are not yet available, you can be notified when
the fixing PTFs are available by using the APAR Status Tracking (AST) function of the ServiceLink or the APAR Tracking
function of Resource Link.

2. After you take actions that are indicated by the APPLY CHECK, remove the CHECK operand and run the job again to perform the

APPLY.

NOTE

The GROUPEXTENDED operand indicates the SMP/E applies all requisite SYSMODs. The requisite SYSMODS might be applicable
to other functions.

TIP

Expected results from APPLY CHECK You will receive a return code of 0 if this job runs correctly.

Expected results from APPLY You will receive a return code of 0 if the job runs correctly.

Perform SMP/E ACCEPT

Edit and submit sample job ZWE8ACPT to perform an SMP/E ACCEPT CHECK for Zowe. Consult the instructions in the sample job for
more information.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID, REQ, and IFREQ on the ACCEPT
CHECK. The SMP/E root cause analysis identifies the cause of errors but not warnings (SMP/E treats bypassed PRE, ID, REQ, and IFREQ
conditions as warnings rather than errors).

Before you use SMP/E to load new distribution libraries, it is recommended that you set the ACCJCLIN indicator in the distribution
zone. In this way, you can save the entries that are produced from JCLIN in the distribution zone whenever a SYSMOD that contains
inline JCLIN is accepted. For more information about the ACCJCLIN indicator, see the description of inline JCLIN in the SMP/E
Commands book for details.

After you take actions that are indicated by ACCEPT CHECK, remove the CHECK operand and run the job again to perform the

ACCEPT.

NOTE

The GROUPEXTEND operand indicates that SMP/E accepts all requisite SYSMODs. The requisite SYSMODS might be applicable
to other functions.

EXPECTED RESULTS FROM ACCEPT CHECK

You will receive a return code of 0 if this job runs correctly.

If PTFs that contain replacement modules are accepted, SMP/E ACCEPT processing will link-edit or bind the modules into the
distribution libraries. During this processing, the Linkage Editor or Binder might issue messages that indicate unresolved external
references, which will result in a return code of 4 during the ACCEPT phase. You can ignore these messages, because the distribution
libraries are not executable and the unresolved external references do not affect the executable system libraries.

EXPECTED RESULTS FROM ACCEPT

You will receive a return code of 0 if this job runs correctly.

Run REPORT CROSSZONE

The SMP/E REPORT CROSSZONE command identifies requisites for products that are installed in separate zones. This command also
creates APPLY and ACCEPT commands in the SMPPUNCH data set. You can use the APPLY and ACCEPT commands to install those

cross-zone requisites that the SMP/E REPORT CROSSZONE command identifies.

After you install Zowe, it is recommended that you run REPORT CROSSZONE against the new or updated target and distribution
zones. REPORT CROSSZONE requires a global zone with ZONEINDEX entries that describe all the target and distribution libraries to
be reported on.

For more information about REPORT CROSSZONE, see the SMP/E manuals.

Cleaning up obsolete data sets, paths, and DDDEFs

The web download data sets listed in DASD storage requirements are temporary data sets. You can delete these data sets after you
complete the SMP/E installation.

Activating Zowe

File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you do not have to take
further actions to activate Zowe.

Zowe customization

You can find the necessary information about customizing and using Zowe on the Zowe doc site.

For more information about how to customize Zowe, see Configuring Overview.

For more information about how to use Zowe, see Using Zowe.

https://docs.zowe.org/stable/user-guide/configuring-overview/
https://docs.zowe.org/stable/user-guide/zowe-getting-started-tutorial/

Version: v2.17.x LTS

Installing Zowe via z/OSMF from PSWI and SMP/E
workflow
The following information contains procedures and tips for meeting z/OSMF requirements. For complete information, go to IBM
Documentation and read the following documents.

IBM z/OS Management Facility Configuration Guide

IBM z/OS Management Facility Help

z/OS requirements for z/OSMF configuration

Ensure that the z/OS system meets the following requirements:

Requirements Description
Resources in IBM

Knowledge Center

AXR (System REXX)
z/OS uses AXR (System REXX) component to perform Incident Log tasks. The
component enables REXX executable files to run outside of conventional
TSO and batch environments.

System REXX

Common Event
Adapter (CEA) server

The CEA server, which is a co-requisite of the Common Information Model
(CIM) server, enables the ability for z/OSMF to deliver z/OS events to C-
language clients.

Customizing for CEA

Common Information
Model (CIM) server

z/OSMF uses the CIM server to perform capacity-provisioning and workload-
management tasks. Start the CIM server before you start z/OSMF (the IZU*
started tasks).

Reviewing your CIM
server setup

CONSOLE and
CONSPROF
commands

The CONSOLE and CONSPROF commands must exist in the authorized
command table.

Customizing the
CONSOLE and
CONSPROF commands

Java level IBM® 64-bit SDK for z/OS®, Java Technology Edition V8 or later is required.
Software prerequisites
for z/OSMF

TSO region size
To prevent exceeds maximum region size errors, verify that the TSO
maximum region size is a minimum of 65536 KB for the z/OS system.

N/A

User IDs

User IDs require a TSO segment (access) and an OMVS segment. During
workflow processing and REST API requests, z/OSMF might start one or
more TSO address spaces under the following job names: userid;
substr(userid, 1, 6) CN (Console).

N/A

https://www.ibm.com/docs/en/zos/2.3.0
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_PartConfiguring.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izu/izu.htm
https://www.ibm.com/docs/en/zos/2.3.0?topic=guide-system-rexx
https://www.ibm.com/docs/en/zos/2.3.0?topic=test-customizing-cea
https://www.ibm.com/docs/en/zos/2.3.0?topic=ins-reviewing-your-cim-server-setup
https://www.ibm.com/docs/en/zos/2.3.0?topic=commands-customizing-console-consprof
https://www.ibm.com/docs/en/zos/2.3.0?topic=zosmf-software-prerequisites

Version: v2.17.x LTS

Addressing z/OSMF requirements
Before you install Zowe using IBM z/OSMF, address the following installation and security requirements. Your systems programmers
and security administrators can complete these tasks in parallel.

Configure z/OSMF

ROLES REQUIRED: SYSTEMS PROGRAMMER, SECURITY ADMINISTRATOR, DOMAIN ADMINISTRATOR

The IBM z/OS Management Facility Configuration Guide is your primary source of information about how to configure z/OSMF. You
can open the IBM documentation in a separate browser tab for reference during installation of your products using z/OSMF
Deployments. To prevent configuration errors and to enable z/OSMF Software Update for maintenance, apply all z/OSMF related
maintenance before you begin the installation process.

Configure z/OSMF security

ROLES REQUIRED: SECURITY ADMINISTRATOR

Configure z/OSMF security for ACF2, Top Secret, or IBM RACF as applicable to authorize users and resources. To prevent SSL
handshake failures when importing product information into z/OSMF, make sure that you have added the Digicert Intermediate CA
certificate to the z/OSMF keyring. For information, see Import Product Information into z/OSMF.

Confirm that the installer has read, create, update, and execute privileges in
z/OS

ROLES REQUIRED: SECURITY ADMINISTRATOR

Write access is also required to the USS directories that are used for the installation process.

To deploy a product that has USS components, the installer's user ID must have access to the appropriate resource profiles in the
UNIXPRIV class and access to the BPX.SUPERUSER resource profile in the FACILITY class, or UID(0) .

For UNIXPRIV class, read access is required to SUPERUSER.FILESYS.CHOWN , SUPERUSER.FILESYS.CHGRP , and

SUPERUSER.FILESYS.MOUNT .

Address USS requirements

ROLES REQUIRED: SECURITY ADMINISTRATOR, SYSTEM PROGRAMMER

Create a USS directory to receive the z/OSMF pax file and to perform the unpack steps.

Confirm that you have write authority to the USS directories that are used for the z/OSMF pax installation process.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/traditional-management/mainframe-common-maintenance-procedures/1-0/getting-started/z-osmf-requirements/import-product-information-into-z-osmf.html

Confirm that you have available USS file space. To download and unpack the pax file, you need free space that is approximately
3.5 times the pax file size in the file system that contains the pax directories. For example, to download and unpack a 14-MB pax
file, you need approximately 49 MB of free space in the file system hosting your pax directory. If you do not have sufficient free
space, error messages like EZA1490I Error writing to data set or EZA2606W File I/O error 133 can occur.

Configure SMP/E Internet Service Retrieval

ROLES REQUIRED: SECURITY ADMINISTRATOR, SYSTEM PROGRAMMER

Configure SMP/E Internet Service Retrieval to receive and download maintenance on a regular cadence or build custom maintenance
packages (order PTFs, APARs, critical, recommended, all, or just HOLDDATA). This step is our recommended best practice when
installing maintenance and is required to use the z/OSMF Software Update. For configuration details, see the Mainframe Common
Maintenance Procedures documentation.

After these requirements have been addressed, you are ready to acquire a z/OSMF Portable Software Instance or Configure Zowe with
z/OSMF Workflows.

https://docs.zowe.org/stable/user-guide/install-zowe-pswi-address-requirements/install-zowe-pswi-acquire/#download-the-portable-software-instance-from-zowe-downloads
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow

Version: v2.17.x LTS

Configuring z/OSMF
Follow these steps described in this article to configure z/OSMF.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR, DOMAIN ADMINISTRATOR

1. From the console, issue the following command to verify the version of z/OS:

Expected results: part of the output contains the release, for example, RELEASE z/OS 02.02.00 .

2. Configure z/OSMF.

z/OSMF is a base element of z/OS V2.2 and V2.3, so it is already installed. But it might not be configured and running on every
z/OS V2.2 and V2.3 system.

In short, to configure an instance of z/OSMF, run the IBM-supplied jobs IZUSEC and IZUMKFS , and then start the z/OSMF server.

The z/OSMF configuration process occurs in three stages, and in the following order:

Stage 1 - Security setup

Stage 2 - Configuration

Stage 3 - Server initialization

This stage sequence is critical to a successful configuration. For complete information about how to configure z/OSMF, see
Configuring z/OSMF for the first time if you use z/OS V2.2 or Setting up z/OSMF for the first time if V2.3.

NOTE

In z/OS V2.3, the base element z/OSMF is started by default at system initial program load (IPL). Therefore, z/OSMF is available
for use as soon as you set up the system. If you prefer not to start z/OSMF automatically, disable the autostart function by
checking for START commands for the z/OSMF started procedures in the COMMNDxx parmlib member.

The z/OS Operator Consoles task is new in Version 2.3. Applications that depend on access to the operator console such as
Zowe™ CLI's RestConsoles API require Version 2.3.

3. Verify that the z/OSMF server and angel processes are running. From the command line, issue the following command:

If jobs IZUANG1 and IZUSVR1 are not active, issue the following command to start the angel process:

Expected results: you will see the message CWWKB0056I INITIALIZATION COMPLETE FOR ANGEL .

To start the server, issue the following command:

Expected results: it might take a few minutes to initialize. The z/OSMF server is available when the message CWWKF0011I: The
server zosmfServer is ready to run a smarter planet. is displayed.

4. To find the startup messages in the SDSF log of the z/OSMF server, issue the following command:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.izua300/IZUHPINFO_ConfiguringMain.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_ConfiguringMain.htm

Expected results: you will see a message that indicates the port number, for example, IZUG349I: The z/OSMF STANDALONE
Server home page can be accessed at https://mvs.hursley.ibm.com:443/zosmf after the z/OSMF server is started

on your system. In this example, the port number is 443 . You will need this port number later.

5. Point your browser at the nominated z/OSMF STANDALONE Server home page and you should see its Welcome Page where you
can log in.

NOTE

If your implementation uses an external security manager other than RACF (for example, Top Secret for z/OS or ACF2 for z/OS),
you provide equivalent commands for your environment. For more information, see the following product documentation:

Configure z/OS Management Facility for Top Secret

Configure z/OS Management Facility for ACF2

z/OSMF REST services for the Zowe CLI
The Zowe CLI uses z/OSMF Representational State Transfer (REST) APIs to work with system resources and extract system data. Ensure
that the following REST services are configured and available.

z/OSMF REST
services

Requirements
Resources in IBM
knowledge Center

Cloud provisioning
services

Cloud provisioning services are required for the Zowe CLI CICS and Db2
command groups. Endpoints begin with /zosmf/provisioning/

Cloud provisioning
services

TSO/E address space
services

TSO/E address space services are required to issue TSO commands in the Zowe
CLI. Endpoints begin with /zosmf/tsoApp

TSO/E address space
services

z/OS console
services

z/OS console services are required to issue console commands in the Zowe CLI.
Endpoints begin with /zosmf/restconsoles/

z/OS console services

z/OS data set and
file REST interface

z/OS data set and file REST interface is required to work with mainframe data
sets and UNIX System Services files in the Zowe CLI. Endpoints begin with
/zosmf/restfiles/

z/OS data set and file
REST interface

z/OS jobs REST
interface

z/OS jobs REST interface is required to use the zos-jobs command group in the
Zowe CLI. Endpoints begin with /zosmf/restjobs/

z/OS jobs REST
interface

z/OSMF workflow
services

z/OSMF workflow services is required to create and manage z/OSMF workflows
on a z/OS system. Endpoints begin with /zosmf/workflow/

z/OSMF workflow
services

Zowe uses symbolic links to the z/OSMF bootstrap.properties , jvm.security.override.properties , and ltpa.keys files. Zowe
reuses SAF, SSL, and LTPA configurations; therefore, they must be valid and complete.

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-top-secret.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-acf2.html
https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-preparing-use-cloud-provisioning
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-tsoe-address-space
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-console
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-data-set-file-rest-interface
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zos-jobs-rest-interface
https://www.ibm.com/docs/en/zos/2.3.0?topic=services-zosmf-workflow

For more information, see Using the z/OSMF REST services in IBM z/OSMF documentation.

To verify that z/OSMF REST services are configured correctly in your environment, enter the REST endpoint into your browser. For
example: https://mvs.ibm.com:443/zosmf/restjobs/jobs

NOTES

Browsing z/OSMF endpoints requests your user ID and password for defaultRealm; these are your TSO user credentials.

The browser returns the status code 200 and a list of all jobs on the z/OS system. The list is in raw JSON format.

Configuring z/OSMF to properly work with API ML
There is an issue observed in z/OSMF which leads to a stuck JSON web token(JWT). It manifests as the endpoint
/zosmf/services/authenticate issuing a JWT with success RC that is not valid for API calls, resulting in 401 response status code.

This is a persistent condition. To get the token unstuck, perform a logout with the LTPA token from the login request. This causes
logins to start serving unique JWTs again. Until this issue is properly fixed in z/OSMF, we propose a possible temporary workaround.
Update z/OSMF configuration with allowBasicAuthLookup="false" . After applying this change, each authentication call results in

generating a new JWT.

https://www.ibm.com/docs/en/zos/2.3.0?topic=guide-using-zosmf-rest-services

Version: v2.17.x LTS

Configuring z/OSMF Lite (for non-production use)
This section provides information about requirements for z/OSMF Lite configuration.

Disclaimer: z/OSMF Lite can be used in a non-production environment such as development, proof-of-concept, demo and so on. It is
not for use in a production environment. To use z/OSMF in a production environment, see Configuring z/OSMF.

Introduction
IBM® z/OS® Management Facility (z/OSMF) provides extensive system management functions in a task-oriented, web browser-based
user interface with integrated user assistance, so that you can more easily manage the day-to-day operations and administration of
your mainframe z/OS systems.

By following the steps in this guide, you can quickly enable z/OSMF on your z/OS system. This simplified approach to set-up, known
as "z/OSMF Lite", requires only a minimal amount of z/OS customization, but provides the key functions that are required by many
exploiters, such as the open mainframe project (Zowe™).

A z/OSMF Lite configuration is applicable to any future expansions you make to z/OSMF, such as adding more optional services and
plug-ins.

It takes 2-3 hours to set up z/OSMF Lite. Some steps might require the assistance of your security administrator.

For detailed information about various aspects of z/OSMF configuration such as enabling the optional plug-ins and services, see the
IBM publication z/OSMF Configuration Guide.

Assumptions
This document is intended for a first time z/OSMF setup. If z/OSMF is already configured on your system, you do not need to create a
z/OSMF Lite configuration.

This document is designed for use with a single z/OS system, not a z/OS sysplex. If you plan to run z/OSMF in a sysplex, see z/OSMF
Configuration Guide for multi-system considerations.

It is assumed that a basic level of security for z/OSMF is sufficient on the z/OS system. IBM provides a program, IZUNUSEC, to help
you set up basic security for a z/OSMF Lite configuration.

System defaults are used for the z/OSMF environmental settings. Wherever possible, it is recommended that you use the default
values. If necessary, however, you can override the defaults by supplying an IZUPRMxx member, as described in Appendix A. Creating
an IZUPRMxx parmlib member.

It is recommended that you use the following procedures as provided by IBM:

Started procedures IZUSVR1 and IZUANG1

Logon procedure IZUFPROC

Information about installing these procedures is provided in Copying the IBM procedures into JES PROCLIB.

https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://www.ibm.com/docs/en/zos/2.5.0?topic=configurations-autostart-concepts-in-zosmf
https://www.ibm.com/docs/en/zos/2.2.0?topic=configuration-using-zosmf-in-multi-system-environment

Software Requirements
Setting up z/OSMF Lite requires that you have access to a z/OS V2R2 system or later. Also, your z/OS system must meet the following
minimum software requirements:

Minimum Java level

WebSphere® Liberty profile (z/OSMF V2R3 and later)

System settings

Web browser

Minimum Java level

Java™ must be installed and operational on your z/OS system, at the required minimum level. See the table that follows for the
minimum level and default location. If you installed Java in another location, you must specify the JAVA_HOME statement in your
IZUPRMxx parmlib member, as described in Appendix A. Creating an IZUPRMxx parmlib member.

z/OS
Version

Minimum level of Java™
Recommended level of

Java
Default location

z/OS
V2R2

IBM® 64-bit SDK for z/OS®, Java Technology Edition
V7.1 (SR3), with the PTFs for APAR PI71018 and APAR
PI71019 applied OR IBM® 64-bit SDK for z/OS®, Java
Technology Edition V8, with the PTF for APAR PI72601
applied.

IBM® 64-bit SDK for
z/OS®, Java™ Technology
Edition, V8 SR6 (5655-DGH)

/usr/lpp/java/J7.1_64

z/OS
V2R3

IBM® 64-bit SDK for z/OS®, Java™ Technology Edition,
V8 SR4 FP10 (5655-DGH)

IBM® 64-bit SDK for
z/OS®, Java™ Technology
Edition, V8 SR6 (5655-DGH)

/usr/lpp/java/J8.0_64

WebSphere® Liberty profile (z/OSMF V2R3 and later)

z/OSMF V2R3 uses the Liberty Profile that is supplied with z/OS, rather than its own copy of Liberty. The WebSphere Liberty profile
must be mounted on your z/OS system. The default mount point is: /usr/lpp/liberty_zos . To determine whether WebSphere®

Liberty profile is mounted, check for the existence of the mount point directory on your z/OS system.

If WebSphere® Liberty profile is mounted at a non-default location, you need to specify the location in the IZUSVR1 started
procedure on the keyword WLPDIR=. For details, see Appendix B. Modifying IZUSVR1 settings.

Note: Whenever you apply PTFs for z/OSMF, you might be prompted to install outstanding WebSphere Liberty service. It is
recommended that you do so to maintain z/OSMF functionality.

System settings

Ensure that the z/OS host system meets the following requirements:

Port 443 (default port) is available for use.

The system host name is unique and maps to the system on which z/OSMF Lite will be configured.

Otherwise, you might encounter errors later in the process. If you encounter errors, see Troubleshooting problems for the corrective
actions to take.

Web browser

For the best results with z/OSMF, use one of the following web browsers on your workstation:

Microsoft Internet Explorer Version 11 or later

Microsoft Edge (Windows 10)

Mozilla Firefox ESR Version 52 or later.

To check your web browser's level, click About in the web browser.

Creating a z/OSMF nucleus on your system
The following system changes are described in this chapter:

Running job IZUNUSEC to create security

Running job IZUMKFS to create the z/OSMF user file system

Copying the IBM procedures into JES PROCLIB

Starting the z/OSMF server

Accessing the z/OSMF Welcome page

Mounting the z/OSMF user file system at IPL time

The following sample jobs that you might use are included in the package and available for download:

IZUAUTH

IZUICSEC

IZUNUSEC_V2R2

IZUNUSEC_V2R3

IZUPRM00

IZURFSEC

IZUTSSEC

IZUWFSEC

Download sample jobs

Check out the video for a demo of the process:

https://docs.zowe.org/stable/zosmf_lite_samples.zip

Creating a z/OSMF Nucleus On Your SystemCreating a z/OSMF Nucleus On Your System

Running job IZUNUSEC to create security

The security job IZUNUSEC contains a minimal set of RACF® commands for creating security profiles for the z/OSMF nucleus. The
profiles are used to protect the resources that are used by the z/OSMF server, and to grant users access to the z/OSMF core functions.
IZUNUSEC is a simplified version of the sample job IZUSEC, which is intended for a more complete installation of z/OSMF.

Note: If your implementation uses an external security manager other than RACF (for example, Top Secret or ACF2), provide
equivalent commands for your environment. For more information, see the following product documentation:

Configure z/OS Management Facility for Top Secret

Configure z/OS Management Facility for ACF2

Before you begin

In most cases, you can run the IZUNUSEC security job without modification. To verify that the job is okay to run as is, ask your security
administrator to review the job and modify it as necessary for your security environment. If security is not a concern for the host
system, you can run the job without modification.

Procedure

1. If you run z/OS V2R2 or V2R3, download job IZUNUSEC in the sample jobs package and upload this job to z/OS. If you run z/OS
V2R4, locate job IZUNUSEC at SYS1.SAMPLIB.

2. Review and edit the job, if necessary.

3. Submit IZUNUSEC as a batch job on your z/OS system.

4. Connect your user ID to IZUADMIN group.
i. Download job IZUAUTH in the sample jobs package and customize it.

ii. Replace the 'userid' with your z/OSMF user ID.

iii. Submit the job on your z/OS system.

https://www.youtube.com/watch?v=ebJb9RR9x9c
https://docops.ca.com/ca-top-secret-for-z-os/16-0/en/installing/configure-z-os-management-facility-for-ca-top-secret
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-acf2.html
https://docs.zowe.org/stable/zosmf_lite_samples.zip

Results

Ensure the IZUNUSEC job completes with return code 0000 .

To verify, check the results of the job execution in the job log. For example, you can use SDSF to examine the job log:

1. In the SDSF primary option menu, select Option ST.

2. On the SDSF Status Display, enter S next to the job that you submitted.

3. Check the return code of the job. The job succeeds if '0000' is returned.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution

Message IKJ56702I: INVALID
data is issued

The job is submitted more
than once.

You can ignore this message.

Job fails with an
authorization error.

Your user ID lacks
superuser authority.

Contact your security admin to run IZUNUSEC. If you are using
RACF®, select a user ID with SPECIAL attribute which can issue all
RACF® commands.

Job fails with an
authorization error.

Your installation uses the
RACF PROTECT-ALL
option.

See Troubleshooting problems.

ADDGROUP and ADDUSER
commands are not executed.

The automatic GID and
UID assignment is
required.

Define SHARED.IDS and BPX.NEXT.USER profiles to enable the use
of AUTOUID and AUTOGID.

Running job IZUMKFS to create the z/OSMF user file system

The job IZUMKFS initializes the z/OSMF user file system, which contains configuration settings and persistence information for
z/OSMF.

The job mounts the file system. On a z/OS V2R3 system with the PTF for APAR PI92211 installed, the job uses mount point
/global/zosmf . Otherwise, for an earlier system, the job mounts the file system at mount point /var/zosmf .

Before you begin

To perform this step, you need a user ID with "superuser" authority on the z/OS host system. For more information about how to
define a user with superuser authority, see the publication z/OS UNIX System Services.

Procedure

1. In the system library SYS1.SAMPLIB , locate job IZUMKFS.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

2. Copy the job.

3. Review and edit the job:

Modify the job information so that the job can run on your system.

You must specify a volume serial (VOLSER) to be used for allocating a data set for the z/OSMF data directory.

4. Submit IZUMKFS as a batch job on your z/OS system.

Results

The z/OSMF file system is allocated, formatted, and mounted, and the necessary directories are created.

To verify if the file system is allocated, formatted, locate the following messages in IZUMKFS job output.

Sample output:

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Job fails with FSM error.
Your user ID lacks
superuser authority.

For more information about how to define a user with superuser
authority, see the publication z/OS UNIX System Services.

Job fails with an
authorization error.

Job statement errors. See Troubleshooting problems.

Copying the IBM procedures into JES PROCLIB

Copy the z/OSMF started procedures and logon procedure from SYS1.PROCLIB into your JES concatenation. Use $D PROCLIB
command to display your JES2 PROCLIB definitions.

Before you begin

Locate the IBM procedures. IBM supplies procedures for z/OSMF in your z/OS order:

ServerPac and CustomPac orders: IBM supplies the z/OSMF procedures in the SMP/E managed proclib data set. In ServerPac and
SystemPac, the default name for the data set is SYS1.IBM.PROCLIB.

CBPDO orders: For a CBPDO order, the SMP/E-managed proclib data set is named as SYS1.PROCLIB.

Application Development CD.

Procedure

Use ISPF option 3.3 or 3.4 to copy the procedures from SYS1.PROCLIB into your JES concatenation.

IZUSVR1

IZUANG1

IZUFPROC

Results

The procedures now reside in your JES PROCLIB.

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Not authorized to copy into
PROCLIB.

Your user ID doesn't have the permission to
modify PROCLIB.

Contact your security administrator.

Abend code B37 or E37. The data set runs out of space.
Use IEBCOPY utility to compress PROCLIB dataset
before you copy it.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

Starting the z/OSMF server

z/OSMF processing is managed through the z/OSMF server, which runs as the started tasks IZUANG1 and IZUSVR1. z/OSMF is started
with the START command.

Before you begin

Ensure that you have access to the operations console and can enter the START command.

Procedure

In the operations console, enter the START commands sequentially:

Note: The z/OSMF angel (IZUANG1) must be started before the z/OSMF server (IZUSVR1).

You must enter these commands manually at subsequent IPLs. If necessary, you can stop z/OSMF processing by entering the STOP
command for each of the started tasks IZUANG1 and IZUSVR1.

Note: z/OSMF offers an autostart function, which you can configure to have the z/OSMF server started automatically. For more
information about the autostart capability, see z/OSMF Configuration Guide.

Results

When the z/OSMF server is initialized, you can see the following messages displayed in the operations console:

Accessing the z/OSMF Welcome page

At the end of the z/OSMF configuration process, you can verify the results of your work by opening a web browser to the Welcome
page.

Before you begin

To find the URL of the Welcome page, look for message IZUG349I in the z/OSMF server job log.

https://www.ibm.com/docs/en/zos/2.5.0?topic=configurations-autostart-concepts-in-zosmf

Procedure

1. Open a web browser to the z/OSMF Welcome page. The URL for the Welcome page has the following format:
https://hostname:port/zosmf/

Where:

hostname is the host name or IP address of the system in which z/OSMF is installed.

port is the secure port for the z/OSMF configuration. If you specified a secure port for SSL encrypted traffic during the
configuration process through parmlib statement HTTP_SSL_PORT, port is required to log in. Otherwise, it is assumed that
you use the default port 443.

2. In the z/OS USER ID field on the Welcome page, enter the z/OS user ID that you use to configure z/OSMF.

3. In the z/OS PASSWORD field, enter the password or pass phrase that is associated with the z/OS user ID.

4. Select the style of UI for z/OSMF. To use the desktop interface, select this option. Otherwise, leave this option unselected to use
the tree view UI.

5. Click Log In.

Results

If the user ID and password or pass phrase are valid, you are authenticated to z/OSMF. The Welcome page of IBM z/OS Management
Facility tab opens in the main area. At the top right of the screen, Welcome <your_user_ID> is displayed. In the UI, only the options

you are allowed to use are displayed.

You have successfully configured the z/OSMF nucleus.

Common errors

The following errors might occur during this step:

Symptom Cause Resolution

z/OSMF welcome page does not load in your
web browser.

The SSL handshake was not
successful. This problem can be
related to the browser certificate.

See Certificate error in the Mozilla
Firefox browser.

To log into z/OSMF, enter a valid z/OS user ID
and password. Your account might be locked
after too many incorrect log-in attempts.

The user ID is not connected to the
IZUADMIN group.

Connect your user ID to the IZUADMIN
group.

To log into z/OSMF, enter a valid z/OS user ID
and password. Your account might be locked
after too many incorrect log-in attempts.

The password is expired.
Log on to TSO using your z/OS User ID
and password, you will be asked to
change your password if it's expired.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_FirefoxCertificateError.htm

Mounting the z/OSMF user file system at IPL time

Previously, in Running job IZUMKFS to create the z/OSMF user file system, you ran job IZUMKFS to create and mount the z/OSMF user
file system. Now you should ensure that the z/OSMF user file system is mounted automatically for subsequent IPLs. To do so, update
the BPXPRMxx parmlib member on your z/OS system.

Before you begin

By default, the z/OSMF file system uses the name IZU.SIZUUSRD, and is mounted in read/write mode. It is recommended that this file
system is mounted automatically at IPL time.

If you do not know which BPXPRMxx member is active, follow these steps to find out:

1. In the operations console, enter the following command to see which parmlib members are included in the parmlib
concatenation on your system:

D PARMLIB

2. Make a note of the BPXPRMxx member suffixes that you see.

3. To determine which BPXPRMxx member takes precedence, enter the following command:

D OMVS

The output of this command should be similar to the following:

In this example, the member BPXPRMST takes precedence. If BPXPRMST is not present in the concatenation, member BPXPRM3T is
used.

Procedure

Add a MOUNT command for the z/OSMF user file system to your currently active BPXPRMxx parmlib member. For example:

On a z/OS V2R3 system with the PTF for APAR PI92211 installed:

On a z/OS V2R2 or V2R3 system without PTF for APAR PI92211 installed:

Results

The BPXPRMxx member is updated. At the next system IPL, the following message is issued to indicate that the z/OSMF file system is
mounted automatically.

Adding the required REST services
You must enable a set of z/OSMF REST services for the Zowe framework.

The following system changes are described in this topic:

Enabling the z/OSMF JOB REST services

Enabling the TSO REST services

Enabling the z/OSMF data set and file REST services

Enabling the z/OSMF Workflow REST services and Workflows task UI

Enabling the z/OSMF JOB REST services

The Zowe framework requires that you enable the z/OSMF JOB REST services, as described in this topic.

Procedure

None

Results

To verify if the z/OSMF JOB REST services are enabled, open a web browser to our z/OS system (host name and port) and add the
following REST call to the URL:

GET /zosmf/restjobs/jobs

The result is a list of the jobs that are owned by your user ID. For more information about the z/OSMF JOB REST services, see z/OSMF
Programming Guide.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom 1

401 Unauthorized

Cause

The user ID is not connected to IZUADMIN or IZUUSER.

Resolution

Connect your user ID to IZUADMIN or IZUUSER.

Symptom 2

HTTP/1.1 500 Internal Server Error

Cause

For JES2, you may have performed one of the following "Modify" operations: Hold a job, Release a job, Change the job class, Cancel a
job, Delete a job (Cancel a job and purge its output), or you are running JES3 without configuring CIM Server.

Resolution

If you are running JES2, you can use synchronous support for job modify operations which does not required CIM. If you are running
JES3, follow the CIM setup instructions to configure CIM on your system.

Enabling the TSO REST services

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm#izuhpinfo_api_restjobs__RequestingSynchronousProcessing
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm

The Zowe framework requires that you enable the TSO REST services, as described in this topic.

Before you begin

Ensure that the common event adapter component (CEA) of z/OS is running in full function mode.

1. To check if the CEA address space is active, enter the following command:

D A,CEA

2. If not, start CEA in full function mode. For detailed instructions, see System prerequisites for the CEA TSO/E address space services.

3. To verify that CEA is running in full function mode, enter the following command:

F CEA,D

The output should look like the following:

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZUTSSEC in the sample jobs package and upload this Job to z/OS. If you run z/OS
V2R4, locate job IZUTSSEC at SYS1.SAMPLIB .

2. Review and edit job IZUTSSEC before you submit. You can review the IZUTSSEC section below for more details.

3. Submit IZUTSSEC as a batch job on your z/OS system.

IZUTSSEC

IBM provides a set of jobs in SYS1.SAMPLIB with sample RACF commands to help with your z/OSMF configuration and its
prerequisites. The IZUTSSEC job represents the authorizations that are needed for the z/OSMF TSO/E address space service. Your
security administrator can edit and run the job. Generally, your z/OSMF user ID requires the same authorizations for using the TSO/E
address space services as when you perform these operations through a TSO/E session on the z/OS system. For example, to start an
application in a TSO/E address space requires that your user ID be authorized to operate that application. In addition, to use TSO/E
address space services, you must have:

READ access to the account resource in class ACCTNUM, where account is the value specified in the COMMON_TSO ACCT option
in parmlib.

READ access to the CEA.CEATSO.TSOREQUEST resource in class SERVAUTH.

READ access to the proc resource in class TSOPROC, where proc is the value specified with the COMMON_TSO PROC option in
parmlib.

READ access to the <SAF_PREFIX>.*.izuUsers profile in the EJBROLE class. Or, at a minimum, READ access to the

<SAF_PREFIX>.IzuManagementFacilityTsoServices.izuUsers resource name in the EJBROLE class. You must also ensure that

the z/OSMF started task user ID, which is IZUSVR by default, has READ access to the CEA.CEATSO.TSOREQUEST resource in class
SERVAUTH. To create a TSO/E address space on a remote system, you require the following authorizations:

You must be authorized to the SAF resource profile that controls the ability to send data to the remote system (systemname), as
indicated: CEA.CEATSO.FLOW.systemname

To flow data between different systems in the sysplex, you must be authorized to do so by your external security manager, such
as a RACF database with sysplex-wide scope. For example, to flow data between System A and System B, you must be permitted
to the following resource profiles:

CEA.CEATSO.FLOW.SYSTEMA

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieac100/prerequisites.htm
https://docs.zowe.org/stable/zosmf_lite_samples.zip

CEA.CEATSO.FLOW.SYSTEMB

Results

The IZUTSSEC job should complete with return code 0000.

Enabling the z/OSMF data set and file REST services

The Zowe framework requires that you enable the z/OSMF data set and file REST services.

Before you begin

1. Ensure that the message queue size is set to a large enough value. It is recommended that you specify an IPCMSGQBYTES value
of at least 20971520 (20M) in BPXPRMxx.

Issue command D OMVS,O to see the current value of IPCMSGQBYTES, if it is not large enough, use the SETOMVS command to set
a large value. To set this value dynamically, you can enter the following operator command:

SETOMVS IPCMSGQBYTES=20971520

2. Ensure that the TSO REST services are enabled.

3. Ensure that IZUFPROC is in your JES concatenation.

4. Ensure that your user ID has a TSO segment defined. To do so, enter the following command from TSO/E command prompt:

LU userid TSO

Where userid is your z/OS user ID.

The output from this command must include the section called TSO information, as shown in the following example:

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZURFSEC in the sample jobs package and upload it to z/OS. If you run z/OS V2R4,
locate job IZURFSEC at SYS1.SAMPLIB .

2. Copy the job.

3. Examine the contents of the job.

4. Modify the contents as needed so that the job will run on your system.

5. From the TSO/E command line, run the IZURFSEC job.

Results

Ensure that the IZURFSEC job completes with return code 0000 .

To verify if this setup is complete, try issuing a REST service. See the example in List data sets in the z/OSMF programming guide.

Common errors

Review the following messages and the corresponding resolutions as needed:

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_GetListDataSets.htm

Symptom Cause Resolution

REST API doesn't return expected data
with rc=12, rsn=3, message: message
queue size "SIZE" is less than minimum:
20M

The message
queue size for CEA
is too small.

Ensure that the message queue size is set to a large enough
value. It is recommended that you specify an
IPCMSGQBYTES value of at least 20971520 (20M) in
BPXPRMx.

Enabling the z/OSMF Workflow REST services and Workflows task UI

The Zowe framework requires that you enable the z/OSMF Workflow REST services and Workflows task UI.

Before you begin

1. Ensure that the JOB REST services are enabled.

2. Ensure that the TSO REST services are enabled.

3. Ensure that the dataset and file REST services are enabled.

Procedure

1. If you run z/OS V2R2 and V2R3, download job IZUWFSEC in the sample jobs package and upload this job to z/OS. If you run z/OS
V2R4, locate job IZUWFSEC at SYS1.SAMPLIB .

2. Copy the job.

3. Examine the contents of the job.

4. Modify the contents as needed so that the job will run on your system.

5. From the TSO/E command line, run the IZUWFSEC job.

Results

Ensure the IZUWFSEC job completes with return code 0000 .

To verify, log on to z/OSMF (or refresh it) and verify that the Workflows task appears in the z/OSMF UI.

At this point, you have completed the setup of z/OSMF Lite.

Optionally, you can add more users to z/OSMF, as described in Appendix C. Adding more users to z/OSMF.

Troubleshooting problems
This section provides tips and techniques for troubleshooting problems you might encounter when creating a z/OSMF Lite
configuration. For other types of problems that might occur, see z/OSMF Configuration Guide.

Common problems and scenarios

This section discusses troubleshooting topics, procedures, and tools for recovering from a set of known issues.

System setup requirements not met

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://www.ibm.com/docs/en/zos/2.5.0?topic=configurations-autostart-concepts-in-zosmf

This document assumes that the following is true of the z/OS host system:

Port 443 is available for use. To check this, issue either TSO command NETSTAT SOCKET or TSO command NETSTAT BYTE to

determine if the port is being used.

The system host name is unique and maps to the system on which z/OSMF Lite is being installed. To retrieve this value, enter
either "hostname" z/OS UNIX command or TSO command "HOMETEST". If your system uses another method of assigning the
system name, such as a multi-home stack, dynamic VIPA, or System Director, see z/OSMF Configuration Guide.

The global mount point exists. On a z/OS 2.3 system, the system includes this directory by default. On a z/OS 2.2 system, you
must create the global directory at the following location: /global/zosmf/ .

If you find that a different value is used on your z/OS system, you can edit the IZUPRMxx parmlib member to specify the correct
setting. For details, see Appendix A. Creating an IZUPRMxx parmlib member.

Tools and techniques for troubleshooting

For information about working with z/OSMF log files, see z/OSMF Configuration Guide.

Common messages

If you see above error messages, check if your IZUANG0 procedure is up to date.

For descriptions of all the z/OSMF messages, see z/OSMF messages in IBM Knowledge Center.

Appendix A. Creating an IZUPRMxx parmlib member
If z/OSMF requires customization, you can modify the applicable settings by using the IZUPRMxx parmlib member. To see a sample
member, locate the IZUPRM00 member in the SYS1.SAMPLIB data set. IZUPRM00 contains settings that match the z/OSMF defaults.

Using IZUPRM00 as a model, you can create a customized IZUPRMxx parmlib member for your environment and copy it to
SYS1.PARMLIB to override the defaults.

The following IZUPRMxx settings are required for the z/OSMF nucleus:

HOSTNAME

HTTP_SSL_PORT

JAVA_HOME.

The following setting is needed for the TSO/E REST services:

COMMON_TSO ACCT(IZUACCT) REGION(50000) PROC(IZUFPROC)

Descriptions of these settings are provided in the table below. For complete details about the IZUPRMxx settings and the proper
syntax for updating the member, see z/OSMF Configuration Guide.

If you change values in the IZUPRMxx member, you might need to customize the started procedure IZUSVR1, accordingly. For details,
see Appendix B. Modifying IZUSVR1 settings.

https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-configuring-zosmf-high-availability
https://www.ibm.com/docs/en/zos/2.4.0?topic=troubleshooting-zosmf-log-files
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zosmfmessages.help.doc/izuG00hpMessages.html
https://www.ibm.com/docs/en/zos/2.3.0?topic=sys1parmlib-izuprmxx-configure-zos-management-facility

To create an IZUPRMxx parmlib member, follow these steps:

1. Copy the sample parmlib member into the desired parmlib data set with the desired suffix.

2. Update the parmlib member as needed.

3. Specify the IZUPRMxx parmlib member or members that you want the system to use on the IZU parameter of IEASYSxx. Or, code
a value for IZUPRM= in the IZUSVR1 started procedure. If you specify both IZU= in IEASYSxx and IZUPARM= in IZUSVR1, the
system uses the IZUPRM= value you specify in the started procedure.

Setting Purpose Rules Default

HOSTNAME(hostname)

Specifies the host name, as defined by DNS, where the
z/OSMF server is located. To use the local host name,
enter asterisk (*), which is equivalent to @HOSTNAME
from previous releases. If you plan to use z/OSMF in a
multisystem sysplex, IBM recommends using a dynamic
virtual IP address (DVIPA) that resolves to the correct IP
address if the z/OSMF server is moved to a different
system.

Must be a valid
TCP/IP
HOSTNAME or
an asterisk (*).

Default: *

HTTP_SSL_PORT(nnn)

Identifies the port number that is associated with the
z/OSMF server. This port is used for SSL encrypted traffic
from your z/OSMF configuration. The default value, 443,
follows the Internet Engineering Task Force (IETF)
standard. Note: By default, the z/OSMF server uses the
SSL protocol SSL_TLSv2 for secure TCP/IP
communications. As a result, the server can accept
incoming connections that use SSL V3.0 and the TLS 1.0,
1.1 and 1.2 protocols.

Must be a valid
TCP/IP port
number. Value
range: 1 - 65535
(up to 5 digits)

Default: 443

COMMON_TSO
ACCT(account-number)
REGION(region-size)
PROC(proc-name)

Specifies values for the TSO/E logon procedure that is
used internally for various z/OSMF activities and by the
Workflows task.

The valid ranges
for each value
are described in
z/OSMF
Configuration
Guide.

Default: 443
ACCT(IZUACCT)
REGION(50000)
PROC(IZUFPROC)

USER_DIR=filepath

z/OSMF data directory path. By default, the z/OSMF data
directory is located in /global/zosmf . If you want to

use a different path for the z/OSMF data directory,
specify that value here, for example:
USER_DIR= /the/new/config/dir .

Must be a valid
z/OS UNIX path
name.

Default:
/global/zosmf/

Appendix B. Modifying IZUSVR1 settings

https://www.ibm.com/docs/en/zos/2.4.0?topic=system-izuprmxx-reference-information

You might need to customize the started procedure IZUSVR1 for z/OSMF Lite.

To modify the IZUSVR1 settings, follow these steps:

1. Make a copy

2. Apply your changes

3. Store your copy in PROCLIB.

Setting Purpose Rules Default

WLPDIR='directory-
path'

WebSphere Liberty server code path.

The directory path
must: Be a valid z/OS
UNIX path name Be
a full or absolute
path name Be
enclosed in
quotation marks
Begin with a forward
slash ('/').

Default:
/usr/lpp/zosmf/liberty

USER_DIR=filepath

z/OSMF data directory path. By default, the
z/OSMF data directory is located in /global/zosmf.
If you want to use a different path for the z/OSMF
data directory, specify that value here, for
example: USER_DIR= /the/new/config/dir .

Must be a valid z/OS
UNIX path name.

Default: /global/zosmf/

Appendix C. Adding more users to z/OSMF

Your security administrator can authorize more users to z/OSMF. Simply connect the required user IDs to the z/OSMF administrator
group (IZUADMIN). This group is permitted to a default set of z/OSMF resources (tasks and services). For the specific group
permissions, see Appendix A in z/OSMF Configuration Guide.

You can create more user groups as needed, for example, one group per z/OSMF task.

Before you Begin

Collect the z/OS user IDs that you want to add.

Procedure

1. On an RACF system, enter the CONNECT command for the user IDs to be granted authorization to z/OSMF resources:

CONNECT userid GROUP(IZUADMIN)

Results

https://www.ibm.com/docs/en/zos/2.2.0?topic=ins-managing-user-access-zosmf-tasks-links

The user IDs can now access z/OSMF.

Version: v2.17.x LTS

Installing Zowe from a Portable Software Instance
As a systems programmer, your responsibilities include acquiring, installing, maintaining, and configuring mainframe products on your
systems. z/OSMF lets you perform these tasks. z/OSMF lets you manage software on your z/OS systems through a browser at any
time, from any location. By streamlining some traditional tasks and automating others, z/OSMF can simplify some areas of system
management and also reduce the level of expertise that is required for managing system activities. Experienced users can view, define,
and update policies that affect system behavior, monitor system performance, and manage their z/OS software. As products and
vendors adopt z/OSMF services, you can install and maintain all your mainframe products in a common way according to industry
best practices. After configuration is complete, you can execute the product and easily provision new software instances for use on
other systems throughout your environment.

End-to-end installation diagram

Prerequisites

To install Zowe using z/OSMF, ensure that you meet the following requirements:

z/OSMF 2.3 or higher

1.2GB of free space

READ access to data set names with the HLQ ZWE on the user ID you use to deploy the portable package

Procedure

Refer to the following subpages to guide you through the installation procedure using z/OSMF.

Address z/OSMF Requirements

Provides information about z/OSMF general configuration and security requirements.

Acquire a z/OSMF Portable Software Instance

Provides the steps to acquire the product software by downloading the z/OSMF portable software instance to the z/OSMF host. You
must then register the portable software instance in z/OSMF.

Install Product Software Using z/OSMF Deployments

Provides the steps to install (deploy) the portable software instance to an LPAR using z/OSMF Deployments. This step creates the
SMP/E environment and runs the RECEIVE, APPLY, and ACCEPT steps to prepare the software instance for SMP/E operations. This step
also:

Customizes the data set names that are defined to SMP/E.

Mounts required USS files if necessary.

Performs workflow execution to customize the deployed runtime environment for use on a specific z/OS system.

When these tasks are completed, you are ready to install preventive maintenance.

https://docs.zowe.org/stable/user-guide/install-zowe-pswi-address-requirements
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-acquire
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-deployment

Version: v2.17.x LTS

Acquiring a z/OSMF Portable Software Instance
As a systems programmer, you can acquire an IBM z/OSMF portable package for your product and then add the portable software
instance to z/OSMF. The product SMP/E environments are pre-built, backed up, and made available for download as a z/OSMF
portable software instance. After you acquire the portable software instance, you can use z/OSMF Deployments to perform the
installation and z/OSMF workflows to perform post-install configuration.

When you complete the acquisition process, the product software is ready for installation using z/OSMF Deployments.

Note: Before you begin the acquisition process, ensure that you address the z/OSMF requirements.

The z/OSMF product acquisition process consists of 2 tasks.

1. Download the portable software instance from Zowe downloads and transfer it to the mainframe.

2. Register the portable software instance in z/OSMF.

Download the Portable Software Instance from Zowe Downloads
The portable software instance is a portable form of a software instance, including the SMP/E CSI data sets, all associated SMP/E-
managed target and distribution libraries, non-SMP/E-managed data sets, and meta-data that is required to describe the product
software instance.

To acquire the portable software instance, you can download it from the Zowe Downloads page and transfer it to a local z/OSMF host
using a file transfer utility, such as FTP.

1. Go to Zowe Downloads and find Zowe - Portable Software Instance.

2. Download the latest version of the package to your workstation.

3. Use an file transfer utility such as an FTP client to transfer the single pax file to the mainframe.

4. Execute the JCL to unpack the installation file and restore the individual pax files. Sample JCL follows:

5. Customize the sample JCL as follows and then submit for execution:

i. Add a JOB statement.

ii. Update the USS directory (yourUSSpaxdirectory) with the path name where you want to copy the pax file.

iii. Update yourpaxfilename with the name of the pax file that you want to copy to the mainframe.

EXPECTED RESULTS:

USSBATCH can take several minutes to execute. You will receive a return code of 0 if this job runs correctly.

After successful execution, the individual pax files are restored and ready for use. Next step is to Register Portable Software Instance in
z/OSMF.

Register Portable Software Instance in z/OSMF

https://www.zowe.org/download.html

After you have acquired and downloaded the portable software instance to a local z/OSMF host system, you must log in to z/OSMF to
register the product software and define the portable software instance to z/OSMF as shown in the following procedure. When you
complete these steps, the portable software instance is registered in z/OSMF and ready for installation (deployment).

1. Log in to the z/OSMF web interface and select your user ID in the top or bottom right-hand corner to switch between the
Desktop Interface and Classic Interface.

2. Complete either of the following steps to display the Software Management page:
i. In the Desktop Interface, select Software Management.

ii. In the Classic Interface, select Software, Software Management.

3. Select Portable Software Instances to define your portable software instance to z/OSMF.

4. Select Add from the Actions menu and select From z/OSMF System. Then the Add Portable Software Instance page should
display.

5. Select or type the system name (destination LPAR) and UNIX directory (destination USS directory) where the portable software
instance files reside and select Retrieve.

6. Enter a name for the new portable software instance. You can also enter an optional description and assign one or more
categories that display existing packages.

7. Select OK.

Now the new portable software instance is defined to z/OSMF. And the portable software instance is now registered in z/OSMF and
ready to install (deploy).

Version: v2.17.x LTS

Installing Product Software Using z/OSMF Deployments
As a system programmer, your responsibilities include installing product software in your z/OS environment.

After the portable software instance or software instance is registered in z/OSMF, you can use z/OSMF Deployments to install the
product software and create the product data sets (global, CSI, target libraries, and distribution libraries) for the new software instance.
The deployment jobs create a copy of the source product data sets to create the product target runtime environment. Creating a copy
of the SMP/E target data sets keeps the SMP/E environment clean and it also isolates the product runtime environment for
maintenance activities. You can also perform z/OSMF workflows to customize the SMP/E data sets, mount UNIX System Services (USS)
files if necessary, and configure the new software instance on the target system.

To install Zowe PSWI using z/OSMF and make the product software available for use on a system by users and other programs, you
need to define a new deployment. This step defines the SMP/E environment name and the prefix of the CSI data set in z/OSMF. You
also specify data set allocation parameters for all SMP/E data sets, target libraries, and distribution libraries.

To define a new deployment, complete the deployment checklist (specify the USS path, DSN, VOLSERs), and submit the deployment
jobs through the z/OSMF user interface. When the deployment is complete, you have a source and target copy of the software.

For more information about these tasks, see Deploying software in the IBM documentation.

Subsequent maintenance activities for the product update the SMP/E environment without affecting your active product runtime
environments. You decide when to redeploy the maintenance-updated SMP/E target data sets to each of the product runtime
environments.

Before installing, make sure the z/OSMF requirements are met.

Installing process

1. Display the Deployments table in z/OSMF (Software ManagementU, Deployments).

2. Define a new deployment by selecting New from the Actions menu. Then the deployment checklist displays, where you can also
modify, view, copy, cancel, or remove existing deployments.

3. Complete the deployment checklist items as described in Defining new deployments in the IBM documentation. As you complete
the deployment checklist, be sure to make the following selections:

i. Specify the properties for this deployment (name, description, and optional category).

ii. Select the software to deploy. For this step, select Portable Software Instance and select your package.

iii. Select the objective for this deployment to indicate where and how you want to install the selected portable software
instance. For this step, indicate that you want to create a software instance and specify the global zone CSI and the system
where the target software instance will reside.

iv. Check for missing SYSMODs and view missing SYSMOD reports. For this step, deselect the following report options:

Requisite SYSMODs and Fix Categories reports

https://www.ibm.com/docs/en/zos/2.4.0?topic=task-deploying-software
https://docs.zowe.org/stable/user-guide/install-zowe-pswi-deployment/install-zowe-pswi-address-requirements#confirm-that-the-installer-has-read-create-update-and-execute-privileges-in-zos

Regressed SYSMODs and HOLDDATA Delta reports

v. Configure this deployment to define the target software instance.

For DLIBs, specify Yes to copy the distribution zones and libraries that are associated with the source software. You can
customize the names and the storage class or volumes of the new data sets.

For Model, indicate The source software to use as a model. z/OSMF uses the data sets, volumes, mount points,
catalogs, and SMP/E zones that are associated with the model to specify default values for the target software instance.

For SMP/E Zones, the DLIB and TLIB names do not typically need to be changed.

For Data sets, change the target data set name prefix to the one that you want to use for your deployment. Specify a
volume or storage class to identify where to create the target data sets.

For Catalogs, no action is required assuming that your target data set prefix is defined in a user catalog.

For Volumes and Storage Classes, no action is required. A summary is presented of the target data sets to be created
and how much space is required.

For Mount Points, review the mount points for the UNIX file system data sets that are included in the target software
instance. When specifying a new target mount point, retain the static path extension in the path name to prevent failures
in the configuration workflow. For example, targetpathname/staticpathextension. Note: If your product does not
include USS directories, ignore this instruction.

vi. Define the job settings to generate JCL to install the software and view the deployment summary. For this step, update the
JOB statement as needed. Note: If the target system for the deployment is in a JES Multi-Access Spool (MAS) and the mount
point is only accessible from the target system, add a System Affinity (SYSAFF) to the job card to ensure execution on the
system where the zFS resides.

vii. Submit the deployment jobs in sequential order, wait for each job to complete, and then select Refresh to register job
completion in z/OSMF.

EXPECTED RESULTS:

You will receive a return code of 0 if this job runs correctly. When all deployment jobs are executed successfully, you have
unzipped, renamed and copied the product data sets, updated the CSI data set, and specified the properties for the target
software instance.

viii. Execute the ZWE9MNT Zowe mount workflow to mount the Zowe zFS.

ix. (Optional) Execute the ZWECONF configuration workflow to set up the created Zowe instance version 2.0 or higher.

x. (Optional) Execute security certification configuration workflows:

To set up a Zowe certificate and keyring, execute the workflow to set up a Zowe certificate and keyring (ZWEKRING).

To creates a certificate sign request, execute the workflow to create CSR request (ZWECRECR).

To signs the CSR request by a local CA, execute the Workflow to sign a CSR request (ZWESIGNC).

To load a signed client authentication certificate to the ESM under the user ACID, execute the workflow to load
authentication certificate into ESM (ZWELOADC).

xi. Specify the name and description of a new target software instance.

All workflows that are mentioned in the previous steps are part of the PSWI and software instance. Note: You do not
have to execute all workflows during PSWI provisioning in z/OSMF immediately.

Now the deployment process is complete. The new software instance is defined to z/OSMF. You are now ready to Import Product
Information into z/OSMF before you install product maintenance.

Version: v2.17.x LTS

Installing Zowe SMP/E build with z/OSMF workflow
z/OSMF workflow simplifies the procedure to create an SMP/E environment for Zowe. Register and execute the Zowe SMP/E workflow
to create SMP/E environment in the z/OSMF web interface. Perform the following steps to register and execute the Zowe workflow in
the z/OSMF web interface:

1. Log in to the z/OSMF web interface.

2. Select Workflows from the navigation tree.

3. Select Create Workflow from the Actions menu.

4. Enter the complete path to the workflow definition file in the Workflow Definition filed.

The workflow is located in the ZWEWRF01 member of the hlq.ZOWE.AZWE002.F4 data set.

5. (Optional) Enter the path to the customized variable input file that you prepared in advance.

The variable input file is located in ZWEYML01 member of the hlq.ZOWE.AZWE002 data set.

Create a copy of the variable input file. Modify the file as necessary according to the built-in comments. Set the field to the path
where the new file is located. When you execute the workflow, the values from the variable input file override the workflow
variables default values.

6. Select the system where you want to execute the workflow.

7. Select Next.

8. Specify the unique workflow name.

9. Select or enter an Owner Use ID and select Assign all steps to owner user ID.

10. Select Finish.

The workflow is registered in z/OSMF and ready to execute.

11. Select the workflow that you registered from the workflow list.

12. Execute the steps in order.

13. Perform the following steps to execute each step individually:

i. Double-click the title of the step.

ii. Select the Perform tab.

iii. Review the step contents and update the input values as required.

iv. Select Next.

v. Repeat the previous two steps to complete all items until the option Finish is available.

vi. Select Finish.

After you execute each step, the step is marked as Complete. The workflow is executed.

After you complete executing all the steps individually, the Zowe SMP/E is created.

Activating Zowe

File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you do not have to take
further actions to activate Zowe.

Zowe customization
You can find the necessary information about customizing and using Zowe on the Zowe doc site.

For more information about how to customize Zowe, see Configuring Zowe after installation.

For more information about how to use Zowe, see Using Zowe.

https://docs.zowe.org/stable/user-guide/mvd-configuration
https://docs.zowe.org/stable/user-guide/zowe-getting-started-tutorial

Version: v2.17.x LTS

Installing Zowe via a convenience build (PAX file)
You install the Zowe™ convenience build by obtaining a PAX file and using this to create the Zowe runtime environment.

Introduction
The Zowe installation file for Zowe z/OS components is distributed as a PAX file that contains the runtimes and the scripts to install
and launch the z/OS runtime. You must obtain the PAX file and transfer it to z/OS first. Then, to install, configure and start Zowe, you
use the zwe command. This command defines help messages, logging options, and more. For details about how to use this

command, see the ZWE Server Command Reference.

The configuration data that is read by the zwe command are stored in a YAML configuration file named zowe.yaml . You modify the

zowe.yaml file based on your environment.

Complete the following steps to install the Zowe runtime.

End-to-end installation diagram

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/

Step 1: Obtain the convenience build
1. To download the PAX file, open your web browser on the Zowe Download website.

2. Navigate to Zowe V2 Preview -> Convenience build section, and select the button to download the v2 convenience build.

Step 2: Transfer the convenience build to USS and expand it
After you download the PAX file, you can transfer it to z/OS and expand its contents.

1. Open a terminal in Mac OS/Linux, or command prompt in Windows OS, and navigate to the directory where you downloaded the
Zowe PAX file.

2. Connect to z/OS using SFTP. Issue the following command:

If SFTP is not available or if you prefer to use FTP, you can issue the following command instead:

3. Navigate to the target directory that you want to transfer the Zowe PAX file into on z/OS.

Note: After you connect to z/OS and enter your password, you enter the UNIX file system. The following commands are useful:

To see what directory you are in, type pwd .

To switch directory, type cd .

To list the contents of a directory, type ls .

To create a directory, type mkdir .

4. When you are in the directory you want to transfer the Zowe PAX file into, issue the following command:

zowe-V.v.p is a variable that indicates the name of the PAX file you downloaded.

Note: When your terminal is connected to z/OS through FTP or SFTP, you can prepend commands with l to have them issued
against your desktop. To list the contents of a directory on your desktop, type lls where ls lists contents of a directory on z/OS.

After the PAX file has sucessfully transferred, exit your sftp or ftp session.

5. Open a USS shell to expand the PAX file. This can either be an ssh terminal, OMVS, iShell, or any other z/OS unix system services
command environment.

6. Expand the PAX file by issuing the following command in the USS shell.

Where zowe-V.v.p is a variable that indicates the name of the PAX file you downloaded. When extracting the Zowe convenience
build, you must always include the -ppx argument that preserves extended attributes.

This will expand to a file structure similar to the following one.

This is the Zowe runtime directory and is referred to as <RUNTIME_DIR> throughout this documentation.

Note: Zowe version 1 had a script zowe-install.sh that created a separate Zowe runtime directory from the expanded contents of

the Zowe PAX file. Zowe v2 no longer has this step. In Zowe v2, the contents of the expanded Zowe PAX file are the Zowe
runtime directory.

https://www.zowe.org/download.html

Step 3: (Optional) Add the zwe command to your PATH

The zwe command is provided in the <RUNTIME_DIR>/bin directory. You can optionally add this Zowe bin directory to your PATH
environment variable so you can execute the zwe command without having to fully qualify its location. To update your PATH , run the

following command:

<RUNTIME_DIR> should be replaced with your real Zowe runtime directory path. This will update the PATH for the current shell. To

make this update persistent, you can add the line to your ~/.profile file, or the ~/.bashProfile file if you are using a bash shell. To

make this update system wide, you can update the /etc/.profile file. Once the PATH is updated, you can execute the zwe
command from any USS directory. For the remainder of the documentation when zwe command is referenced, it is assumed that it

has been added to your PATH .

The zwe command has built in help that can be retrieved with the -h suffix. For example, type zwe -h to display all of the supported

commands. These are broken down into a number of sub-commands.

Step 4: Copy the zowe.yaml configuration file to preferred location
Copy the template file <RUNTIME_DIR>/example-zowe.yaml file to a new location, such as /var/lpp/zowe/zowe.yaml or your home

directory ~/.zowe.yaml . This will become your configuration file that contains data used by the zwe command at a number of parts

of the lifecycle of configuring and starting Zowe. You will need to modify the zowe.yaml file based on your environment.

When you execute the zwe command, the -c argument is used to pass the location of a zowe.yaml file.

TIP

To avoid passing --config or -c to every zwe commands, you can define ZWE_CLI_PARAMETER_CONFIG environment variable

points to location of zowe.yaml.

For example, after defining

, you can simply type zwe install instead of full command zwe install -c /path/to/my/zowe.yaml .

Step 5: Install the MVS data sets
After you extract the Zowe convenience build, you can run the zwe install command to install MVS data sets.

About the MVS data sets

Zowe includes a number of files that are stored in the following three data sets. See the following table for the storage requirements.

Library
DDNAME

Member Type
Target

Volume
Type Org RECFM LRECL

No. of 3390
Trks

No. of DIR
Blks

SZWESAMP Samples ANY U PDSE FB 80 15 5

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install

Library
DDNAME

Member Type
Target

Volume
Type Org RECFM LRECL

No. of 3390
Trks

No. of DIR
Blks

SZWEAUTH
Zowe APF Load
Modules

ANY U PDSE U 0 15 N/A

SZWEEXEC CLIST copy utilities ANY U PDSE FB 80 15 5

The SZWESAMP data set contains the following members.

Member name Purpose

ZWESECUR JCL member to configure z/OS user IDs and permissions required to run Zowe

ZWENOSEC JCL member to undo the configuration steps performed in ZWESECUR and revert z/OS environment changes.

ZWEKRING JCL member to configure a z/OS keyring containing the Zowe certificate

ZWENOKYR JCL member to undo the configuration steps performed in ZWEKRING

ZWESLSTC JCL to start Zowe

ZWEXMSTC JCL to start the Zowe cross memory server

ZWESIP00 Parmlib member for the cross memory server

ZWESASTC Started task JCL for the cross memory Auxiliary server

ZWESIPRG Console commands to APF authorize the cross memory server load library

ZWESISCH PPT entries required by Cross memory server and its Auxiliary address spaces to run in Key(4)

ZWECSVSM JCL Member to create the VSAM data set for the caching service

The SZWEAUTH data set is a load library containing the following members.

Member name Purpose

ZWELNCH The Zowe launcher that controls the startup, restart and shutdown of Zowe's address spaces

ZWESIS01 Load module for the cross memory server

ZWESAUX Load module for the cross memory server's auxiliary address space

The SZWEEXEC data set contains few utilities used by Zowe.

Procedure

The high level qualifer (or HLQ) for these data sets is specified in the zowe.yaml section below. Ensure that you update the

zowe.setup.dataset.prefix value to match your system.

To create and install the MVS data sets, use the command zwe install .

1. In a USS shell, execute the command zwe install -c /path/to/zowe.yaml . This creates the three data sets and copy across

their content.

2. If the data sets already exist, specify --allow-overwritten .

3. To see the full list of parameters, execute the command zwe install -h .

A sample run of the command is shown below using default values.

Next steps

You successfully installed Zowe from the convenience build! However, before you start Zowe, you must complete several required
configurations. Next, go to Initialize the z/OS system and permissions to initialize your z/OS system for Zowe first.

https://docs.zowe.org/stable/user-guide/initialize-zos-system

Version: v2.17.x LTS

Installing Zowe via a containerization build (PAX file)
You can download Zowe (server) containers as an alternative to running Zowe servers on z/OS through the Zowe convenience and
SMP/E builds. Choose the appropriate installation type for your use case.

REQUIRED ROLES: SYSTEM PROGRAMMER

Using containers for installation has the following advantages:

You can run Zowe servers on other platforms including Linux on Z and your PC.

You can run Zowe servers locally on your system for rapid development.

You can run redundant copies of servers for scaling capacity to meet workload requirements.

You can leverage container monitoring tools.

For more information about containers, see the Kubernetes website to learn about key concepts.

TIP

You can now perform Zowe installation via the Zowe Server Install Wizard. Using the wizard streamlines the installation process
and is an alternative to performing manual Zowe server-side component installation. For more information about the wizard, see
Installing Zowe via Zowe Server Install Wizard.

End-to-end container installation

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.zowe.org/stable/user-guide/install-zowe-server-install-wizard

Zowe containers are designed to run together with extensions and Zowe utilities, and therefore are built for orchestration software
that can manage the relationship and lifecycle of the containers. The following topics guide you to set up and use Zowe's containers
with the Kubernetes orchestration software.

Stage 1: Plan and prepare for the installation

Stage 1 ensures that your software and hardware are prepared for installation. For more information, see Preparing for Zowe server
containers installation.

Stage 2: Download Zowe containers

In Stage 2, you download the Zowe containers. Choose from the following download methods:

Download Configuration samples.(This is the recommended method)

Download container images.

Stage 3 & 4: Install and configure Zowe containers

In Stage 3, you do not need to install the Zowe containers if you use Zowe's Kubernetes configuration samples. If you download
container images, installation is achieved when the images are findable by Kubernetes. For more information, see the Installing section
of Downloading and installing containers.

In Stage 4, you can configure the Zowe container environment.
Follow these steps:

1. Create namespace and service account

2. Create Persistent Volume Claim (PVC)

3. Create and modify ConfigMaps and Secrets (Manually creating ConfigMaps and Secrets)

4. Expose API Mediation Layer components

Stage 5: Start Zowe containers

In Stage 5, you can start Zowe containers.

Follow these steps:

1. Apply the deployment files to start Zowe containers.

2. After you start Zowe containers, verify that Zowe containers are started.

(Optional) Stage 6: Monitor Zowe containers

In Stage 6, monitor your containers to verify that the containers are functioning properly.

Known limitations
You may encounter an issue that some plugins do not appear in Zowe Desktop. We recommnend you try the Refresh
Applications icon that appears in the Desktop start menu.

You may encounter an issue that some services do not appear in Zowe API Catalog. We recommend you try the Refresh Static
APIs option that appears in the upper-right corner of API Catalog web page.

useConfigmgr is disabled within containers. As such yaml schema validation is not currently supported.

https://docs.zowe.org/stable/user-guide/k8s-prereqs
https://docs.zowe.org/stable/user-guide/k8s-downloading#downloading-configuration-samples
https://docs.zowe.org/stable/user-guide/k8s-downloading#downloading-container-images
https://docs.zowe.org/stable/user-guide/k8s-downloading#installing
https://docs.zowe.org/stable/user-guide/k8s-config
https://docs.zowe.org/stable/user-guide/k8s-config#1-create-namespace-and-service-account
https://docs.zowe.org/stable/user-guide/k8s-config#2-create-persistent-volume-claim-pvc
https://docs.zowe.org/stable/user-guide/k8s-config#3-create-and-modify-configmaps-and-secrets
https://docs.zowe.org/stable/user-guide/k8s-config#4-expose-api-mediation-layer-components
https://docs.zowe.org/stable/user-guide/k8s-using#starting-zowe-containers
https://docs.zowe.org/stable/user-guide/k8s-using#starting-zowe-containers
https://docs.zowe.org/stable/user-guide/k8s-using#verifying-zowe-containers
https://docs.zowe.org/stable/user-guide/k8s-using#monitoring-zowe-containers

Version: v2.17.x LTS

Preparing for Zowe server containers installation
Before you install the Zowe server container, make sure that you have the required software and environments.

Zowe installed on z/OS for users of ZSS and ZIS (default when you use the Zowe Application Framework app-server , the Zowe
Desktop, or products that are based on them)

z/OSMF installed on z/OS for users of it (default when you use gateway , API Mediation Layer, Web Explorers, or products that are
based on them)

A container runtime, such as:

Docker

CRI-O

containerd

Kubernetes Cluster software

kubectl, for initial setup and management of the cluster

Note: This documentation uses container terminology that may be explained within the Kubernetes Glossary.

Kubernetes cluster

The Zowe containerization solution is compatible with Kubernetes v1.19+ or OpenShift v4.6+.

You can prepare a Kubernetes cluster based on your requirements in many different ways.

For development purposes, you can set up a Kubernetes cluster on your local computer in one of the following ways:

Enable Kubernetes shipped with Docker Desktop

Set up minikube

Attention! You must make sure that the Kubernetes cluster you have created has a minimum RAM of 3GB in order for Zowe to
start.

For production purposes, you can set up a Kubernetes cluster in one of the following ways:

Bootstrap your own cluster by following instructions in Installing Kubernetes with deployment tools in the Kubernetes
documentation.

Provision a Kubernetes cluster from popular Cloud vendors:

Amazon Elastic Kubernetes Service

Microsoft Azure Kubernetes Service

IBM Cloud Kubernetes Service

Google Cloud Kubernetes Engine

https://docs.zowe.org/stable/user-guide/install-zos
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/reference/glossary/?fundamental=true
https://docs.docker.com/desktop/kubernetes/
https://minikube.sigs.k8s.io/docs/start/
https://kubernetes.io/docs/setup/production-environment/tools/
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://www.ibm.com/ca-en/cloud/kubernetes-service
https://cloud.google.com/kubernetes-engine

kubectl tool

You need kubectl CLI tool installed on your local computer where you want to manage the Kubernetes cluster. For instructions on

how to install the kubectl tool, see Install Tools in the Kubernetes documentation.

https://kubernetes.io/docs/tasks/tools/

Version: v2.17.x LTS

Downloading and installing Zowe containers
Learn how to download and install Zowe's containers.

Downloading
You can download Zowe's containers in one of the following ways:

Downloading configuration samples

Downloading container images

Downloading configuration samples

The easiest way to install and run Zowe's containers is by using the configuration samples that are provided on Zowe's website. If you
don't already have these samples, you can download them by completing the following tasks:

1. Download Zowe containerization build from zowe.org.

2. Extract the compressed file to the system where you will run the Zowe containers.

3. Find the samples within the extracted folder kubernetes .

Downloading container images

Downloading Zowe's container images manually is not required because this can be done automatically when applying a Kubernetes
deployment configuration.

If wanted, you can download Zowe's container images manually by using the docker pull commands. This allows you to get an

image from a registry or attach an image that you have downloaded directly. You can find Zowe's container images in
https://zowe.jfrog.io/ui/repos/tree/General/docker-release%2Fompzowe:

Registry: zowe-docker-release.jfrog.io

Organization: ompzowe

Full image addresses include,

zowe-docker-release.jfrog.io/ompzowe/gateway-service:latest-ubuntu

zowe-docker-release.jfrog.io/ompzowe/app-server:latest-ubuntu

zowe-docker-release.jfrog.io/ompzowe/explorer-jes:latest-ubuntu

Therefore, you can download these manually with the docker pull commands. For example,

docker pull zowe-docker-release.jfrog.io/ompzowe/app-server:latest-ubuntu

Installing

https://www.zowe.org/download.html
https://zowe.jfrog.io/ui/repos/tree/General/docker-release%2Fompzowe

You do not need to install the Zowe containers if you use Zowe's Kubernetes configuration samples. By default, these sample
configurations will pull Zowe component images from the public Zowe docker release registry zowe-docker-release.jfrog.io
directly and then start them. Your Kubernetes nodes require an Internet connection that can reach this registry.

An image could be considered "installed" when it is findable by Kubernetes. Just like downloading, this is done automatically by
Kubernetes but commands such as docker pull or docker load accomplishes the same task.

Upgrading
Upgrade is an automatic process when you apply Kubernetes deployment configuration. The configuration files tell Kubernetes to
automatically download the latest version of Zowe. Here, latest is the keyword for constantly updated version. For example zowe-

docker-release.jfrog.io/ompzowe/gateway-service:latest-ubuntu .

Note: Automatic upgrades can fail if you have changed the workload configuration files to use a specific Zowe version. In that case,
you must enter the latest version manually in the configuration file such as zowe-docker-release.jfrog.io/ompzowe/gateway-

service:2.0.0-ubuntu .

If your Kubernetes nodes do not have an Internet connection, you can follow the instruction of the previous step to manually pull all
images into all your Kubernetes nodes. After you have done this, you need to modify all occurrences of imagePullPolicy: Always in

the sample configurations and replace them with imagePullPolicy: Never before applying them.

Version: v2.17.x LTS

Configuring Zowe containers
Zowe provides sample configurations that make it easy for you to run Zowe in Kubernetes. You can use them directly or as a
reference.

You can customize the configuration or make your own. If you do so, note the following objects that are expected by the container
deployments:

Kind Name Note

Namespace zowe

ServiceAccount zowe-sa

ConfigMap zowe-certificates-cm
Contains zowe-certificates.env with the same format as seen on z/OS

keystore

Secret
zowe-certificates-
secret

Contains the base64 PEM and P12 data for keystore and truststore

Ingress discovery-ingress Used for external access to the Discovery service

Ingress gateway-ingress Used for external access to the Gateway service

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/

Kind Name Note

Route discovery Used for external access to the Discovery service

Route gateway Used for external access to the Gateway service

Service discovery-service Used for internal or external access to the Discovery service

Service gateway-service Used for external access to the Gateway service

Service catalog-service Used for access to the Catalog service

PersistentVolumeClaim zowe-workspace-pvc

HorizontalPodAutoscaler * Autoscalers exist for the various pods

PodDisruptionBudget * Disruption budgets exist for the various pods

To configure the Zowe container environment, complete the following procedure.

1. Create namespace and service account
Run the following commands to create Zowe's Namespace zowe with Service Account zowe-sa .

Note that by default, zowe-sa service account has automountServiceAccountToken disabled for security purposes.

Verification

To verify, check the following configurations.

kubectl get namespaces should show a Namespace zowe .

This displays the default Namespace zowe, if not set.

kubectl get serviceaccounts --namespace zowe should show a ServiceAccount zowe-sa .

This displays the default ServiceAccount zowe-sa, if not set.

2. Create Persistent Volume Claim (PVC)
Zowe's PVC has a default StorageClass value that may not apply to all Kubernetes clusters. Check and customize the
storageClassName value of samples/workspace-pvc.yaml as needed. You can use kubectl get sc to confirm which StorageClass
you can use.

After you customize the storageClassName value, apply the result by issuing the following commands:

Verification

https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

To verify, run the following commands and check if the STATUS of line item zowe-workspace-pvc shows as Bound .

IMPORTANT:

zowe-workspace-pvc PersistentVolumeClaim must be declared in access mode ReadWriteMany to allow the workspace be

shared by all Zowe components.

In some Kubernetes environment, you may need to define PeristentVolume and define volumeName in PersistentVolumeClaim

instead of defining storageClassName . Please consult your Kubernetes administrator to confirm the appropriate way for your
environment. This is an example to configure PersistentVolumeClaim with pre-configured zowe-workspace-pv PeristentVolume .

3. Create and modify ConfigMaps and Secrets

Similarly, to run Zowe services on z/OS, you can use the Zowe zowe.yaml configuration file to customize Zowe in Kubernetes.

You can modify samples/config-cm.yaml and samples/certificates-secret.yaml directly. Or more conveniently, if you have
Zowe ZSS/ZIS running on z/OS, the Kubernetes environment can reuse instance and keystore configuration from that installation.
Ensure that the verify certificate setting of your existing keystore configuration is set to STRICT mode. Otherwise, update your

zowe.yaml configuration file to change the setting to STRICT mode and generate a new set of certificates.

If you want to manually create, or later customize the ConfigMaps and Secrets, see Customizing or manually creating ConfigMaps and
Secrets for details.

To create and modify ConfigMaps and Secrets by using the migrate configuration script, complete the following steps:

a. To make Zowe v2 certificates work in Kubernetes, in your zowe.yaml (in runtime directory), you need to:

set zowe.verifyCertificate to STRICT mode.

set zowe.setup.certificate.pkcs12.caAlias . Default alias is local_ca .

set zowe.setup.certificate.pkcs12.caPassword . Default CA password is local_ca_password .

make sure the certificate that you are using have defined the following domains in certificate Subject Alt Name (SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster

*.<k8s-namespace>.svc.<k8s-cluster-name>

*.discovery-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.gateway-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.<k8s-namespace>.pod.<k8s-cluster-name>

where,

<k8s-namespace> is the Kubernetes Namespace you installed Zowe into

<k8s-cluster-name> is the Kubernetes cluster name, which usually should be cluster.local . Note that the following

command will automatically add the k8s internal domain into SAN.

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

Next, on z/OS, run the following command:

For more detailed explaination of zwe migrate command parameters, see zwe migrate for kubernetes.

As a result, it displays ConfigMaps zowe-config and Secrets (zowe-certificates-secret) Kubernetes objects which are based on

the Zowe instance and keystore used. The content looks similar to samples/config-cm.yaml and samples/certificates-
secret.yaml but with real values.

b. Follow the instructions in the script output to copy the output and save it as a YAML file configs.yaml on your computer where
you manage Kubernetes.

c. Apply the file into Kubernetes:

d. Remove the previously saved configs.yaml file from all systems for security.

Verification

To verify, run the following commands and check the results.

kubectl get configmaps --namespace zowe

This command must display the two ConfigMaps zowe-config and zowe-certificates-cm .

kubectl get secrets --namespace zowe

This command must display a Secret zowe-certificates-secret .

4. Expose API Mediation Layer components
This step makes Zowe's Gateway, Discovery, and API Catalog servers available over a network.

The Gateway is always required to be externally accessible, and depending upon your environment the Discovery service may also
need to be externally accessible.

The actions you need to take in this step vary depending upon your Kubernetes cluster configuration. If you are uncertain about this
section, please contact your Kubernetes administrator or the Zowe community.

4a. Create service

You can set up either a LoadBalancer or NodePort type Service.

Note: Because NodePort cannot be used together with NetworkPolicies , LoadBalancer and Ingress is preferred configuration
option.

Review the following table for steps you may take depending on the Kubernetes provider you use. If you don't need additional setups,
you can skip steps 4b, 4c and jump directly to the Apply zowe section.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes
https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.zowe.org/stable/user-guide/k8s-using

Kubernetes provider Service Additional setups required

minikube LoadBalancer or NodePort Port Forward (on next section Starting, stopping, and monitoring)

docker-desktop LoadBalancer none

bare-metal LoadBalancer or NodePort Create Ingress

cloud-vendors LoadBalancer none

OpenShift LoadBalancer or NodePort Create Route

Defining api-catalog service

api-catalog-service is required by Zowe, but not necessarily exposed to external users. Therefore, api-catalog-service is

defined as type ClusterIP .

To define this service, run the command:

To verify, You should see the following output:

Then, you can proceed with creating the Gateway and Discovery services according to your environment.

Applying Gateway Service

If using LoadBalancer , run the command:

Or if using NodePort instead, first check spec.ports[0].nodePort as this will be the port to be exposed to external. In this case, the
default gateway port is not 7554 but 32554. You will need to use https://<your-k8s-node>:32554/ to access APIML Gateway. To

apply NodePort type gateway-service , run the following command:

To verify either case, run the following command and check that the command displays the service gateway-service .

Applying Discovery service

Exposing the Discovery service is only required when there is a Zowe service or extension which needs to be registered to the API
Mediation Layer but is running outside of Kubernetes, such as on z/OS. Otherwise, the discovery service can remain accessible only
within the Kubernetes environment.

Optional: To set up the discovery service without exposing it externally, edit samples/discovery-service-lb.yaml if using

LoadBalancer type services, or samples/discovery-service-np.yaml if using NodePort type services. In either file, specify

ClusterIP as the type, replacing the NodePort or LoadBalancer value.

To enable the service externally when using LoadBalancer services, run the command:

Or if using NodePort instead, first check spec.ports[0].nodePort as this will be the port to be exposed to external. In this case, the

default discovery port is not 7553 but 32553. And you will need to use https://<your-k8s-node>:32553/ to access APIML

Discovery. To apply NodePort type discovery-service , run the following command:

To verify either case, run the following command and check that this command displays the service discovery-service :

kubectl get services --namespace zowe

Upon completion of all the preceding steps in this a. Create service section, you may need to run additional setups. Refer to
"Additional setups required" in the table. If you don't need additional setups, you can skip 4b, 4c, 4d, and jump directly to Apply Zowe
section.

4b. Create Ingress (Bare-metal)

An Ingress gives Services externally-reachable URLs and may provide other abilities such as traffic load balancing.

To create Ingress, perform the following steps:

a. Edit samples/gateway-ingress.yaml and samples/discovery-ingress.yaml before applying them, by uncommenting the lines

(19 and 20) for defining spec.rules[0].host and http: , and then commenting out the line below, - http:

b. Run the following commands:

To verify, run the following commands:

kubectl get ingresses --namespace zowe

This command must display two Ingresses gateway-ingress and discovery-ingress .

Upon completion, you can finish the setup by applying zowe and starting it.

4c. Create Route (OpenShift)

If you are using OpenShift and choose to use LoadBalancer services, you may already have an external IP for the service. You can use

that external IP to access Zowe APIML Gateway. To verify your service external IP, run:

If you see an IP in the EXTERNAL-IP column, that means your OpenShift is properly configured and can provision external IP for you. If
you see <pending> and it does not change after waiting for a while, that means you may not be able to use LoadBalancer services

with your current configuration. Try ClusterIP services and define Route . A Route is a way to expose a service by giving it an

externally reachable hostname.

To create a route, perform the following steps:

a. Check and set the value of spec.port.targetPort in samples/gateway-route.yaml and samples/discovery-route.yaml
before applying the changes.

b. Run the following commands:

To verify, run the following commands:

oc get routes --namespace zowe

This command must display the two Services gateway and discovery .

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.zowe.org/stable/user-guide/k8s-config/k8s-using
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html

Upon completion, you can finish the setup by applying zowe and starting it.

Customizing or manually creating ConfigMaps and Secrets

The z/OS to k8s convert tool can automatically create a config map and secret. However, if you want to customize or create your own,
review the instructions in this section.

To make certificates work in Kubernetes, make sure the certificate you are using have defined the following domains in certificate
Subject Alt Name (SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster

*.<k8s-namespace>.svc.<k8s-cluster-name>

*.discovery-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.gateway-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.<k8s-namespace>.pod.<k8s-cluster-name>

<k8s-namespace> is the Kubernetes Namespace you installed Zowe into. And <k8s-cluster-name> is the Kubernetes cluster name,

which usually should be cluster.local .

Without the additional domains in SAN, you may see warnings/errors related to certificate validation.

CAUTION

It's not recommended to disable zowe.verifyCertificates .

Notes: When the following conditions are true, this migration script will regenerate a new set of certificates for you with proper
domain names listed above.

You use zwe init command to initialize Zowe

You use PKCS#12 format keystore by defining zowe.setup.certificate.type: PKCS12

You did not define zowe.setup.certificate.pkcs12.import.keystore and let zwe command to generate PKCS12 keystore for

you

You enabled STRICT mode zowe.verifyCertificates

To manually create the ConfigMaps and Secrets used by Zowe containers, you must create the following objects:

1. A ConfigMap, with values based upon a Zowe configuration zowe.yaml and similar to the example samples/config-cm.yaml

with the following differences to the values seen on a z/OS installation:

zowe.setup and haInstances are not needed for Zowe running in Kubernetes and will be ignored. You can remove them.

java.home and node.home are not usually needed if you are using Zowe base images.

zowe.runtimeDirectory must be set to /home/zowe/runtime .

zowe.externalDomains is suggested to define as a list of domains you are using to access your Kubernetes cluster.

zowe.externalPort must be the port you expose to end-user. This value is optional if it's same as default APIML Gateway

service port 7554 . With default settings,

https://docs.zowe.org/stable/user-guide/k8s-config/k8s-using
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

if you choose LoadBalancer gateway-service , this value is optional, or set to 7554 ,

if you choose NodePort gateway-service and access the service directly, this value should be same as

spec.ports[0].nodePort with default value 32554 ,

if you choose NodePort gateway-service and access the service through port forwarding, the value should be the

forwarded port you set.

components.discovery.replicas should be set to same value of spec.replicas defined in workloads/discovery-

statefulset.yaml .

All components running in Kubernetes should use default ports:
components.api-catalog.port is 7552 ,

components.discovery.port is 7553 ,

components.gateway.port is 7554 ,

components.caching-service.port is 7555 ,

components.jobs-api.port is 7600 ,

components.files-api.port is 7559 ,

components.app-server.port is 7556 .

components.caching-service.storage.mode should NOT be set to VSAM . redis is suggested. Follow Redis configuration

documentation to customize other Redis related variables. Leave the value to empty for debugging purposes.

Must append and customize these 2 values into zowe.environments section:

ZWED_agent_host=<ZOWE_ZOS_HOST>

ZWED_agent_https_port=<ZOWE_ZSS_SERVER_PORT>

2. A Secret, with values based upon a Zowe keystore's files, and similar to the example samples/certificates-secret.yaml .

You need 2 entries under the data section:

keystore.p12 : which is base64 encoded PKCS#12 keystore,

truststore.p12 : which is base64 encoded PKCS#12 truststore.

And 3 entries under stringData section:

keystore.key : is the PEM format of certificate private key,

keystore.cer : is the PEM format of the certificate,

ca.cer : is the PEM format of the certificate authority.

PodDisruptionBudget

Zowe provides optional PodDisruptionBudget which can provide high availability during upgrade. By default, Zowe defines

minAvailable to be 1 for all deployments. This configuration is optional but recommended. To apply PodDisruptionBudget , run

this command:

To verify this step, run:

This should show you a list of PodDisruptionBudget like this:

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis/#redis-configuration

HorizontalPodAutoscaler

Zowe provides optional HorizontalPodAutoscaler which can automatically scale Zowe components based on resource usage. By

default, each workload has a minimum of 1 replica and a maximum of 3 to 5 replicas based on CPU usage. This configuration is
optional but recommended. HorizontalPodAutoscaler relies on Kubernetes Metrics server monitoring to provide metrics through

the Metrics API. To learn how to deploy the metrics-server, see the metrics-server documentation. Please adjust the
HorizontalPodAutoscaler definitions based on your cluster resources, then run this command to apply them to your cluster:

To verify this step, run:

This should show you a list of HorizontalPodAutoscaler like this:

Kubernetes v1.21+
If you have Kubernetes v1.21+, several optional changes are recommended based on Deprecated API Migration Guide.

Kind CronJob : change apiVersion: batch/v1beta1 to apiVersion: batch/v1 on workloads/zowe-yaml/cleanup-static-

definitions-cronjob.yaml and workloads/instance-env/cleanup-static-definitions-cronjob.yaml . apiVersion:
batch/v1beta1 will stop working on Kubernetes v1.25.

Kind PodDisruptionBudget : change apiVersion: policy/v1beta1 to apiVersion: policy/v1 on all files in samples/pod-

disruption-budget/ . apiVersion: policy/v1beta1 will stop working on Kubernetes v1.25.

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/metrics
https://github.com/kubernetes-sigs/metrics-server#deployment
https://kubernetes.io/docs/reference/using-api/deprecation-guide/

Version: v2.17.x LTS

Starting, stopping, and monitoring Zowe containers
After Zowe's containers are installed and configured, you can refer to the following topics that help you manage your installation.

Starting Zowe containers
The Kubernetes cluster will automatically start as many containers as needed per service according to the Deployment configuration.

To apply the deployment files, run this command:

Port forwarding (for minikube only)

Kubectl port-forward allows you to access and interact with internal Kubernetes cluster processes from your localhost. For debugging
or development, you might want to port forward to make Zowe gateway or discovery service available externally quickly.

Before issuing port forward commands, make sure that gateway and discovery services pods are running. You can run kubectl get

pods -n zowe and check if the STATUS of both discovery-* and gateway-* is RUNNING . If not, you may have to wait.

Once both STATUS shows RUNNING , run the following command to port forward:

The & sign at the command will run the command as a background process. Otherwise, the port forward process will occupy the

terminal indefinitely until canceled as a foreground service.

Verifying Zowe containers
The containers will start soon after applying the deployments.

To verify:

1. kubectl get deployments --namespace zowe

This command must show you a list of deployments including explorer-jes , gateway-service , app-server , etc. Each

deployment should show 1/1 in READY column. It could take a moment before all deployments say 1/1 .

2. kubectl get statefulsets --namespace zowe

This command must show you a StatefulSet discovery which READY column should be 1/1 .

3. kubectl get cronjobs --namespace zowe

This command must show you a CronJob cleanup-static-definitions which SUSPEND should be False .

Monitoring Zowe containers

You can monitor Zowe containers using a UI or CLI.

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

Monitoring Zowe containers via UI

Kubernetes provides a container that allows you to manage your cluster through a web browser. When using Docker Desktop, it is
already installed in the namespace kubernetes-dashboard . See the Kubernetes website for install instructions.

Metrics Server is also recommended and is required if you want to define Horizontal Pod Autoscaler. Check if you have metrics-

server Service in kube-system namespace with this command kubectl get services --namespace kube-system . If you don't

have it, you can follow this Installation instruction to install it.

Monitoring Zowe containers via CLI

kubectl allows you to see the status of any kind of object with the get command. This applies to the table in the configuring section
but also for the pods that run the Zowe containers.

Here are a few commands you can use to monitor your environment:

kubectl get pods -n zowe lists the status of the components of Zowe.

kubectl describe pods -n zowe <podid> can see more details about each pod.

kubectl logs -n zowe <podid> will show you the terminal output of a particular pod, with -f allowing you to keep the logs

open as new messages are added.

kubectl get nodes -n zowe -owide will tell you more about the environment you're running.

Stopping, pausing or removing Zowe containers
To temporarily stop a component, locate the Deployment component and scale down to 0 . For example, if you want to stop the

jobs-api container, run this command:

You can later re-enable a component by scaling the component back to 1 or more.

If you want to permanently remove a component, you can delete the component Deployment . To use jobs-api as an example, run

this command:

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-sigs/metrics-server#installation

Version: v2.17.x LTS

Configuring Overview
Review this article for an overview of the procedures that must be performed to configure Zowe z/OS components and the z/OS
system. More details about the individual procedures are provided in the articles in this section.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Configuring Zowe z/OS components consists of the following four main steps:

1. Configure Zowe runtime

2. Configure the z/OS system for Zowe

3. Assign security permissions

4. Configure the Zowe cross memory server (ZIS)

NOTE

Successful completion of steps 2, 3, and 4 may require elevated security permissions. We recommend you consult with your
security administrator to assist with performing these steps.

Configuring Zowe runtime
To cofigure Zowe runtime, choose from the following options:

Option 1: Configure Zowe manually using the zwe init command group

To run the zwe init command, it is necessary to create a Zowe configuration file. For more information about this file, see the

Runtime directory which details all of the started tasks in the article Preparing for installation.

Once your configuration file is prepared, see Configuring Zowe with zwe init, for more information about using the zwe init

command group.

Option 2: Configure Zowe with z/OSMF workflows
You can execute the Zowe configuration workflow either from a PSWI during deployment, or later from a created software
instance in z/OSMF. Alternatively, you can execute the configuration workflow z/OSMF during the workflow registration process.

For more information, see Configure Zowe with z/OSMF Workflows.

Configuring the z/OS system for Zowe

Configuration of the z/OS system is dependent on the specific Zowe features and functionalities you would like to employ with your
Zowe installation.

TIP

https://docs.zowe.org/stable/user-guide/installandconfig#runtime-directory
https://docs.zowe.org/stable/user-guide/initialize-zos-system
https://docs.zowe.org/stable/user-guide/configure-zowe-zosmf-workflow

Note that configuring the z/OS system requires elevated permissions. We recommend you consult with your security
administrator to perform the reqired steps to configure the z/OS system.

For more information, see Configuring the z/OS system for Zowe.

Assigning security permissions
Specific user IDs with sufficient permissions are required to run or access Zowe. Your organization's security administrator is
responsible to assign user IDs during Zowe z/OS component configuration.

In addition, each TSO user ID that logs on to Zowe services that require z/OSMF must have permissions to access these z/OSMF
services. This user ID should be added to either IZUUSER or IZUADMIN (default).

TIP

Granting users permissions requires elevated permissions. We recommend you consult with your security administrator to grant
these user permissions.

For more information about granting the user permissions, see Assigning security permissions to users.

Configuring the Zowe cross memory server (ZWESISTC)
The Zowe cross memory server (ZIS), provides privileged cross-memory services to the Zowe Desktop and runs as an APF-authorized
program. The same cross memory server can be used by multiple Zowe desktops. The cross memory server is needed to be able to
log on to the Zowe desktop and operate its apps such as the Code Editor.

For more information, see Configuring the Zowe cross memory server (ZIS).

https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users
https://docs.zowe.org/stable/user-guide/configure-xmem-server

Version: v2.17.x LTS

Initializing Zowe z/OS runtime
Begin configuration of your installation of Zowe z/OS components by initializing Zowe z/OS runtime.

REQUIRED ROLES: SYSTEM PROGRAMMER

Use one of the following options to initialize Zowe z/OS runtime:

Initialize Zowe maunually using zwe init command group

Configure Zowe with z/OSMF workflows

Initialize Zowe maunually using zwe init command group

After your installation of Zowe runtime, you can run the zwe init command to perform the following configurations:

Initialize Zowe with copies of data sets provided with Zowe

Create user IDs and security manager settings

Provide APF authorize load libraries

Configure Zowe to use TLS certificates

Configure VSAM files to run the Zowe caching service used for high availability (HA)

Configure the system to launch the Zowe started task

For more information about this z/OS runtime initialization method, see Configuring Zowe with zwe init

Configure Zowe with z/OSMF workflows

Another option to initialize Zowe z/OS runtime is to configure Zowe with z/OSMF workflows. This method also performs the initization
using the zwe init command group. You can use z/OSMF workflows to perform the following configurations:

Configure the Zowe instance directory

Enable the API ML gateway

Enable the metrics service

Enable the API catalog

Enable automatic discovery

Enable a caching service

Enable an application server

Enable the ZSS component

Enable the jobs API

Enable the files API

Enable JES Explorer

Enable MVS Explorer

https://docs.zowe.org/stable/user-guide/initialize-zos-system

Enable USS Explorer

You can execute the Zowe configuration workflow either from a PSWI during deployment, or later from a created software instance in
z/OSMF. Alternatively, you can execute the configuration z/OSMF workflow during the workflow registration process.

For more information about this z/OS runtime initialization method, see Configuring Zowe with z/OSMF Workflows.

https://docs.zowe.org/stable/user-guide/configure-zowe-runtime/configure-zowe-zosmf-workflow

Version: v2.17.x LTS

Configuring Zowe with zwe init
Once you complete the installation of the Zowe runtime, begin configuration by initializing Zowe with proper security configurations.
To simplify this configuration process, one option is to run the zwe init command. This step is common for installing and
configuring Zowe from either a convenience build or from an SMP/E build.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

About the zwe init command

The zwe init command is a combination of the following subcommands. Each subcommand defines a configuration.

mvs
Copies the data sets provided with Zowe to custom data sets.

security
Creates the user IDs and security manager settings.

apfauth
APF authorizes the LOADLIB containing the modules that need to perform z/OS privileged security calls.

certificate
Configures Zowe to use TLS certificates.

vsam
Configures the VSAM files needed to run the Zowe caching service used for high availability (HA)

stc
Configures the system to launch the Zowe started task.

RECOMMENDATION:

We recommend you to run these sub commands one by one to clearly see the output of each step. To successfully run zwe init

security , zwe init apfauth , and zwe init certificate , it is likely that your organization requires elevated permissions. We

recommend you consult with your security administrator to run these commands. For more information about tasks for the
security administrator, see the section Configuring security in this configuration documentation.

TIP

Enter zwe init --help to learn more about the command or see the zwe init command reference for detailed explanation,

examples, and parameters.

zwe init arguments
The following zwe init arguments can assist you with the initization process:

https://docs.zowe.org/stable/user-guide/configuring-security
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam

--update-config
This argument allows the init process to update your configuration file based on automatic detection and your zowe.setup
settings. For example, if java.home and node.home are not defined, they can be updated based on the information that is

collected on the system. zowe.certificate section can also be updated automatically based on your zowe.setup.certificate

settings.

--allow-overwrite
This argument allows you to rerun the zwe init command repeatedly regardless of whether some data sets are already created.

-v or --verbose
This argument provides execution details of the zwe command. You can use it for troubleshooting purposes if the error message

is not clear enough.

T-vv or --trace
This argument provides you more execution details than the --verbose mode for troubleshooting purposes.

Zowe initilization command

The zwe init command runs the subcommands in sequence automatically. If you have the Zowe configuration file preparted and
have security administrator privileges, or security and certificates setup was already completed on the system, you can run the
following command:

VALIDATE SUCCESSFUL INITIALIZATION

Output from the execution of this command indicates the command ran successfully. However, to determine if each of the
subcommands ran successfully, check the full output log. Failed execution of some subcommands may be the result of
insufficient user permissions. Consult with your security administrator to find out if elevated permissions are required to
successfully execute some of the zwe init subcommands.

For more information about zwe init subcommands, see zwe init subcommand overview.

Next step
After all zwe init subcommands are successfully executed, the next step is to configure the z/OS system for Zowe. For more

information, see Addressing z/OS requirements for Zowe.

For detailed information about individual zwe init subcommands, see zwe init subcommand overview.

https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview
https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview

Version: v2.17.x LTS

zwe init subcommand overview
Review this article to learn about the individual subcommands executed in zwe init . Based on your use case, you may choose to run
the subcommands of zwe init individually rather than running all of these commands together. Review this article to get started

with using zwe init subcommands.

IMPORTANT

Some of the following zwe init subcommands require elevated permissions. See the required roles associated with each of
these commands.

Initializing Zowe custom data sets (zwe init mvs)

Initializing Zowe security configurations (zwe init security)

Performing APF authorization of load libraries (zwe init apfauth)

Configuring Zowe to use TLS certificates (zwe init certificate)

Creating VSAM caching service datasets (zwe init vsam)

Installing Zowe main started tasks (zwe init stc)

Initializing Zowe custom data sets (zwe init mvs)

Use the zwe init mvs command to intialize Zowe custom MVS data sets.

REQUIRED ROLE: SYSTEM PROGRAMMER

During the installation of Zowe, the following three data sets are created and populated with members copied across from the Zowe
installation files:

SZWEAUTH

SZWESAMP

SZWEEXEC

The contents of these data sets represent the original files that were provided as part of the Zowe installation and are not meant to be
modified.

For modification and execution, it is necessary to create custom data sets by using the zwe init mvs command. For detailed

information about this command, see the zwe init mvs command reference.

The zowe.yaml section that contains the parameters for the data set names is:

Review the following table for storage requirements for the three data sets:

https://docs.zowe.org/stable/user-guide/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs

Library
DDNAME

Member
Type

zowe.yaml
Target

Volume
Type Org RECFM LRECL

No.
of

3390
Trks

No.
of

DIR
Blks

CUST.PARMLIB
PARM
Library
Members

zowe.setup.dataset.parmlib ANY U PDSE FB 80 15 5

CUST.JCLLIB
JCL
Members

zowe.setup.dataset.jcllib ANY U PDSE FB 80 15 5

CUST.ZWESAPL
CLIST
copy
utilities

zowe.setup.dataset.authPluginLib ANY U PDSE U 0 15 N/A

Procedure to initialize Zowe custom data sets

To initialize Zowe custom data sets, run the following command:

The following output is an example of running zwe init mvs .

Example:

Successful execution of zwe init mvs has the following results:

In the zowe.yaml file, three custom data sets are created that have matching values with the follwoing libraries:

zowe.setup.dataset.parmlib

zowe.setup.dataset.jcllib

zowe.setup.dataset.authPluginLib .

The member ZWESIP00 is contained in CUST.PARMLIB . JCLLIB and ZWESAPL are empty.

The PDS SZWEAUTH is created. If SZWEAUTH already exists, the following error is thrown:

You can ignore this message, or you can use the --allow-overwritten option on the command. For example, zwe init mvs -c

zowe.yaml --allow-overwritten .

Initializing Zowe security configurations (zwe init security)

This subcommand creates the user IDs and security manager settings.

REQUIRED ROLE: SECURITY ADMINISTRATOR

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2, you can skip this security configuration step
unless told otherwise in the release documentation.

The JCL member .SZWESAMP(ZWESECUR) is provided to assist with the security configuration. Before submitting the ZWESECUR JCL

member, customize this member to match site security rules. For script driven scenarios, you can run the command zwe init
security which uses ZWESECUR as a template to create a customized member in .CUST.JCLLIB . This member contains the

commands required to perform the security configuration.

For more information about zwe init security , see Initializing Zowe security configurations.

Performing APF authorization of load libraries (zwe init apfauth)

Zowe contains load modules that require access to make privileged z/OS security manager calls. These load modules are held in two
load libraries which must be APF authorized.

REQUIRED ROLES: SECURITY ADMINISTRATOR

The command zwe init apfauth reads the PDS names for the following load libraries from zowe.yaml and performs the APF

authority commands.

zowe.setup.dataset.authLoadLib
Specifies the user custom load library, containing the ZWELNCH, ZWESIS01 and ZWESAUX load modules. These are the Zowe
launcher, the ZIS cross memory server and the auxiliary server.

zowe.setup.dataset.authPluginLib References the load library for ZIS plugins.

For more information about zwe init apfauth see Performing APF authorization of load libraries.

Configuring Zowe to use TLS certificates (zwe init certificate)

Zowe uses digital certificates for secure, encrypted network communication over Secure Sockets Layer/Transport Layer Security
(SSL/TLS) and HTTPS protocols.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Zowe supports using either file-based (PKCS12) or z/OS key ring-based (when on z/OS) keystores and truststores, and can reuse
compatible stores. You can use the zwe init certificate command to create keystores and truststores by either generating
certificates or by allowing users to import their own compatible certificates.

For more information, see Configuring certificates.

Creating VSAM caching service datasets (zwe init vsam)

Zowe can work in a high availability (HA) configuration where multiple instances of the Zowe launcher are started, either on the same
LPAR or different LPARs connected through sysplex distributor. If you are only running a single Zowe instance on a single LPAR you do

https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview/configure-certificates

not need to create a caching service so you may skip this step.

REQUIRED ROLES: SYSTEM PROGRAMMER

The command zwe init vsam uses the template JCL in SZWESAMP(ZWECSVSM) to copy the source template member from

zowe.setup.mvs.hlq.SZWESAMP(ZWECVCSM) and creates a target JCL member in zowe.setup.mvs.jcllib(ZWECVSCM) with values

extracted from the zowe.yaml file.

For more information about zwe init vsam , see Creating VSAM caching service datasets

Installing Zowe main started tasks (zwe init stc)

Execute the subcommand zwe init stc to install Zowe main started tasks.

Installation of Zowe main started tasks requires that JCL members for each of Zowe's started tasks be present on the JES proclib
concatenation path.

Once you have completed security configuration, you can install the Zowe main started tasks.

REQUIRED ROLE: SYSTEM PROGRAMMER

The JCL members for each of Zowe's started tasks need to be present on the JES proclib concatenation path. The command zwe init

stc copies these members from the install source location .SZWESAMP to the targted PDS specified in the

zowe.setup.dataset.proclib value USER.PROCLIB . The three proclib member names are specified in zowe.yaml arguments.

The zwe init stc command uses the CUST.JCL LIB data sets as a staging area to contain intermediatory JCL which are transformed

version of the originals that are shiped in .SZWESAMP with paths, PDS locations, and other runtime data updated. If you wish to just
generate the CUST.JCLLIB members without having them copied to USER.PROCLIB , specify --security-dry-run . If the JCL

members are already in the target PROCLIB, specify --allow-overwritten .

Example:

Next steps

After each of the zwe init subcommands run successfully, the next step is to complete configuring security.

https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview/configure-caching-service-ha#vsam
https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview/configuring-security

Version: v2.17.x LTS

Configuring Zowe with z/OSMF Workflows
After you install Zowe, you can register and execute the z/OSMF workflows in the web interface to perform a range of Zowe
configuration tasks. z/OSMF helps to simplify the Zowe configuration tasks and does not require the level of expertise that is needed
to perform manual Zowe configuration. This configuration method also runs the zwe init command to initialize Zowe z/OS runtime.

REQUIRED ROLE: SYSTEM PROGRAMMER

Ensure that you meet the following requirements before you start your Zowe configuration:

Install and configure z/OSMF

Install Zowe with an SMP/E build, PSWI, or a convenience build

You can complete the following tasks with the z/OSMF workflow:

Configure the Zowe instance directory

Enable the API ML Gateway

Enable the metrics service

Enable the API catalog

Enable automatic discovery

Enable a caching service

Enable an application server

Enable the ZSS component

Enable the jobs API

Enable the files API

Enable JES Explorer

Enable MVS Explorer

Enable USS Explorer

You can execute the Zowe configuration workflow either from a PSWI during deployment or later from a created software instance in
z/OSMF. Alternatively, you can execute the configuration workflow z/OSMF during the workflow registration process.

Configure the Zowe instance directory

The Zowe instance directory contains configuration data that is required to launch a Zowe runtime. This includes port numbers,
location of dependent runtime such as Java, Node, z/OSMF, as well as log files. When Zowe is started, configuration data is read from
files in the instance directory and logs will be written to files in the instance directory. Zowe has three runtime systems: the z/OS
Service microservice server, the Zowe Application Server, and the Zowe API Mediation Layer microservices.

Register the ZWECONF.xml workflow definition file in the z/OSMF web interface to create a Zowe instance directory and start the
Zowe started task. The path to the workflow definition file is <pathPrefix>/workflows/

After you register the workflow definition file, perform the following steps to complete the process:

1. Define variables

The workflow includes the list of instance configuration and the Zowe variables. Enter the values for variables based on your
mainframe environment, Zowe instance configuration, and wanted components.

2. Create configuration

Execute the step to create a configuration zowe.yaml file with the variable setup that was defined in step 1.

3. Run Zowe install

Execute the zwe install command with the previously stored zowe.yaml file as a parameter.

If you receive an error message (such as RC higher than 0), ensure that you edit incorrect input values or system setup before you
re-run the zwe install command. To overwrite changed output, edit the step by adding the --allow-overwritten tag to the

install command.

Example: Command that re-runs the installation

4. Run Zowe init

Execute the zwe init command with the previously stored zowe.yaml file as a parameter.

NOTE

Messages and error codes from the subsequent JOBS command are not forwarded back to z/OSMF.

The zwe init command is a combination of the following sub-commands that define configuration:

mvs
Copies the data sets that are provided with Zowe to custom data sets.

security
Creates user IDs and security manager settings.

apfauth
APF authorizes the LOADLIB that contains the modules that perform priviledged security calls on z/OS.

certificate
Configures Zowe to use TLS certificates.

vsam
Configures the VSAM files that help run the Zowe caching service for high availability (HA)

stc
Configures the system to launch the Zowe started task.

If you execute the init step again, perform one of the following steps:

Manually delete failed artifacts that are created from previous init steps.

Edit the step by adding the --allow-overwritten tag to the init command.

Example: Command that re-runs init

After you execute each step, the step is marked as complete. After completing the workflow execution, you can view the Zowe started
task.

Execute the configuration workflow

You can use the following methods to execute the configuration workflow:

Directly from a PSWI during deployment

From a deployed software instance (SI)

From the Workflows tab in the z/OSMF web UI

Execute workflow from PSWI

In the PSWI deployment phase, you are presented with the checklist that helps guide you during the deployment process.

The perform workflows step enables you to run either all attached workflows or just the mandatory one — the post-deployment
workflow for mounting.

Execute workflow from software instance

Software instance is created after PSWI deployment is complete. Execute a workflow from an SI.

Follow these steps:

1. Log in to z/OSMF.

2. Select the Software Management panel.

3. In the displayed table, select Software Instances.

4. Select the checkbox next to the Software Instance Name column for the instance you want to execute the workflow against.

5. Select the Perform Workflows option from the Actions menu.

The Software Management Software Instances Perform Workflows dialog opens.

6. Select the Create Workflow option from the Actions menu.

7. In the displayed table, click on the name of the workflow you want to execute.

8. Click OK.

The Workflows tab with the previously selected workflow opens.

9. Execute the workflow steps.

You have successfully executed a workflow from a software instance.

Register and execute workflow in the z/OSMF web interface

z/OSMF workflow simplifies the procedure to configure and start Zowe. Execute the following steps to register and execute the
workflow in the z/OSMF web interface:

1. Log in to the z/OSMF web interface and select Use Desktop Interface.

2. Select the Workflows File.

3. Select Create Workflow from the Actions menu.

The Create Workflow panel appears.

4. Enter the complete USS path to the workflow you want to register in the Workflow Definition File field.

If you installed Zowe with the SMP/E build, the workflow is located in the SMP/E target zFS file system that was mounted
during the installation.

(Optional) Enter the complete USS path to the edited workflow properties file in the Workflow Variable Input File field. Use
this file to customize product instances and automate workflow execution, saving time and effort when deploying multiple
standardized Zowe instances. The values from this file override the default values for the workflow variables.

The sample properties file is located in the same directory with the workflow definition file. Create a copy of this file, and then
modify as described in the file. Set the field to the path where the new file is located.

NOTE

If you use the convenience build, the workflows and variable input files are located in the USS runtime folder in
files/workflows.

5. Select the System where the workflow runs.

6. Select Next.

7. Specify a unique Workflow name.

8. Select or enter an Owner user ID, and select Assign all steps to owner user ID.

9. Select Finish.

The workflow is registered in z/OSMF. The workflow is available for execution to deploy and configure the Zowe instance.

10. Perform the following steps to execute each step individually:

a. Double-click the title of the step.

b. Select the Perform tab.

c. Review the step contents and update the input values.

d. Select Next.

Repeat the previous two steps to complete all items until the Finish option is available.

11. Select Finish.

After you execute each step, the step is marked as Complete. The workflow is executed.

Next step
After you successfully execute the workflow, you are ready to configure the z/OS system for Zowe. For more information, see
Addressing z/OS requirements for Zowe.

https://docs.zowe.org/stable/user-guide/configure-zos-system

Version: v2.17.x LTS

Configuring security
During the initial installation of Zowe server-side components, it is necessary for your organization's security administrator to perform
a range of tasks that require elevated security permissions. As a security administrator, follow the procedures outlined in this article to
configure Zowe and your z/OS system to run Zowe with z/OS.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Validate and re-run zwe init commands

During installation, the system programmer customizes values in the zowe.yaml file. However, due to insufficient permissions of the
system programmer, the zwe init security command may fail. Consult with your security administrator to review your ZWESECUR

job content so that your security adminstrator can re-submit this JCL.

Initialize Zowe security configurations
Choose from the following methods to initialize Zowe security configurations:

Configuring with zwe init security

Configuring with ZWESECUR JCL

For more information about both of these methods, see Initialize Zowe security configurations.

Perform APF authorization of load libraries

Zowe contains load modules that require access to make privileged z/OS security manager calls. These load modules are held in two
load libraries which must be APF authorized. For more information about how to issue the zwe init apfauth command to perform
APF authority commands, see Performing APF authorization of load libraries.

Configure the z/OS system for Zowe
Review and perform z/OS configuration steps based on your settings. For a detailed table of configuration procedures and associated
purposes for performing these procedures, see Configuring the z/OS system for Zowe.

Assign security permissions to users

Assign users (ZWESVUSR and ZWESIUSR) and the ZWEADMIN security group permissions required to perform specific tasks. For more
information see, Assign security permissions to users.

Zowe Feature specific configuration tasks

https://docs.zowe.org/stable/user-guide/initialize-security-configuration
https://docs.zowe.org/stable/user-guide/apf-authorize-load-library
https://docs.zowe.org/stable/user-guide/configure-zos-system
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users

Depending on the specific Zowe server-side components that your organization is wishing to utilize, specific security configuration
settings may apply. Review the following table of Zowe server-side component features and their associated configuration tasks, and
perform the tasks that apply to your use case.

Feature of a Zowe server-side component Configuration Task

If using Top Secret as your security manager
Note: No specific configuration is necessary for security
managers other than Top Secret.

Configuring multi-user address space (for TSS only)

High Availability
Configuring ZWESLSTC to run Zowe high availability instances
under ZWESVUSR user ID

z/OSMF authentication or onboarding of z/OSMF service Granting users permission to access z/OSMF

ZSS component enabled (required for API ML certificate and
identity mapping)

Configuring an ICSF cryptographic services environment
and
Configuring security environment switching

API Mediation Layer certificate mapping
Configuring main Zowe server to use client certificate identity
mapping

API Mediation Layer identity mapping
Configuring main Zowe server to use distributed identity
mapping

API Mediation Layer Identity Tokens (IDT) Configuring signed SAF Identity tokens (IDT)

Cross memory server (ZIS)

Configuring the cross memory server for SAF
and
Configuring cross memory server load module
and
Configuring cross-memory server SAF configuration

Next step

After these aforementioned security configuration steps are completed, the next step is to install Zowe main started tasks.

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-multi-user-address-space-for-tss-only
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-zweslstc-to-run-zowe-high-availability-instances-under-zwesvusr-user-id
https://docs.zowe.org/stable/user-guide/configuring-security/assign-security-permissions-to-users/#granting-users-permission-to-access-zosmf
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-cross-memory-server-for-saf
https://docs.zowe.org/stable/user-guide/configure-xmem-server#load-module
https://docs.zowe.org/stable/user-guide/configure-xmem-server#saf-configuration
https://docs.zowe.org/stable/user-guide/zwe-init-subcommand-overview#installing-zowe-main-started-tasks-zwe-init-stc

Version: v2.17.x LTS

Initializing Zowe security configurations
This security configuration step is required for first time setup of Zowe. If Zowe has already been launched on a z/OS system from a
previous release of Zowe v2, and the zwe init security subcommand successfully ran when initializing the z/OS subsystem, you
can skip this step unless told otherwise in the release documentation.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Consult with your security administrator before you proceed with initializing Zowe security configurations.

The JCL member .SZWESAMP(ZWESECUR) is provided to assist with the security configuration. Before submitting the ZWESECUR JCL

member, you should customize it to match site security rules. For script driven scenarios, you can run the command zwe init

security which uses ZWESECUR as a template to create a customized member in .CUST.JCLLIB which contains the commands

needed to perform the security configuration.

NOTE

Zowe supports TLS versions 1.2 and 1.3.

Configuring with zwe init security command

The zwe init security command reads data from zowe.yaml and constructs a JCL member using ZWESECUR as a template which is

then submitted. This is a convenience step to assist with driving Zowe configuration through a pipeline or when you prefer to use USS
commands rather than directly edit and customize JCL members.

NOTE

If you do not have permissions to update your security configurations, use the security-dry-run . We recommend you inform
your security administrator to review the ZWESECUR job content.

Using security-dry-run

Specify the parameter --security-dry-run to construct a JCL member containing the security commmands without running it. This
is useful for previewing commands and can also be used to copy and paste commands into a TSO command prompt for step by step
manual execution.

Example:

Configuring with ZWESECUR JCL

An alternative to using zwe init security is to prepare a JCL member to configure the z/OS system, and edit ZWESECUR to make

changes.

The JCL allows you to vary which security manager you use by setting the PRODUCT variable to be one of the following ESMs:

RACF

ACF2

TSS .

Example:

If ZWESECUR encounters an error or a step that has already been performed, it continues to the end, so it can be run repeatedly in a

scenario such as a pipeline automating the configuration of a z/OS environment for Zowe installation.

IMPORTANT

It is expected that your security administrator will be required to review, edit where necessary, and either execute ZWESECUR as a

single job, or execute individual TSO commands to complete the security configuration of a z/OS system in preparation for
installing and running Zowe.

The following video shows how to locate the ZWESECUR JCL member and execute it.

Zowe ZWESECUR configure system for security (one-time)Zowe ZWESECUR configure system for security (one-time)

Undo security configurations

To undo all of the z/OS security configuration steps performed by the JCL member ZWESECUR , use the reverse member ZWENOSEC .

This member contains steps that reverse steps performed by ZWESECUR . This is useful in the following situations:

You are configuring z/OS systems as part of a build pipeline that you want to undo, and redo configuration and installation of
Zowe using automation.

You configured a z/OS system for Zowe that you no longer want to use, and you prefer to delete the Zowe user IDs and undo the
security configuration settings rather than leave them enabled.

https://www.youtube.com/watch?v=-7PZFVESitI

If you run ZWENOSEC on a z/OS system, it is necessary to rerun ZWESECUR to reinitialize the z/OS security configuration. Zowe cannot

be run until ZWESECUR is rerun.

Next step
After you successfully initalize Zowe security configurations, the next step is to perform APF authorization of load libraries.

https://docs.zowe.org/stable/user-guide/apf-authorize-load-library

Version: v2.17.x LTS

Performing APF authorization of load libraries
Review this article to learn how to perform APF authorization of Zowe load libraries to make privileged calls. Note that this procedure
requires elevated permissions.

REQUIRED ROLE: SECURITY ADMINISTRATOR

Zowe contains load modules that require access to make privileged z/OS security manager calls. These load modules are held in two
load libraries which must be APF authorized. The command zwe init apfauth reads the PDS names for the load libraries from

zowe.yaml and performs the APF authority commands.

zowe.setup.dataset.authLoadLib
Specifies the user custom load library, containing the ZWELNCH , ZWESIS01 and ZWESAUX load modules. These are the Zowe

launcher, the ZIS cross memory server and the auxiliary server.

zowe.setup.dataset.authPluginLib
References the load library for ZIS plugins.

The following command presents an example of running zwe init apfauth :

Example:

NOTE

If you do not have permissions to update your security configurations, use security-dry-run . We recommend you inform your

security administrator to review your job content.

Specify --security-dry-run to have the command echo the commands that need to be run without executing the command.

Making APF auth be part of the IPL

Add one of the following to your active PROGxx PARMLIB member, for example SYS1.PARMLIB(PROG00) , to ensure that the APF

authorization is added automatically after next IPL. The value of DSNAME is the name of the SZWEAUTH and CUST.ZWESAPL data sets, as

created during Zowe installation:

If the load library is not SMS-managed, add the following lines, where ${volume} is the name of the volume that holds the data

set:

If the load library is SMS-managed, add the following line:

The PDS member SZWESAMP(ZWESIPRG) contains the SETPROG statement and PROGxx update for reference.

Version: v2.17.x LTS

Addressing z/OS requirements for Zowe
As a security administrator it is necessary to configure the z/OS system for Zowe. Review the following article to learn about z/OS
prerequisites, and z/OS configuration requirements for specific settings.

REQUIRED ROLE: SECURITY ADMINISTRATOR

z/OS prerequisites

Be sure your z/OS system meets the following prerequisites:

z/OS version is in active support, such as Version 2.3, Version 2.4, Version 2.5 and Version 3.1

NOTE

z/OS V2.2 reached end of support on 30 September, 2020. For more information, see the z/OS v2.2 lifecycle details
https://www.ibm.com/support/lifecycle/details?q45=Z497063S01245B61.

zFS volume has at least 833 mb of free space for Zowe server components, their keystore, instance configuration files and logs,
and third-party plug-ins.

(Optional, recommended) z/OS OpenSSH V2.2.0 or later

Some features of Zowe require SSH, such as the Desktop's SSH terminal. Install and manage Zowe via SSH, as an alternative to
OMVS over TN3270.

(Optional, recommended) Parallel Sysplex.

To deploy Zowe for high availability, a Parallel Sysplex environment is recommended. For more information, see Configuring
Sysplex for high availability.

Settings specific configuration requirements

Configuration of your z/OS system is dependent on the specific Zowe features and functionalities you would like to employ with your
Zowe installation. Review the following table to determine which configuration steps are required based on your Zowe use case.

Purpose Configuration step

Set the names for the different z/OS UNIX address spaces for the Zowe runtime
components.
Important: This configuration step is required.

Configure address space job naming

To use Zowe desktop. This step generates random numbers for zssServer that the
Zowe desktop uses.

Configure an ICSF cryptographic
services environment

https://www.ibm.com/support/lifecycle/details?q45=Z497063S01245B61
https://docs.zowe.org/stable/user-guide/configure-sysplex

Purpose Configuration step

To allow users to log on to the Zowe desktop through impersonation.
Configure security environment
switching

Required for TSS only. A TSS FACILITY needs to be defined and assigned to the
ZWESLSTC started task.

Configure multi-user address space for
TSS only

Required if you have not run ZWESECUR and are manually creating the user ID and

groups in your z/OS environment.
Configure user IDs and groups for the
Zowe started tasks

Required if you have not run ZWESECUR and are configuring your z/OS environment

manually. This step describes how to configure the started task ZWESLSTC to run
under the correct user ID and group.

Configure ZWESLSTC to run Zowe high
availability instances under ZWESVUSR
user ID

Required if you have not run ZWESECUR and are configuring your z/OS environment

manually. This step describes how to configure the cross memory server for SAF to
guard against access by non-privileged clients.

Configure the cross memory server for
SAF

Required for API Mediation Layer to map a client certificate to a z/OS identity.
Configure main Zowe server to use
client certificate identity mapping

Required for API ML to map the association between a z/OS user ID and a distributed
user identity.

Configure main Zowe server to use
distributed identity mapping

To configure SAF Identity tokens on z/OS so that they can be used by Zowe
components like zss or API Mediation Layer.

Configure signed SAF Identity tokens
IDT

Required for API Mediation Layer to issue SMF records.
Configure the main Zowe server to issue
SMF records

To use multi-factor authentication (MFA) Multi-Factor Authentication (MFA)

To use Single Sign-On (SSO) Single Sign-On (SSO)

To use OIDC Authentication with API Mediation Layer
API Mediation Layer OIDC
Authentication

Configure an ICSF cryptographic services environment

The zssServer uses cookies that require random number generation for security. To learn more about the zssServer, see the Zowe
architecture. Integrated Cryptographic Service Facility (ICSF) is a secure way to generate random numbers.

If you have not configured your z/OS environment for ICSF, see Cryptographic Services ICSF: System Programmer's Guide for more
information. To see whether ICSF has been started, check whether the started task ICSF or CSF is active.

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf#configure-the-main-zowe-server-to-issue-smf-records
https://docs.zowe.org/stable/getting-started/zowe-architecture#zssserver
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/abstract.htm

If you run Zowe high availability on a Sysplex, ICSF needs to be configured in a Sysplex environment to share KDS data sets across
systems in a Sysplex. For detailed information, see Running in a Sysplex Environment

The Zowe z/OS environment configuration JCL member ZWESECUR does not perform any steps related to ICSF that is required for

zssServer that the Zowe desktop uses. Therefore, if you want to use Zowe desktop, you must perform the steps that are described in
this section manually.

To generate symmetric keys, the ZWESVUSR user who runs Zowe server started task requires READ access to CSFRNGL in the CSFSERV
class.

Define or check the following configurations depending on whether ICSF is already installed:

The ICSF or CSF job that runs on your z/OS system.

The configuration of ICSF options in SYS1.PARMLIB(CSFPRM00) , SYS1.SAMPLIB , SYS1.PROCLIB .

Create CKDS, PKDS, TKDS VSAM data sets.

Define and activate the CSFSERV class:

If you use RACF, issue the following commands:

If you use ACF2, issue the following commands (note that profile-prefix and profile-suffix are user-defined):

(repeat for userids IKED, NSSD, and Policy Agent)

If you use Top Secret, issue the following command (note that profile-prefix and profile-suffix are user defined):

(repeat for user-acids IKED, NSSD, and Policy Agent)

NOTES

Determine whether you want SAF authorization checks against CSFSERV and set CSF.CSFSERV.AUTH.CSFRNG.DISABLE

accordingly.

Refer to the z/OS 2.3.0 z/OS Cryptographic Services ICSF System Programmer's Guide: Installation, initialization, and
customization.

CCA and/or PKCS #11 coprocessor for random number generation.

Enable FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION and RDEFINE CSFINPV2 if required.

Configure security environment switching

Typically, the user ZWESVUSR that the Zowe server started task runs under needs to be able to change the security environment of its

process to allow API requests to be issued on behalf of the logged on TSO user ID, rather than the server's user ID. This capability
provides the functionality that allows users to log on to the Zowe desktop and use apps such as the File Editor to list data sets or USS
files that the logged on user is authorized to view and edit, rather than the user ID running the Zowe server. This technique is known
as impersonation.

To enable impersonation, you must grant the user ID ZWESVUSR associated with the Zowe server started task UPDATE access to the

BPX.SERVER and BPX.DAEMON profiles in the FACILITY class.

https://www.ibm.com/docs/en/zos/2.3.0?topic=guide-running-in-sysplex-environment
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm

You can issue the following commands first to check whether you already have the impersonation profiles defined as part of another
server configuration, such as the FTPD daemon. Review the output to confirm that the two impersonation profiles exist and the user
ZWESVUSR who runs the Zowe server started task has UPDATE access to both profiles.

If you use RACF, issue the following commands:

If you use Top Secret, issue the following commands:

If you use ACF2, issue the following commands:

If the user ZWESVUSR who runs the Zowe server started task does not have UPDATE access to both profiles follow the instructions

below.

If you use RACF, complete the following steps:

i. Activate and RACLIST the FACILITY class. This may have already been done on the z/OS environment if another z/OS server
has been previously configured to take advantage of the ability to change its security environment, such as the FTPD daemon
that is included with z/OS Communications Server TCP/IP services.

ii. Define the impersonation profiles. This may have already been done on behalf of another server such as the FTPD daemon.

iii. Having activated and RACLIST the FACILITY class, the user ID ZWESVUSR who runs the Zowe server started task must be given

update access to the BPX.SERVER and BPX.DAEMON profiles in the FACILITY class.

where <zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS environment.

/* Activate these changes */

iv. Issue the following commands to check whether permission has been successfully granted:

If you use Top Secret, complete the following steps:

i. Define the BPX Resource and access for <zowe_stc_user> .

where <zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS environment.

ii. Issue the following commands and review the output to check whether permission has been successfully granted:

If you use ACF2, complete the following steps:

i. Define the BPX Resource and access for <zowe_stc_user> .

where <zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS environment.

ii. Issue the following commands and review the output to check whether permission has been successfully granted:

You must also grant READ access to the OMVSAPPL profile in the APPL class to the Zowe STC user as well as all other Zowe users
using various Zowe features. Skip the following steps when the OMVSAPPL profile is not defined in your environment.

If you use RACF, complete the following steps:

i. Check if you already have the required access defined as part of the environment configuration. Skip the following steps if
access is already granted.

ii. Issue the following commands and review the output to check if permission has been successfully granted:

If you use Top Secret, complete the following steps:

i. Check if you already have the required access as part of the environment configuration. Skip the following steps if access is
already granted.

ii. Issue the following commands and review the output to check if permission has been successfully granted:

If you use ACF2, complete the following steps:

i. Check if you already have the required access defined as part of the environment configuration. Skip the following steps if
access is already granted.

ii. Issue the following commands and review the output to check if permission has been successfully granted:

Configure address space job naming

The user ID ZWESVUSR that is associated with the Zowe started task must have READ permission for the BPX.JOBNAME profile in the

FACILITY class. This is to allow setting of the names for the different z/OS UNIX address spaces for the Zowe runtime components.

NOTE

This procedure may require security administrator authorization. Consult with your security administrator.

To display who is authorized to the profile, issue the following command:

Additionally, you need to activate facility class, permit BPX.JOBNAME , and refresh facility class:

For more information, see Setting up the UNIX-related FACILITY and SURROGAT class profiles in the "z/OS UNIX System Services"
documentation.

Configure multi-user address space (for TSS only)

The Zowe server started task ZWESLSTC is multi-user address space, and therefore a TSS FACILITY needs to be defined and assigned to

the started task. Then, all acids signing on to the started task will need to be authorized to the FACILITY.

The following example shows how to create a new TSS FACILITY.

Example:

In the TSSPARMS, add the following lines to create the new FACILITY:

For more information about how to administer Facility Matrix Table, see How to Perform Facility Matrix Table Administration.

To assign the FACILITY to the started task, issue the following command:

To authorize a user to sign on to the FACILITY, issues the following command:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/fclass.htm
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/protecting-facilities/how-to-perform-facility-matrix-table-administration.html

Configure user IDs and groups for the Zowe started tasks

Zowe requires a user ID ZWESVUSR to execute its main z/OS runtime started task. This user ID must have a valid OMVS segment.

Zowe requires a user ID ZWESIUSR to execute the cross memory server started task ZWESISTC . This user ID must have a valid OMVS

segment.

Zowe requires a group ZWEADMIN that both ZWESVUSR and ZWESIUSR should belong to. This group must have a valid OMVS segment.

If you have run ZWESECUR , you do not need to perform the steps described in this section, because the TSO commands to create the
user IDs and groups are executed during the JCL sections of ZWESECUR .

If you have not run ZWESECUR and are manually creating the user ID and groups in your z/OS environment, the commands are

described below for reference.

To create the ZWEADMIN group, issue the following command:

To create the ZWESVUSR user ID for the main Zowe started task, issue the following command:

To create the ZWESIUSR group for the Zowe cross memory server started task, issue the following command:

Configure ZWESLSTC to run Zowe high availability instances under ZWESVUSR user ID

You need Zowe started task ZWESLSTC for Zowe high availability. When the Zowe started task ZWESLSTC is started, it must be
associated with the user ID ZWESVUSR and group ZWEADMIN . A different user ID and group can be used if required to conform with

existing naming standards.

If you have run ZWESECUR , you do not need to perform the steps described in this section, because they are executed during the JCL

section of ZWESECUR .

If you have not run ZWESECUR and are configuring your z/OS environment manually, the following steps describe how to configure

the started task ZWESLSTC to run under the correct user ID and group.

If you use RACF, issue the following commands:

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands:

Configure the cross memory server for SAF

Zowe has a cross memory server that runs as an APF-authorized program with key 4 storage. Client processes accessing the cross
memory server's services must have READ access to a security profile ZWES.IS in the FACILITY class. This authorization step is used

to guard against access by non-priviledged clients.

If you have run ZWESECUR you do not need to perform the steps described in this section.

If you have not run ZWESECUR and are configuring your z/OS environment manually, the following steps describe how to configure

the cross memory server for SAF.

Activate the FACILITY class, define a ZWES.IS profile, and grant READ access to the user ID ZWESVUSR . This is the user ID that the main

Zowe started task runs under.

To do this, issue the following commands that are also included in the ZWESECUR JCL member. The commands assume that you run

the Zowe server under the ZWESVUSR user.

If you use RACF, issue the following commands:

To see the current class settings, use:

To define and activate the FACILITY class, use:

To RACLIST the FACILITY class, use:

To define the ZWES.IS profile in the FACILITY class and grant Zowe's started task userid READ access, issue the following

commands:

where <zowe_stc_user> is the user ID ZWESVUSR under which the Zowe server started task runs.

To check whether the permission has been successfully granted, issue the following command:

This shows the user IDs who have access to the ZWES.IS class, which should include Zowe's started task user ID with READ

access.

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands, where owner-acid can be IZUSVR or a different ACID:

NOTES

The cross memory server treats "no decision" style SAF return codes as failures. If there is no covering profile for the
ZWES.IS resource in the FACILITY class, the request will be denied.

Cross memory server clients other than Zowe might have additional SAF security requirements. For more information, see
the documentation for the specific client.

Configure main Zowe server to use client certificate identity mapping

This security configuration is necessary for API ML to be able to map client certificate to a z/OS identity. A user running API Gateway
must have read access to the SAF resource IRR.RUSERMAP in the FACILITY class. To set up this security configuration, submit the

ZWESECUR JCL member. For users upgrading from version 1.18 and lower use the following configuration steps.

Using RACF

If you use RACF, verify and update permission in the FACILITY class.

Follow these steps:

1. Verify user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

3. Activate changes.

Using ACF2

If you use ACF2, verify and update permission in the FACILITY class.

Follow these steps:

1. Verify user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

3. Activate changes.

Using TSS

If you use TSS, verify and update permission in FACILITY class.

Follow these steps:

1. Verify user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

Configure main Zowe server to use distributed identity mapping

This security configuration is necessary for API ML to be able to map the association between a z/OS user ID and a distributed user
identity. A user running the API Gateway must have read access to the SAF resource IRR.IDIDMAP.QUERY in the FACILITY class. To

set up this security configuration, submit the ZWESECUR JCL member. For users upgrading from version 1.28 and lower, use the

following configuration steps.

Using RACF

If you use RACF, verify and update permission in the FACILITY class.

Follow these steps:

1. Verify that user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

3. Activate changes.

Using ACF2

If you use ACF2, verify and update permission in the FACILITY class.

Follow these steps:

1. Verify that user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

3. Activate changes.

Using TSS

If you use TSS, verify and update permission in FACILITY class.

Follow these steps:

1. Verify that user ZWESVUSR has read access.

2. Add user ZWESVUSR permission to read.

Configure signed SAF Identity tokens (IDT)

This section provides a brief description of how to configure SAF Identity tokens on z/OS so that they can be used by Zowe
components like zss or API Mediation layer (Implement a new SAF IDT provider)

Follow these general steps:

1. Create PKCS#11 token

2. Generate a secret key for the PKCS#11 token (you can use the sample program ZWESECKG in the SZWESAMP dataset)

3. Define a SAF resource profile under the IDTDATA SAF resource class

Details with examples can be found in documentation of external security products:

RACF - Signed and Unsigned Identity Tokens and IDT Configuration subsections in z/OS Security Server RACROUTE Macro
Reference book, link.

Top Secret - Maintain Identity Token (IDT) Records subsection in Administrating chapter, link.

ACF2 - IDTDATA Profile Records subsection in Administrating chapter, link.

A part of the Signed SAF Identity token configuration is a nontrivial step that has to generate a secret key for the PKCS#11 token. The
secret key is generated in ICSF by calling the PKCS#11 Generate Secret Key (CSFPGSK) or Token Record Create (CSFPTRC) callable
services. An example of the CSFPGSK callable service can be found in the SZWESAMP dataset as the ZWESECKG job.

Configure the main Zowe server to issue SMF records

This security configuration is necessary for API ML to be able to issue SMF records. A user running the API Gateway must have read
access to the RACF general resource IRR.RAUDITX in the FACILITY class. To set up this security configuration, submit the ZWESECUR
JCL member. For users upgrading from version 1.18 and lower, use the configuration steps that correspond to the ESM.

To check whether you already have the auditing profile defined, issue the following command and review the output to confirm that
the profile exists and that the user ZWESVUSR who runs the ZWESLSTC started task has READ access to this profile.

If you use RACF, issue the following command:

If you use Top Secret, issue the following command:

If you use ACF2, issue the following commands:

https://docs.zowe.org/stable/extend/extend-apiml/implement-new-saf-provider
https://www.ibm.com/docs/en/zos/2.4.0?topic=reference-activating-using-idta-parameter-in-racroute-requestverify
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/maintaining-special-security-records/maintain-identity-token-(idt)-records.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/administrating/administer-records/profile-records/idtdata-profile-records.html

If the user ZWESVUSR who runs the ZWESLSTC started task does not have READ access to this profile, follow the procedure that

corresponds to your ESM:

If you use RACF, update permission in the FACILITY class.

Follow these steps:

i. Add user ZWESVUSR permission to READ .

ii. Activate changes.

If you use Top Secret, add user ZWESVUSR permission to READ . Issue the following command:

If you use ACF2, add user ZWESVUSR permission to READ . Issue the following commands:

For more information about SMF records, see SMF records in the Using Zowe API Mediation Layer documentation.

Multi-Factor Authentication (MFA)

Multi-factor authentication is supported for several components, such as the Desktop and API Mediation Layer. Multi-factor
authentication is provided by third-party products which Zowe is compatible with. The following are known to work:

CA Advanced Authentication Mainframe

IBM Z Multi-Factor Authentication.

NOTES

To support the multi-factor authentication, it is necessary to apply z/OSMF APAR PH39582.

For information on using MFA in Zowe, see Multi-Factor Authentication.

MFA must work with Single-Sign-On (SSO). Make sure that SSO is configured before you use MFA in Zowe.

Single Sign-On (SSO)

Zowe has an SSO scheme with the goal that each time you use multiple Zowe components you should only be prompted to login
once.

Requirements:

IBM z/OS Management Facility (z/OSMF)

API Mediation Layer OIDC Authentication

Zowe requires ACF2 APAR LU01316 to be applied when using the ACF2 security manager.

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://www.ibm.com/support/pages/apar/PH39582
https://docs.zowe.org/stable/user-guide/mvd-configuration#multi-factor-authentication-configuration

Version: v2.17.x LTS

Assigning security permissions to users
Assign users (ZWESVUSR and ZWESIUSR) and the ZWEADMIN security group permissions required to perform specific tasks. Each TSO
user ID that logs on to Zowe and uses Zowe services that use z/OSMF requires permission to access these z/OSMF services.

REQUIRED ROLES: SECURITY ADMINISTRATOR

Overview of user categories and roles

Specific user IDs with sufficient permissions are required to run or access Zowe. Your organization's security administrator is
responsible to assign the following user IDs during Zowe z/OS component configuration.

The following user IDs run Zowe:

ZWESVUSR
This is the started task ID of the Zowe runtime user who runs most of the Zowe core components. To work with USS, this user ID
must have a valid OMVS segment. For more information about OMVS segments, see the article The OMVS segment in user profiles
in the IBM documentation. For detailed information about which permissions are required to run Zowe core services as well as
specific individual components, see the Security Permissions Reference Table in this article.

ZWESIUSR
This user runs the cross memory server (ZIS). This is a started task ID used to run the PROCLIB ZWESISTC that launches the cross

memory server (ZIS). This started task ID must have a valid OMVS segment.

The security administrator also assigns permissions to the security group ZWEADMIN. ZWEADMIN is a group consisting of ZWESVUSR
and ZWESIUSR . This group must have a valid OMVS segment.

Additionally, the security administrator assigns permissions to individual Zowe users. If z/OSMF is used for authentication and serving
REST APIs for Zowe CLI and Zowe Explorer users, the TSO user ID for end users must belong to one or both of the groups IZUUSER or

IZUADMIN .

Security Permissions Reference Table
The following reference table describes which permissions are required for the user ID ZWESVUSR to run Zowe core services and

specific individual components.

If you already successfully ran the ZWESECUR JCL either separately or by running the zwe init security command, you do not need

to perform the steps described in this section. The TSO commands to create the user IDs and groups are executed during the JCL
sections of ZWESECUR . For more information about the zwe init security command, see zwe init security.

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/initialize-security-configuration#configuring-with-zwesecur-jcl
https://docs.zowe.org/stable/user-guide/initialize-security-configuration#configuring-with-zwe-init-security-command
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security

Feature of a
Zowe server-

side
component

Resource
class

Resource name
Type of
access

required
Reason Actions

Core FACILITY BPX.JOBNAME READ

Allow z/OS address spaces
for unix processes to be
renamed for ease of
identification.

This parameter permits
the Zowe main server to
set the job name. Run
the command that
applies to your ESM.
• RACF
• ACF2
• Top Secret

API Mediation
Layer
certificate
mapping

FACILITY IRR.RUSERMAP READ
Optional Allow Zowe to map
an X.509 client certificate to a
z/OS identity.

This parameter permits
the Zowe main server to
use the client certificate
mapping service. Run
the command that
applies to your ESM.
• RACF
• ACF2
• Top Secret

API Mediation
Layer identity
mapping

FACILITY IRR.IDIDMAP.QUERY READ
Optional Allow Zowe to map
a distributed identity to a
z/OS identity.

This parameter permits
the Zowe main server to
use distributed identity
mapping service. Run
the command that
applies to your ESM.
• RACF
• ACF2
• Top Secret

API Mediation
Layer SMF
records

FACILITY IRR.RAUDITX READ

Optional Allow API
Mediation Layer to issue SMF
83 records about activity of
Personal Access Tokens. For
more information about
configuring MFA, see Multi-
Factor Authentication (MFA)

This parameter permits
the Zowe main server to
cut SMF records. Run
the command that
applies to your ESM.
• RACF
• ACF2
• Top Secret

ZSS (required
for API ML
certificate and

FACILITY BPX.SERVER +

BPX.DAEMON

UPDATE Allow Zowe to run code on
behalf of the API requester's
TSO user ID. For more

This parameter permits
the Zowe main server to
create a user's security

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-address-space-job-naming
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L353
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L586
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L801
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-client-certificate-identity-mapping
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L369
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L606
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L811
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L374
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L611
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L815
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users/api-mediation/api-mediation-smf
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users/address-authentication-requirements/#multi-factor-authentication-mfa
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L381
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L616
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L820

Feature of a
Zowe server-

side
component

Resource
class

Resource name
Type of
access

required
Reason Actions

identity
mapping)

information, see Security
Environment Switching.

environment. Run the
command that applies
to your ESM.
• RACF
• ACF2
• Top Secret

ZSS (required
for API ML
certificate and
identity
mapping)

APPL OMVSAPPL READ

Allow Zowe to run code on
behalf of the API requester's
TSO user ID. This permission
is also required from a
requester's TSO user. You can
skip this requirement when
the resource OMVSAPPL in the

APPL class is not defined. For

more information, see
Security Environment
Switching.

This parameter permits
the Zowe main server to
run the code on behalf
of the user. Run the
command that applies
to your ESM.
• RACF
• ACF2
• Top Secret

ZSS FACILITY IRR.RADMIN.LISTUSER READ

Allow Zowe to obtain
information about OMVS
segment of the user profile
using LISTUSER TSO
command.

This parameter permits
the Zowe main server to
obtain information
about OMVS segment
of the user profile. Run
the command that
applies to your ESM.
• RACF
• ACF2
• Top Secret

ZSS CSFSERV Multiple READ
Generate symmetric keys
using ICSF that is used by
Zowe Desktop cookies.

The list of IDs to enable
include CSF1TRD ,

CSF1TRC , CSF1SKE ,

CSF1SKD . The full list of

IDs is described in the
z/OS Cryptographic
Services user guide for
your z/OS release level:
2.2, 2.3, 2.4 and 2.5.

Cross memory
server (ZIS)

FACILITY ZWES.IS READ Allow Zowe ZWESLSTC
processes to access the Zowe

This parameter permits
the Zowe main server to

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L333
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L568
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L784
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-security-environment-switching
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L347
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L579
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L796
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://www.ibm.com/docs/en/zos/2.2.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.3.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.4.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.5.0?topic=ssl-racf-csfserv-resource-requirements

Feature of a
Zowe server-

side
component

Resource
class

Resource name
Type of
access

required
Reason Actions

ZIS cross memory server. use ZIS cross memory
server. Run the
command that applies
to your ESM.
• RACF
• ACF2
• Top Secret

Granting users permission to access z/OSMF
Each TSO user ID that logs on to Zowe and uses Zowe services that use z/OSMF requires permission to access these z/OSMF services.
It is necessary that every user ID be added to the group with the appropriate z/OSMF privileges, IZUUSER or IZUADMIN (default).

REQUIRED ROLE: SECURITY ADMINISTRATOR

This step is not included in the provided Zowe JCL because it must be done for every TSO user ID who wants to access Zowe's z/OS
services. The list of those user IDs will typically be the operators, administrators, developers, or anyone else in the z/OS environment
who is logging in to Zowe.

NOTE

You can skip this section if you use Zowe without z/OSMF. Zowe can operate without z/OSMF but services that use z/OSMF REST
APIs will not be available, specifically the USS, MVS, and JES Explorers and the Zowe Command Line Interface files, jobs,
workflows, tso, and console groups.

To grant permissions to the user ID to access z/OSMF, issue the command(s) that corresponds to your ESM.

If you use RACF, issue the following command:

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands:

Next step

After you complete assigning security permissions, the next step is to configure certificates.

https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L329
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L560
https://github.com/zowe/zowe-install-packaging/blob/79527166f34e28c205c5f60bf4b4bb7b630bc6a1/workflows/templates/ZWESECUR.vtl#L780
https://docs.zowe.org/stable/user-guide/assign-security-permissions-to-users/configure-certificates

Version: v2.17.x LTS

Configuring certificates
Review this article to learn about the key concepts of Zowe certificates, and options for certificate configuration.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Zowe uses digital certificates for secure, encrypted network communication over Secure Sockets Layer/Transport Layer Security
(SSL/TLS) and HTTPS protocols. Communication in Zowe can be between Zowe servers, from Zowe to another server, or even between
Zowe's servers and Zowe's client components.

Zowe's certificates are stored in its keystore. Verification of these certificates and any incoming certificates from other servers or
clients is done by using certificates of certificate authorities (CAs) within Zowe's truststore.

Zowe supports using either file-based (PKCS12) or z/OS key ring-based (when on z/OS) keystores and truststores, and can reuse
compatible stores if they exist. Zowe can assist in creating the stores by either generating certificates or by allowing users to import
their own compatible certificates via the zwe init certificate command.

Certificate concepts

Certificate verification

Zowe certificate requirements

Certificate setup type

Next steps: Creating or importing certificates to Zowe

NOTE

If you are already familiar with certificate concepts and how Zowe uses certificates and are ready to get started, see the options
under the section Next steps: Creating or importing certificates to Zowe at the end of this article.

Certificate concepts
Before you get started with configuring certificates, it is useful to familiarize yourself with the following key concepts:

Keystore

Truststore

PKCS12

z/OS key ring

Server certificate

Client certificate

Self-signed certificates

Keystore

The keystore is the location where Zowe stores certificates that Zowe servers present to clients and other servers. In the simplest case,
the keystore contains one private key and a certificate pair, which can then be used by each Zowe server. When you are using a key
ring, a single key ring can serve both as a keystore and as a truststore if desired.

Truststore

The truststore is used by Zowe to verify the authenticity of the certificates that Zowe encounters. The authenticity is required when
Zowe is communicating with another server, with one of Zowe's own servers, or with a client that presents a certificate. A truststore is
composed of Certificate Authority (CA) certificates that are compared against the CAs that an incoming certificate claims to be signed
by. To ensure a certificate is authentic, Zowe must verify that the certificate's claims are correct. Certificate claims include that the
certificate was sent by the host that the certificate was issued to, and that the cryptographic signature of the authorities the certificate
claims to have been signed by match those found within the truststore. This process helps to ensure that Zowe only communicates
with hosts that you trust and have verified as authentic. When using a key ring, a single key ring can be both a keystore and a
truststore if desired.

PKCS12

PKCS12 is a file format that allows a Zowe user to hold many crytopgrahic objects in one encrypted, passworded file. This file format is
well supported across platforms but because it is just a file, you can prefer to use z/OS key rings instead of PKCS12 certificates for ease
of administration and maintenance.

z/OS key ring

z/OS provides an interface to manage cryptographic objects in "key rings". As opposed to PKCS12 files, using z/OS key rings allows
the crypto objects of many different products to be managed in a uniform manner. z/OS key rings are still encrypted, but do not use
passwords for access. Instead, SAF privileges are used to manage access. Java's key ring API requires that the password field for key
ring access to be set to "password", so despite not needing a password, you can see this keyword.

Use of a z/OS keystore is the recommended option for storing certificates if system programmers are already familiar with the
certificate operation and usage. Creating a key ring and connecting the certificate key pair requires elevated permissions. When the
TSO user ID does not have the authority to manipulate key rings and users want to create a Zowe sandbox environment or for testing
purposes, the USS keystore is a good alternative.

One option for certificate setup for key rings is to copy the JCL ZWEKRING member of Zowe's SAMPLIB and customize its values.

Server certificate

Servers need a certificate to identify themselves to clients. Every time that you go to an HTTPS website, for example, your browser
checks the server certificate and its CA chain to verify that the server you reached is authentic.

Client certificate

Clients do not always need certificates when they are communicating with servers, but sometimes client certificates can be used
wherein the server verifies authenticity of the client similar to how the client verifies authenticity for the server. When client certificates
are unique to a client, the certificate can be used as a form of authentication to provide convenient yet secure login.

Self-signed certificates

A self-signed certificate is one that is not signed by a CA at all – neither private nor public. In this case, the certificate is signed with its
own private key, instead of requesting verification from a public or a private CA. It means that there is no chain of trust to guarantee
that the host with this certificate is the one you wanted to communicate with. Note that these certificates are not secure against other
hosts masquerading as the one you want to access. As such, it is highly recommended that certificates be verified against the
truststore for production environments.

Certificate verification
When you configure Zowe, it is necessary to decide whether Zowe verifies certificates against its truststore.

In the Zowe configuration YAML, the property zowe.verifyCertificates controls the verification behavior. It can be DISABLED ,

NONSTRICT , or STRICT .

You can set this property either before or after certificate setup, but it is recommended to set zowe.verifyCertificates before

certificate setup because it affects the automation that Zowe can perform during certificate setup.

DISABLED verification

If you set zowe.verifyCertificates to DISABLED , certificate verification is not performed. It is not recommended for security
reasons, but may be used for proof of concept or when certificates within your environment are self-signed.

If you set DISABLED before certificate setup, Zowe does not automate putting z/OSMF trust objects into the Zowe truststore. This
action can result in failure to communicate with z/OSMF if later you enable verification. As such. It is recommended to either set
verification on by default, or to reinitialize the keystore if you choose to turn on verification at a later point.

NON-STRICT verification

If you set zowe.verifyCertificates to NONSTRICT , certificate verification is performed except for hostname validation. Using this
setting, the certificate Common Name or Subject Alternate Name (SAN) is not checked. Skipping hostname validation facilitates
deployment to environments where certificates are valid but do not contain a valid hostname. This configuration is for development
purposes only and should not be used for production.

STRICT verification

STRICT is the recommended setting for zowe.verifyCertificates . This setting performs maximum verification on all certificates

Zowe sees, and uses Zowe truststore.

Zowe certificate requirements
If you do not yet have certificates, Zowe can create self-signed certificates for you. The use of self-signed certificates for production is
not recommended, so you should bring your own certificates. Note that the certificates must be valid for use with Zowe.

Extended key usage

Zowe server certificates must either not have the Extended Key Usage (EKU) attribute, or have both the TLS Web Server

Authentication (1.3.6.1.5.5.7.3.1) and TLS Web Client Authentication (1.3.6.1.5.5.7.3.2) values present within.

Some Zowe components act as a server, some as a client, and some as both - client and server. The component certificate usage for
each of these cases is controlled by the Extended Key Usage (EKU) certificate attribute. The Zowe components use a single certificate
(or the same certificate) for client and server authentication, so it is required that this certificate is valid for the intended usage/s of the
component - client, server, or both. The EKU certificate extension attribute is not required, however, if it is specified, it must be defined
with the intended usage/s. Otherwise, connection requests will be rejected by the other party

Hostname validity

The host communicating with a certificate should have its hostname match one of the values of the certificate's Common Name or
Subject Alternate Name (SAN). If this condition is not true for at least one of the certificates that are seen by Zowe, then you may wish
to set NON-STRICT verification within Zowe's configuration.

z/OSMF access

The z/OSMF certificate is verified according to Zowe's Certificate verification setting, as is the case with any certificate that is seen by
Zowe. However, Zowe will also set up a trust relationship with z/OSMF within Zowe's truststore during certificate setup automation if
the certificate setting is set to any value other than DISABLED.

Certificate setup type

Whether importing or letting Zowe generate certificates, the setup for Zowe certificate automation and the configuration to use an
existing keystore and truststore depends upon the content format: file-based (PKCS12) or z/OS key ring-based.

File-based (PKCS12) certificate setup

Zowe is able to use PKCS12 certificates that are stored in USS. Zowe uses a keystore directory to contain its certificates primarily in
PKCS12 (.p12 , .pfx) file format, but also in PEM (.pem) format. The truststore is in the truststore directory that holds the public

keys and CA chain of servers that Zowe communicates with (for example z/OSMF).

z/OS key ring-based certificate setup

Zowe is able to work with certificates held in a z/OS key ring.

The JCL member .SZWESAMP(ZWEKRING) contains security commands to create a SAF key ring. By default, this key ring is named

ZoweKeyring . You can use the security commands in this JCL member to generate a Zowe certificate authority (CA) and sign the

server certificate with this CA. The JCL contains commands for all three z/OS security managers: RACF, TopSecret, and ACF2.

There are two ways to configure and submit ZWEKRING :

Copy the JCL ZWEKRING member and customize its values.

Customize the zowe.setup.certificate section in zowe.yaml and use the zwe init certificate command.

You can also use the zwe init certificate command to prepare a customized JCL member by using ZWEKRING as a template.

A number of key ring scenarios are supported:

Creation of a local certificate authority (CA) which is used to sign a locally generated certificate. Both the CA and the certificate
are placed in the ZoweKeyring .

Import of an existing certificate that is already held in z/OS to the ZoweKeyring for use by Zowe.

Import of an existing certificate already held in z/OS to the ZoweKeyring for use by Zowe.

Next steps: Creating or importing certificates to Zowe
Review the following options and choose which best applies to your use case:

Take our Certificates Configuration Questionnaire to assist with determining which configuration scenario and associated
zowe.yaml format best suits your use case.

To review the various zowe.yaml files to see which certificate configuration applies to your specific use case, see Certificate
configuration scenarios.

If you have an existing certificate, you can import this certificate to the keystore. For more information, see Import and configure
an existing certificate.

If you do not have an existing certificate, you can create one. For more information, see Generate a certificate.

When your certificate is already in the keystore, it is ready for use. For more information about how to use it, see Use certificates.

If you run into any error when configuring certificates, see Troubleshooting the certificate configuration.

https://docs.zowe.org/stable/user-guide/configure-certificates/certificates-configuration-questionnaire
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/generate-certificates
https://docs.zowe.org/stable/user-guide/use-certificates
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-certificate

Version: v2.17.x LTS

Zowe certificates configuration questionnaire
To properly configure Zowe to use certificates for server-side component installation, review the certificate setup options presented in
this article. Understanding these options makes it possible to select the best certificate configuration scenario that fits your Zowe
deployment use case.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

If you know that you will be using certificates in a production deployment environment, and that you will be using an external
certificate authority (CA), we recommend you consult with your organization's security administrator before you start certificate
configuration.

Review the Configure Zowe Certificates diagram and answer the questions presented in the questionnaire at the end of this article.

TIP

Before determining which scenario best suits your use case, it is practical to have a general understanding of the certificate
configuration basics and Zowe certificates configuration overview. For more information, see the following articles:

Certificates concepts in the Zowe Security Glossary

Zowe certificates overview

The numerated decision blocks (yellow diamonds) in the following diagram correspond to the questions in the questionnaire. Follow
this sequence of questions to determine which certificate configuration scenario best suits your certificate use case.

https://docs.zowe.org/stable/appendix/zowe-security-glossary#certificate-concepts
https://docs.zowe.org/stable/appendix/zowe-security-glossary
https://docs.zowe.org/stable/getting-started/zowe-certificates-overview

Each of the following certificate configuration scenarios are available in the article Certificate configuration scenarios.

Scenario 1: Use a file-based (PKCS12) keystore with Zowe generated certificates

Scenario 2: Use a file-based (PKCS12) keystore and import a certificate generated by another CA

Scenario 3: Use a z/OS keyring-based keystore with Zowe generated certificates

Scenario 4: Use a z/OS keyring-based keystore and connect an existing certificate

Scenario 5: Use a z/OS keyring-based keystore and import a certificate stored in a data set

Certificate configuration questionnaire
Answer each question and find which scenarios are relevant for the selected option:

Question 1: What is your target deployment environment?
Depending on your target environment type (DEV/TEST or PROD), you can create your certificates (self-signed option), acquire new
ones from a trusted CA, or use existing certificates.

Question 2: Do you need to use a certificate signed by the CA of the company or by an external CA?
If you plan to use Zowe generated self-signed certificates and your target environment is production, we strongly recommend that
you acquire new certificates from your trusted CA.

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-1-use-a-file-based-pkcs12-keystore-with-zowe-generated-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-2-use-a-pkcs12-keystore-and-import-a-certificate-generated-by-another-ca
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-3-use-a-zos-keyring-with-zowe-generated-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-and-connect-to-an-existing-certificate
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-5-use-a-zos-keyring-and-import-a-certificate-stored-in-a-data-set

Question 3: Do you plan to use a keyring?
Decide if you want to store the certificate in a z/OS keyring or to a file based keystore/truststore.

TIP

While using a keystore/truststore pair is possible to store your certificates, we recommend that you use z/OS keyrings for
production deployments.

Question 4: Do you plan to use an existing certificate from another keyring or from a dataset?
If you have an existing certificate, you can import or connect this certificate to the planned z/OS keyring based storage.

Before you import your certificates, check to make sure that the certificate format, type, and properties correspond to the required
protection and acceptability depending on the planned deployment environment (DEV, TEST, PROD). For example, use Zowe
generated self-signed certificates only with development or testing environments and not with production environments.

For more information, see Import and configure an existing certificate.

Next steps

After you select your applicable certificate configuration scenario and review the certificate configurate sample in the article Certificate
configuration scenarios, you can continue to Configure Zowe Certificates.

TIP

If you encounter issues when configuring your certificate, see Troubleshooting the certificate configuration, to find resolution of
errors.

https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-certificate

Version: v2.17.x LTS

Certificate configuration scenarios
After you complete the Zowe certificates configuration questionnaire to determine your specific configuration use case, choose from
the five scenarios presented in this article to configure Zowe for automatic certificate setup. Examples of the zowe.yaml files are
provided for each scenario.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

TIP

To assist you with determining the specific certificate configuration scenario that applies to your use case, see Zowe certificates
configuration questionnaire. This questionnaire guides you through quetions that lead to a specific configuration scenario
presented in this article.

Zowe servers require both a keystore to store the certificates and a truststore to validate certificates.

For use of Zowe on z/OS, the keystore and truststore can either be Unix file-based (PKCS12) or z/OS keyring-based.

Both the keystore and truststore can automatically be created by Zowe regardless of which storage type is used. Keystores and
truststores can be populated either with certificates that the user chooses, or with self-signed certificates generated by Zowe. This
automation can be performed by defining and customizing the zowe.setup.certificate section of your Zowe YAML configuration.

Zowe can then automate the certificate setup via the zwe init certificate command.

NOTE

Automated generation of certificates is an option, but is not required. If you already have a keystore that contains a valid
certificate *, and the corresponding private key of the certificate, along with a truststore which validates the certificate and any
other certificates you expect to encounter, then you also have the option to directly define the parameter zowe.certificate ,

which specifies the location of each of these certificates and their storage objects. Note that this parameter should not be
confused with the parameter zowe.setup.certificate .

* What is a valid certificate in Zowe?
A valid certificate for use in Zowe conforms to one of the following two options:

The certificate does not contain the Extended Key Usage section.

The certificate does contain the Extended Key Usage section, and also includes the Server and Client authentication fields.

Considerations for certificate scenario selection
Consider the scenario that best suits your use case:

Do you plan to use a file-based (PKCS12) certificates, or z/OS keyrings?

https://docs.zowe.org/stable/user-guide/certificates-configuration-questionnaire

Do you plan to enable Zowe to create self-signed certificates, or will Zowe be using pre-made certificates which you are
providing?

If you are providing certificates to Zowe and using a keyring, does the certificate already exist in your security database, or are
you importing it via a dataset?

There are five scenarios/use cases for configuring certificates. Use the applicable certificate configuration scenario according to your
needs.

Each scenario described in this article provides the configuration details via code snippets which you can use to edit your Zowe YAML
configuration within the zowe.setup.certificate section.

Scenario 1: Use a file-based (PKCS12) keystore with Zowe generated certificates

Scenario 2: Use a file-based (PKCS12) keystore and import a certificate generated by another CA

Scenario 3: Use a z/OS keyring-based keystore with Zowe generated certificates

Scenario 4: Use a z/OS keyring-based keystore and connect an existing certificate

Scenario 5: Use a z/OS keyring-based keystore and import a certificate stored in a data set

NOTE

Ensure that all alias values for all scenarios use only lower-case.

Scenario 1: Use a file-based (PKCS12) keystore with Zowe generated
certificates
Use this procedure to configure the zowe.setup.certificate section in your yaml file to enable Zowe to use generated PKCS12

certificates to be used with a keystore directory to store your certificates.

1. Set the type of the certificate storage to PKCS12 .

2. Customize the keystore directory in the following format:

3. Lock the keystore directory so it is accessible only to the Zowe runtime user and group:

4. Customize the certificate alias name. The default value is localhost .

5. Set the keystore password. The default value is password .

6. Set the alias name of self-signed certificate authority. The default value is local_ca .

7. Set the password of the keystore stored self-signed certificate authority. The default value is local_ca_password .

8. (Optional) Specify the distinguished name for Zowe generated certificates.

9. Set the validity in days for the Zowe generated certificates

Click here for details.

10. Set the domain names and IPs specified in nested subsection SAN . If this field is not defined, the zwe init command uses

the value zowe.externalDomains .

NOTE

A bug in Java SDK 8.0.8.10 has been discovered that makes configuration scenario 1 non-operational. If you see the
following message when running the zwe init certificate command, upgrade or downgrade your Java version:

For more information, see this article in IBM Support.

Example zowe yaml for scenario 1:

Your yaml file is now configured to enable Zowe to use generated PKCS12 certificates.

For more information about using a file-based PKCS12 certificate in Zowe services, see the video tutorials on YouTube. More
information about this certificate configuration scenario is also availabe in this Medium blog post.

Scenario 2: Use a file-based (PKCS12) keystore and import a certificate
generated by another CA

Use this procedure to configure the zowe.setup.certificate section in your yaml file to enable Zowe to use a file-based PKCS12
keystore to import a certificate generated by another CA.

1. Set the type of the certificate storage to PKCS12 .

2. Customize the keystore directory in the following format:

3. Lock the keystore directory so it is accessible only to the Zowe runtime user and group:

4. Customize the certificate alias name. The default value is localhost .

5. Set keystore password. The default value is password .

6. Set the existing PKCS12 keystore which holds the certificate issued by an external CA.

7. Set the password of the keystore set in step 6.

8. Specify the alias of the certificate to be imported.

9. Set the path to the certificate authority that signed the certificate to be imported.

NOTE

PEM format certificate authorities can be imported and trusted.

Click here for details.

https://www.ibm.com/support/pages/apar/IJ48749
https://www.youtube.com/playlist?list=PL8REpLGaY9QERUmM--1USMF8yOG-Awzwn
https://medium.com/zowe/step-by-step-guide-use-a-pkcs12-file-based-keystore-with-zowe-generated-certificate-365dc48eea29

Example zowe yaml for scenario 2 (PKCS12):

Your yaml file is now configured to enable Zowe to use a file-based PKCS12 keystore to import a certificate generted by another
CA.

Scenario 3: Use a z/OS keyring-based keystore with Zowe generated
certificates
Use this procedure to configure the zowe.setup.certificate section in your yaml file to enable Zowe to use a z/OS keyring-based

keystore with Zowe generated certificates.

1. Set the type of the certificate storage to one of the following keyring types:

JCEKS

JCECCAKS

JCERACFKS

JCECCARACFKS

JCEHYBRIDRACFKS

2. Add the parameter createZosmfTrust and set to true.

3. Under the nested subsection keyring: , specify the following keyring values:

keyring name

Label of Zowe certificate. The default value is localhost .

Label of Zowe CA certificate. The default value is localca .

The distinguished name for Zowe generated certificates.

4. Set the validity in days for the Zowe generated certificates

5. Set the domain names and IPs specified in the certificate SAN. If this field is not defined, the zwe init command uses the
value zowe.externalDomains .

NOTE

Due to the limitation of the RACDCERT command, this field should contain exactly two entries with the domain name and IP

address.

Example zowe yaml for scenario 3:

Click here for details.

Your yaml file is now configured to enable Zowe to use a z/OS keyring-based keystore with Zowe generated certificates.

Scenario 4: Use a z/OS keyring-based keystore and connect to an existing
certificate

Use this procedure to configure the zowe.setup.certificate section in your yaml file to use a z/OS keyring-based keystore and

connect to an existing certificate.

1. Set the type of the certificate storage to one of the following keyring types:

JCEKS

JCECCAKS

JCERACFKS

JCECCARACFKS

JCEHYBRIDRACFKS

2. Under keyring: , specify the keyring name:

3. Under the nested subsection connect: , specify the following parameters:

The current owner of the certificate. Possible values can be SITE or a user ID.

The label of the existing certificate to be connected to the Zowe keyring.

All certificate authorities you want to be trusted in the Zowe keyring.

NOTE

Due to the limitation of RACDCERT command, this field should contain a maximum of 2 entries.

The following example uses an existing JCERACFKS certificate for Zowe's z/OS components. For more information about
configuration in this scenario, see this Medium blog post, or the video tutorials in this YouTube playlist.

Example zowe yaml for scenario 4:

If you would like to use this example in your Zowe configuration YAML file, replace the following four fields with your own values:

Replace ZoweKeyringZOSMF with the your own key ring name.

Replace IZUSVR with the user name who is the owner of the existing certificate.

Replace DefaultzOSMFCert.IZUDFLT with the label of the existing certificate you are connecting to (which is owned by the

previously referenced user ID).

Replace zOSMFCA with the certificate authority that is used to sign the certificate.

Click here for details.

https://medium.com/zowe/master-zowe-certificates-use-an-existing-jceracfks-certificate-for-zowes-z-os-components-975ffa0d9f2f
https://www.youtube.com/playlist?list=PL8REpLGaY9QEHLNA81DRgGqWcgOYC0PDX

Your yaml file is now configured to use a z/OS keyring-based keystore and connect to an existing certificate.

Scenario 5: Use a z/OS keyring-based keystore and import a certificate
stored in a data set

Use this procedure to configure the zowe.setup.certificate section in your yaml file to use a z/OS keyring-based keystore and

import a certificate stored in a data set.

1. Set the type of the certificate storage to one of the following keyring types:

JCEKS

JCECCAKS

JCERACFKS

JCECCARACFKS

JCEHYBRIDRACFKS

2. Under keyring: , specify the following keyring values:

keyring name

Label of Zowe certificate. The default value is localhost .

3. Under the nested subsection import: specify the following parameters:

The name of the data set holds the certificate issued by another CA. This data set should be in PKCS12 format and
contain private key.

The password for the PKCS12 data set.

Example zowe yaml for scenario 5:

Your yaml file is now configured to use a z/OS keyring-based keystore and import a certificate stored in a data set.

Click here for details.

Version: v2.17.x LTS

Importing and configuring a certificate
One option to use certificates in Zowe is to import and configure existing certificates. Use the procedure that applies to the type of
certificate you wish to import.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Choose from the following certificate importing options:

Importing a file-based PKCS12 certificate

Importing a JCERACFKS certificate

Importing a certificate stored in an MVS data set into a Zowe key ring.

Importing an existing PKCS12 certificate
To import a PKCS12 certificate, it is first necessary to import a certificate authority (CA). There are two options for importing a CA:

Manually importing a certificate authority into a web browser

Importing a local CA certificate on Linux

Once you have imported your CA, you can configure the zowe.yaml according to Scenario 2: Use a file-based (PKCS12) keystore and
import a certificate generated by another CA described in the article Certificate configuration scenarios.

For PKCS12 certificate users, specify the following parameters in the zowe.yaml file:

Parameter Description

zowe.setup.certificate.pkcs12.import.keystore

Specify this parameter if you acquired one or more certificates from
another CA, stored them in PKCS12 format, and now want to import the
certificate(s) into the Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password
Specify this password value for the keystore defined in
zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias
This value is the original certificate alias defined in
zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.name The imported certificate is saved under the alias specified in it.

Configure zowe.yaml for a PKCS12 certificate:

NOTE

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-2-use-a-file-based-pkcs12-keystore-and-import-a-certificate-generated-by-another-ca

Due to the limitation of the RACDCERT command, the importCertificateAuthorities field can contain a maximum of two

entries.

You can now use your imported PKCS12 certificate. See next steps.

Importing a certificate Authority (CA)
Importing a certificate authority (CA) is a prerequisite to importing a PKCS12 certificate. Use the method that applies to your use case.

Manually importing a certificate authority into a web browser

Importing a local CA certificate on Linux

Manually importing a certificate authority into a web browser

To avoid the browser untrusted CA challenge, import Zowe certificates into the browser.

Trust in the API ML server is a necessary precondition for secure communication between the browser or API Client application. Ensure
this trust by installing a Certificate Authority (CA) public certificate. By default, API ML creates a local CA. Import the CA public
certificate to the truststore for REST API clients and to your browser. You can also import the certificate to your root certificate store.

TIP

If a SAF keyring is used and set up with ZWEKRING JCL, the procedure to obtain the certificate does not apply. In this case, we
recommended that you work with your security system administrator to obtain the certificate.

The public certificate in PEM format is stored at <KEYSTORE_DIRECTORY>/local_ca/localca.cer where <KEYSTORE_DIRECTORY> is

defined in a customized <RUNTIME_DIR>/bin/zowe-setup-certificates.env file during the installation step that generates Zowe

certificates. The certificate is stored in UTF-8 encoding so you need to transfer it as a binary file. Since this is the certificate to be
trusted by your browser, it is recommended to use a secure connection for transfer.

NOTE

Windows currently does not recognize the PEM format. For Windows, use the P12 version of the local_cer .

Importing commands according to your operating system

To import the certificate to your root certificate store and trust it, follow the applicable procedure based on your operating system.

For Windows, run the following command:

Note: Ensure that you open the terminal as administrator. This operation installs the certificate to the Trusted Root Certification
Authorities.

For macOS, run the following command:

For Firefox, manually import your root certificate via the Firefox settings, or force Firefox to use the Windows truststore. As a
default, Firefox uses its own certificate truststore.

https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

Create a new Javascript file firefox-windows-truststore.js at C:\Program Files (x86)\Mozilla Firefox\defaults\pref with

the following content:

TIP

To avoid requiring each browser to trust the CA that signed the Zowe certificate, you can use a public certificate authority to
create a certificate. Optional public certificate authorities include Symantec, Comodo, Let's Encrypt, or GoDaddy. Certificates
generated by such public CAs are trusted by all browsers and most REST API clients. This option, however, requires a manual
process to request a certificate and may incur a cost payable to the publicly trusted CA.

After successfully manually importing a certificate authority into a web browser, you can now import an existing PKCS12 certificate.

Importing a local CA certificate on Linux

Zowe also supports importing certificates to make REST HTTPS curl request from the command line.

Follow these steps to import local_ca.cer from the path .../zowe/keystore/local_ca .

NOTE

Steps are verified with Ubuntu 20.04.6 LTS.

1. Rename local_ca.cer with local_ca.crt and copy to the shared ca-certificates path.

$ cp local_ca.cer /usr/local/share/ca-certificates/zowe_local_ca.crt

2. Execute a ca-certificate store update by running the following command:

$ sudo update-ca-certificates

3. Verify that the new expected certificate was added (the newest will be at the bottom of the list which contains an extended list of
concatenated CAs).

$ cat /etc/ssl/certs/ca-certificates.crt

4. Run a basic curl HTTPS request from the command line. For example, run the following command:

After successfully importing your local CA certificate on Linux, you can now import an existing PKCS12 certificate.

Importing an existing JCERACFKS certificate
To import a JCERACFKS certificate, use the example yaml according to Scenario 4: Use a z/OS keyring-based keystore and connect to
an existing certificate in the article Certificate configuration scenarios.

To use a JCERACFKS certificate, specify the following parameters in the zowe.yaml file:

https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-based-keystore-and-connect-to-an-existing-certificate

Parameter Description

zowe.setup.certificate.keyring.connect.user
This is a required parameter that specifies the owner of existing
certificate. This field can have value of SITE or a user ID.

zowe.setup.certificate.keyring.connect.label This is a required parameter that sets the label of an existing certificate.

Configure zowe.yaml for a JCERACFKS certificate:

NOTE

Due to the limitation of the RACDCERT command, the importCertificateAuthorities field can contain a maximum of two

entries.

You can now use your imported JCERACFKS certificate. See next steps.

Importing a certificate stored in an MVS data set into a Zowe key ring

To import a certificate that is stored in a data set into a key ring, configure the zowe.yaml according to the example yaml in Scenario 5:
Use a z/OS keyring-based keystore and import a certificate stored in a data set

To use a JCERACFKS certificate, specify the following parameters in the zowe.yaml file.

Parameter Description

zowe.setup.certificate.keyring.connect.dsName
This is a required parameter which specifies the data set where the
certificate stored.

zowe.setup.certificate.keyring.connect.password This parameter specifies the password when importing the certificate.

zowe.setup.certificate.keyring.label This parameter specifies that label of the certificate that is imported.

Configure zowe.yaml for a JCERACFKS certificate stored in an MVS data set:

The configuration of zowe.setup.certificate populates information to be used by the subcommand zwe init certificate of

zwe init .

Next steps
Once your certificate is successfully imported, review the documentation about how to use certificates in a Zowe production
environment.

https://docs.zowe.org/stable/user-guide/import-certificates/certificate-configuration-scenarios#scenario-5-use-a-zos-keyring-based-keystore-and-import-a-certificate-stored-in-a-data-set
https://docs.zowe.org/stable/user-guide/use-certificates

Version: v2.17.x LTS

Generating a certificate
If you do not have a certificate, follow the procedure in this article that corresponds to the certificate type you choose to generate.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Choose from the following certificate types:

Creating a PKCS12 certificate

Creating a JCERACFKS certificate

Both certificate types are self-signed certificates.

Creating a PKCS12 keystore
Use can create PKCS12 certificates tht are stored in USS. This certificate is used for encrypting TLS communication between Zowe
clients and Zowe z/OS servers, as well as intra z/OS Zowe server to server communcation. Zowe uses a keystore directory to contain its
external certificate, and a truststore directory to hold the public keys of servers it communicate with (for example z/OSMF).

Follow these steps to generate a PKCS12 keystore:

1. Configure the PKCS12 setup section in zowe.yaml

2. Run the command to generate a PKCS12 keystore

Configure the PKCS12 setup section in zowe.yaml

To assist with updating zowe.yaml , see the example yaml for scenario 1: Use a file-based (PKCS12) keystore with Zowe generated

certificates in the article Certificate configuration scenarios.

For PKCS12 certificate users, customize the following parameters in the zowe.yaml file:

Parameter Description

zowe.setup.certificate.pkcs12.directory
Specifies the directory where you plan to store the PKCS12 keystore and
truststore. This is required if zowe.setup.certificate.type is PKCS12.

zowe.setup.certificate.pkcs12.lock
Is a boolean configuration to tell if we should lock the PKCS12 keystore
directory only for Zowe runtime user and group. Default value is true.

zowe.setup.certificate.pkcs12 (Optional)
Defines name, password, caAlias and caPassword to customize the keystore and
truststore. It is recommended to update these values from the default values.
Note: Alias names should be all in lower case.

https://docs.zowe.org/stable/user-guide/generate-certificates/certificate-configuration-scenarios.md/#scenario-1-use-a-file-based-pkcs12-keystore-with-zowe-generated-certificates

Parameter Description

dname (Optional)
Specifies the distinguished name. Domain names and IPs should be added into
certificate SAN. If the field san is not defined, the zwe init command uses

zowe.externalDomains .

Configuring the zowe.yaml file for a PKCS12 certificate
The following zowe.yaml example generates the following artifacts:

A PKCS12 certificate, specified in zowe.setup.certificate.type .

A keystore directory /var/zowe/keystore , specified in zowe.setup.certificate.pkcs12.directory .

A certificate name (or alias) localhost , specified in zowe.setup.certificate.pkcs12.name .

A certificate authority name local_ca , specified in zowe.setup.certificate.certificate.pkcs12.caAlias .

Example zowe.yaml using PKCS12:

TIP

To get the san IP address, run ping dvipa.my-company.com in your terminal.

Run the command to generate a PKCS12 keystore

After you configure the zowe.yaml , use the following procedure to generate the PKCS12 certificate.

1. Log in to your system. In this example, run ssh dvipa.my-company.com with your password.

2. Run the following command in the directory with this zowe.yaml in the terminal to generate the certificate and update the
configuration values in the zowe.yaml file.

zwe init certificate -c <path-to-your-zowe-configuration-yaml> --update-config

The following command output shows the generation of a PKCS12 keystore using the default values, and has the following associated
artifacts. (Note that some detailed output messages have been omitted.)

The CA is created.

The keystore is created and the CA is added to the keystore.

The certificate is created and is added to the keystore.

The truststore is created.

Directory permissions are changed to restrict access to the private key.

Command output:

The zwe init certificate command generates a certificate based on zowe.yaml values in the zowe.setup.certificate section.
The certificate values used at runtime are referenced in the zowe.certificate section in the zowe.yaml file. The command zwe

init certificate -c <path-to-your-zowe-configuration-yaml> --update-config updates the runtime zowe.certificate
section to reference the generated certificate generated from the zowe.setup.certificate .

3. Open the zowe.yaml file to check the references to the newly generated certificate values as shown in the following code

snippet:

Updated zowe.certificate section in zowe.yaml :

4. (Optional) For details about the certificate you generated, run the following command:
keytool -v -list -keystore localhost.keystore.p12 -storetype PKCS12

You completed the procedure to generate a PKCS12 keystore.

For more information about additional commands to manage a keystore, see the keytool documentation.

Next steps after PKCS12 setup

When using a Zowe-generated certificate, you will be challenged by your browser when logging in to Zowe to accept Zowe's
untrusted certificate authority. Depending on the browser you are using, there are different ways to proceed. See next steps about
how to import the PKCS12 certificate to your browser.

Creating a JCERACFKS certificate
You can create a JCERACFKS certificate for use in a z/OS keystore. JCERACFKS uses SAF and RACF services to protect key material and
certificates.

Use the following procedure to configure the zowe.yaml file for JCERACFKS certificates:

1. Configure the JCERACFKS setup section in zowe.yaml

2. Run the command to generate a JCERACFKS certificate

To assist with updating zowe.yaml , see the example yaml in Scenario 3: Use a z/OS keyring-based keystore with Zowe generated

certificates in the article Certificate configuration scenarios.

Configure the JCERACFKS setup section in zowe.yaml

For JCERACFKS certificate (z/OS key ring) users, customize the following parameters in the zowe.yaml file:

Parameter Description

zowe.setup.certificate.keyring.owner

The key ring owner. This parameter is optional and the default value is
zowe.setup.security.users.zowe . If this parameter is not defined, the default

value is ZWESVUSR.

zowe.setup.certificate.keyring.name
Specifies the key ring name to be created on z/OS. This parameter is required if
zowe.setup.certificate.type is JCERACFKS .

The following zowe.yaml example generates the following artifacts:

A JCERACFKS certificate, specified in zowe.setup.certificate.type .

https://docs.oracle.com/en/java/javase/11/tools/keytool.html
https://docs.zowe.org/stable/user-guide/import-certificates
https://docs.zowe.org/stable/user-guide/certificate-configuration-scenarios#scenario-3-use-a-zos-keyring-based-keystore-with-zowe-generated-certificates

A key ring named ZoweKeyring specified in zowe.setup.certificate.keyring.name .

A certificate with the label localhost specified in zowe.setup.certificate.keyring.label .

A certificate authority with the label localca specified in zowe.setup.certificate.keyring.caLabel with a common name

Zowe Service CA .

Example zowe.yaml file using a JCERACFKS certificate:

NOTES:

Alias names should be all lower cases.

The name and lables shown above are the default value in zowe.yaml .

dname for distinguished name is all optional.

Domain names and IPs should be added to the certificate SAN. If the field san is not defined, the zwe init command will

use zowe.externalDomains . The value for the san parameter presented in the example is for demonstration purposes.

Run the command to generate a JCERACFKS certificate

After you configure the zowe.yaml , use the following procedure to generate a JCERACFKS certificate.

1. Log in to your system. In this example, run ssh dvipa.my-company.com with your password.

2. Run the following command in the directory with this zowe.yaml in terminal to generate the certificate and update the

configuration values in zowe.yaml .

zwe init certificate -c <path-to-your-zowe-configuration-yaml> --update-config

When the command is run, a customized JCL member name is created in the CUST.JCLLIB data set. The PDS name is defined in

the zowe.setup.dataset.jcllib property. In the following example output, the PDS member

USER.ZWEV2.CUST.JCLLIB(ZW101431) is created that contains the security manager commands, and then submitted as a job ID:

ZWEKRING(JOB03054) .

The following command output shows the generation of a JCERACFKS certificate using the default values. Note that some detailed
output messages have been omitted.

Command output:

TIP

As shown in the example, the job ends with code 0 . There may, however, be failures in the individual steps. It is advised to check

the job output. The security manager commands in the job are generated based on the value of zowe.security.product . Job
steps for each product can be determined by the security manager.

3. Open the zowe.yaml file to check the references to the newly generated certificate values. Because the --update-config
parameter was specified, the runtime configuration section of zowe.yaml is updated to match the values to the generated
keystore, certificate, and certificate authority. The updated section is shown in the following code snippet:

Updated zowe.certificate section in zowe.yaml :

NOTE

zowe.certificate.keystore.password has a hardcoded password value. If you are using type: PKCS12 , the password field
must be the real password.

You completed the procedure to generate a JCERACFKS certificate.

Next steps after JCERACFKS setup

For more information about how to use your JCERACFKS certificate, see Use JCERACFKS certificates.

https://docs.zowe.org/stable/user-guide/use-certificates

Version: v2.17.x LTS

Using certificates
Once you have generated or imported your certificates, you can now use the certificates with Zowe. Use the procedure descibed in
this article that corresponds to the type of certificates you generated or imported.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Choose from the following procedures:

Use PKCS12 certificates

Use JCERACFKS certificates

Use PKCS12 certificates
To use PKCS12 certificates, run the command zwe start -c ./zowe.yaml in the directory with the zowe.yaml file to start Zowe.

Details about the PKCS12 certificate used when Zowe is launched are specified in the zowe.yaml section certificates . This section

contains information about the certificate name and the location of the certificate, together with the truststore location.

The two most common scenarios for using a PKCS12 certificate are:

You have an existing certificate and wish to configure Zowe to use the certificate.

You do not have a certificate and wish to generate a new certificate.

The zwe init certificate command supports both scenarios. The input parameters that control certificate configuration are

specified in the section zowe.setup.certificates .

To troubleshoot issues during Zowe startup, see Troubleshooting startup of Zowe z/OS components.

Use JCERACFKS certificates
Details about the JCERACFKS certificate used when Zowe is launched are specified in the zowe.yaml section certificates . This

section contains information about the certificate name and location, together with the truststore location.

The two most common scenarios for using a JCERACFKS certificate are:

You have been given an existing certificate and wish to configure Zowe to use it.

You do not have a certificate and wish to generate a new one.

The zwe init certificate command supports both scenarios. The input parameters that control certificate configuration are

specified in the section zowe.setup.certificates . See the example of connecting a JCERACFKS certificate below.

https://docs.zowe.org/stable/user-guide/generate-certificates
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-startup

Example:

Note: In this example, the command zwe init certificate -c ./zowe.yaml --security-dry-run allows the JCL to be inspected

before submission, as well as handed off to a security administrator who has privileges to submit the JCL under their user ID. By
default, the JCL id submitted immediately. For details about this example, see this playlist.

https://youtube.com/playlist?list=PL8REpLGaY9QEHLNA81DRgGqWcgOYC0PDX

Use an existing JCERACFKS certificate 1 - Identify your certUse an existing JCERACFKS certificate 1 - Identify your cert……

Use multiple certificate authorities

If you use mutiple certificate authorites, the syntax in the zowe.yaml is shown as below.

If you receive the error message, <ZWED:527259> ZOWE CRITICAL unable to get issuer certificate , check this section in your

zowe.yaml file and verify that the syntax is correct.

https://www.youtube.com/watch?list=PL8REpLGaY9QEHLNA81DRgGqWcgOYC0PDX&v=2vAT70hcXxs

Version: v2.17.x LTS

Setting up Zowe certificates using workflows
Zowe can use certificates that are held in z/OS Keyring.

You can use four z/OSMF workflows that enable you to manage keyring setup, certificates, certificate sign requests, and signatures,
and load certificates to a keyring.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

Use the following workflows to set up certificates for Zowe in your environment:

1. Set up a Zowe certificate and keyring using ZWEKRING.xml

The ZWEKRING.xml workflow sets up a Zowe certificate and keyring. The workflow helps you set up the certificate and keyring

and has the following features:

Generates a Zowe certificate that is signed by the Zowe local CA

Imports an existing certificate that is held in z/OS to the keyring for Zowe

Imports an external Zowe certificate from a data set in PKCS12 format

Connects a z/OSMF certificate authority to the Zowe keyring

The workflow includes the steps that you can see on the following image:

Based on the variable setup from the first step, the workflow can perform various certificate configurations and connect
certificates to a keyring in RACF, TSS, and ACF2 security systems.

2. Create a certificate sign request (CSR) using ZWECRECR.xml

The ZWECRECR.xml workflow creates a CSR request and has the following features:

Based on a variable setup, generates a certificate sign request.

You must define variables.

A CSR request is stored into a data set. Then the data set is automatically converted into a USS file.

You must specify the USS file path.

The workflow includes the steps that you can see on the following image:

Note: You can find links to the specific security systems (BCM, IBM) official documentation in the instructions section of the
workflow in related steps.

3. Sign a CSR request using ZWESIGNC.xml

The ZWESIGNC.xml workflow signs a CSR request.

After the successful workflow execution, the certificate is signed by the specified certificate authority and is stored in USS.

The workflow includes the steps that you can see on the following image:

Fill in the fields, that you can see on the following image, to sign a CSR request. Ensure that the workflow includes the following
information:

A USS location path of the CSR file

A USS location path where a signed certificate is stored in pem format

4. Load the Signed Client Authentication Certificate into ESM using ZWELOADC.xml

The ZWELOADC.xml workflow loads a signed client authentication certificate into a specific ESM under your ACID.

The workflow can load ASCII- or EBCDIC-encoded certificate into a data set. Then, based on the variable setup, the workflow
loads the certificate into a specific ESM.

The workflow includes the steps that you can see on the following image:

When you complete setting up Zowe certificate using workflows, you are ready to start the cross memory server ZWESISTC on z/OS.

https://docs.zowe.org/stable/user-guide/start-zowe-zos

Version: v2.17.x LTS

Enabling AT-TLS across your Zowe environment
The communication server on z/OS provides functionality to encrypt HTTP communication for on-platform jobs. This functionality is
referred to as Application Transparent Transport Layer Security (AT-TLS).

REQUIRED ROLES: SECURITY ADMINISTRATOR

Configuration Parameters

To enable AT-TLS for Zowe components, configure the following parameters:

Component-Specific Configuration
For detailed configuration instructions specific to each component, refer to the following guides:

Configuring AT-TLS for API Mediation Layer

Using AT-TLS in the App Framework

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-at-tls
https://docs.zowe.org/stable/user-guide/user-guide/mvd-configuration#using-at-tls-in-the-app-framework

Version: v2.17.x LTS

Configuring the Zowe cross memory server (ZIS)
The Zowe cross memory server (ZIS) provides privileged cross-memory services to the Zowe Desktop and runs as an APF-authorized
program. The same cross memory server can be used by multiple Zowe desktops. The cross memory server is required to log on to
the Zowe desktop and operate the desktop apps such as the Code Editor. If you wish to start Zowe without the desktop (for example
bring up just the API Mediation Layer), you do not need to install and configure a cross memory server and can skip this step.

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

IMPORTANT

This article describes how to configure the cross server manually. However, most of this configuration should already be
performed during Zowe configuration. If you have already successfully run the zwe init command, the load modules are

already installed, and APF authorization and SAF configuration is complete.

In this case, the final step is to configure the load modules to run in key 4 non-swappable.

To install and configure the cross memory server, it is necessary to define APF-authorized load libraries, program properties table
(PPT) entries, and a parmlib. Performing these steps requires familiarity with z/OS.

PDS sample library and PDSE load library

Load module
APF authorize

Key 4 non-swappable

PARMLIB

PROCLIB

SAF configuration

Zowe auxiliary service

Summary of cross memory server installation

Starting and stopping the cross memory server on z/OS

PDS sample library and PDSE load library

The cross memory server runtime artifacts, the JCL for the started tasks, the parmlib, and members containing sample configuration
commands are found in the SZWESAMP PDS sample library.

The load modules for the cross memory server and the corresponding auxiliary server are found in the SZWEAUTH PDSE.

Convenience Build
The location of SZWESAMP and SZWEAUTH for a convenience build depends on the value of the zowe.setup.dataset.prefix
parameters in the zowe.yaml file used to configure the zwe install command, see Install the MVS data sets.

https://docs.zowe.org/stable/user-guide/configure-xmem-server/configuring-overview
https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build#step-5-install-the-mvs-data-sets

SMP/E
For an SMP/E installation, SZWESAMP and SZWEAUTH are the SMP/E target libraries whose location depends on the value of the

#thlq placeholder in the sample member AZWE001.F1(ZWE3ALOC) .

The cross memory server is a long running server process that, by default, runs under the started task name ZWESISTC with the user

ID ZWESIUSR and group of ZWEADMIN .

The ZWESISTC started task serves the Zowe desktop that is running under the ZWESLSTC started task, and provides it with secure

services that require elevated privileges, such as supervisor state, system key, or APF-authorization.

The user ID ZWESIUSR that is assigned to the cross memory server started tasks must have a valid OMVS segment and read access to

the load library SZWEAUTH and PARMLIB data sets. The cross memory server loads some functions to LPA for its PC-cp services.

To install the cross memory server, enable the PROCLIB, PARMLIB, and load module. This topic describes the steps to do this manually.

Load module
The cross memory server load module ZWESIS01 is installed by Zowe into a PDSE SZWEAUTH . For the cross memory server to be

started, the load module needs to be APF-authorized and the program needs to run in key(4) as non-swappable.

APF authorize

APF authorizes the PDSE SZWESAUTH . This allows the SMP/E APPLY and RESTORE jobs used for applying maintenance to be operating

on the runtime PDSE itself when PTF maintenance is applied.

Do not add the SZWEAUTH data set to the system LNKLIST or LPALST concatenations.

To check whether a load library is APF-authorized,issue the following command:

where the value of DSNAME is the name of the SZWEAUTH data set as created during Zowe installation that contains the ZWESIS01
load module.

Issue one of the following operator commands to dynamically add the load library to the APF list (until next IPL), where the value of
DSNAME is the name of the SZWEAUTH data set, as created during Zowe installation.

If the load library is not SMS-managed, issue the following operator command, where volser is the name of the volume that

holds the data set:

If the load library is SMS-managed, issue the following operator command:

Configuring using zwe init apfauth

If you are using the zwe init command to configure your z/OS system, the step zwe init apfauth can be used to generate the

SETPROG commands and execute them directly. The generation of SETPROG commands and their execution takes the input

parameters zowe.setup.mvs.authLoadLib for the SZWEAUTH PDS location, and zowe.setup.mvs.authPluginLib for the location of

the PDS that is used to contain plugins for the cross memory server. For more information on zwe init apfauth see, Performing APF

Authorization of load libraries.

https://docs.zowe.org/stable/user-guide/configure-xmem-server/apf-authorize-load-library

Key 4 non-swappable

The cross memory server load module ZWESIS01 and the auxiliary (AUX) address space load module ZWESAUX must run in key 4 and

be non-swappable. For the server to start in this environment, add the following PPT entries for the server and address spaces to the
SCHEDxx member of the system PARMLIB.

The PDS member SZWESAMP(ZWESISCH) contains the PPT lines for reference.

Then, issue the following command to make the SCHEDxx changes effective:

PARMLIB
The ZWESISTC started task must find a valid ZWESIPxx PARMLIB member in order to be launched successfully. The SZWESAMP PDS

created at installation time contains the member ZWESIP00 with default configuration values. You can copy this member to another

data set, for example your system PARMLIB data set, or else leave it in SZWESAMP .

If you choose to leave ZWESIPxx in the installation PDS SZWESAMP used at installation time, this has advantages for SMP/E

maintenance because the APPLY and RESTORE jobs will be working directly against the runtime library.

Wherever you place the ZWESIP00 member, ensure that the data set is listed in the PARMLIB DD statement of the started task

ZWESISTC .

PROCLIB

For the cross memory server to be started, you must move the JCL PROCLIB ZWESISTC member from the installation PDS SAMPLIB

SZWESAMP into a PDS that is on the JES concatenation path.

You need to update the ZWESISTC member in the JES concatenation path with the location of the load library that contains the load

module ZWESIS01 by editing the STEPLIB DD statement of ZWESISTC . Edit the PARMLIB DD statement to point to the location of the

PDS that contains the ZWESIP00 member.

For example, the sample JCL below shows ZWESISTC where the APF-authorized PDSE containing ZWESIS01 is

IBMUSER.ZWEV2.SZWEAUTH(ZWESIS01) and the PDS PARMLIB containing ZWESIP00 is IBMUSER.ZWEV2.SZWESAMP(ZWESIP00) .

SAF configuration

Because the ZIS server makes z/OS security calls it restrits which clients are able to use it services, by requiring them to have READ

access to a security profile ZWES.IS in the FACILITY class.

The Zowe launcher started task ZWESLSTC needs to be able to access the ZIS server, which requires that the user ID ZWESVUSR has

access to ZWES.IS . The steps to do this are described in Configure the cross memory server for SAF.

Zowe auxiliary service

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-the-cross-memory-server-for-saf

In some situations when a Zowe extension is supported, the cross memory server starts, controls, and stops an auxiliary address space.
This is run as a ZWESASTC started task that runs the load module ZWESAUX .

NOTE

When to configure the auxiliary service

Under normal Zowe operation, no auxiliary address spaces are started. However, if you have installed a vendor product running
on top of Zowe, this product may use an auxiliary address space. In this case, the auxiliary service requires configuration to be
launchable. The vendor product documentation will specify whether the Zowe auxiliary service requires configuration. Verify that
the auxiliary service configuration is required before performing configuration steps.

If you are using just core Zowe functionality, configuring the auxiliary service is not required. Even with the Zowe auxiliary service
configured, there is no situation under which you should manually start the ZWESASTC started task.

Installing the auxiliary service

To install the auxiliary service to allow this service to run, perform the steps to install and configure the cross memory server as
described previously. Note that this procedure will use a different JCL PROBLIC member and a different load module. There is no
PARMLIB for the auxiliary service.

JCL member ZWESASTC is copied from SZWESAMP installation PDS to a PDS on the JES concatenation path.

The PDSE load library SZWEAUTH is APF-authorized, or load module ZWESAUX is copied to an existing APF Auth LoadLib.

The load module ZWESAUX must run in key 4 and be non-swappable by adding a PPT entry to the SCHEDxx member of the

system PARMLIB PPT PGMNAME(ZWESAUX) KEY(4) NOSWAP .

Zowe Auxiliary Address space

The cross memory server runs as a started task ZWESISTC that uses the load module ZWESIS01 .

In some use cases, the Zowe cross memory server has to spawn child address spaces, which are known as auxiliary (AUX) address
spaces. The auxiliary address spaces run as the started task ZWESASTC using the load module ZWESAUX and are started, controlled, and
stopped by the cross memory server.

An example of when an auxiliary address space is used is for a system service that requires supervisor state but cannot run in cross-
memory mode. The service can be run in an AUX address space which is invoked by the Cross Memory Server acting as a proxy for
unauthorized users of the service.

Do not install the Zowe auxiliary address space unless a Zowe extension product's installation guide explicitly asks for it to be done.
This will occur if the extension product requires services of Zowe that cannot be performed by the cross memory server and an
auxiliary address space needs to be started.

A default installation of Zowe does not require auxiliary address spaces to be configured.

IMPORTANT

The cross memory ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task manually.

Summary of cross memory server installation
You can start the cross memory server using the command /S ZWESISTC once the following steps have been completed.

JCL members STC - ZWESISTC and ZWESASTC are copied from SZWESAMP installation PDS to a PDS on the JES concatenation path.

The PDSE Load Library SZWEAUTH is APF-authorized, or Load modules ZWESIS01 and ZWESAUX are copied to an existing APF Auth

LoadLib.

The JCL member ZWESISTC DD statements are updated to point to the location of ZWESIS01 and ZWESIP00 .

The load modules ZWESIS01 and ZWESAUX must run in key 4 and be non-swappable by adding a PPT entry to the SCHEDxx

member of the system PARMLIB

Starting and stopping the cross memory server on z/OS

The cross memory server is run as a started task from the JCL in the PROCLIB member ZWESISTC . It supports reusable address spaces
and can be started through SDSF with the operator start command with the REUSASID=YES keyword:

The ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task manually.

To end the Zowe cross memory server process, issue the operator stop command through SDSF:

NOTE

The starting and stopping of the ZWESLSTC started task for the main Zowe servers is independent of the ZWESISTC cross

memory server, which is an angel process. If you are running more than one ZWESLSTC instance on the same LPAR, then these

will be sharing the same ZWESISTC cross memory server. Stopping ZWESISTC will affect the behavior of all Zowe servers on the

same LPAR that use the same cross-memory server name, for example ZWESIS_STD. The Zowe Cross Memory Server is designed
to be a long-lived address space. There is no requirement to recycle regularly. When the cross-memory server is started with a
new version of its load module, it abandons its current load module instance in LPA and loads the updated version.

Troubleshooting
To diagnose problems that may occur with the Zowe ZWESLSTC not being able to attach to the ZWESISTC cross memory server, a log

file zssServer-yyyy-mm-dd-hh-mm.log is created in the log directory each time ZIS is started. More details on diagnosing errors can

be found in Zowe Application Framework issues.

If the crossMemoryServerName is changed in zowe.yaml and the default name is not applied, manually update the PROC NAME in the

corresponding PROCLIB .

For example, the ZIS server name is changed from its default of ZWESIS_STC to be ZWESIS_02 . The PROCLIB member line 1 is
updated from //ZWESIS01 PROC NAME='ZWESIS_STD',MEM=00,RGN=0M to //ZWESIS_01 PROC NAME='ZWESIS_02',MEM=02,RGN=0M .

And the zowe.yaml file is updated to use the 02 instance:

Next step

https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#cannot-log-in-to-the-zowe-desktop

After you complete the configuration of the Zowe cross memory server, you may configure Zowe for High Availability, or proceed to
starting Zowe.

https://docs.zowe.org/stable/user-guide/configure-xmem-server/zowe-ha-overview
https://docs.zowe.org/stable/user-guide/configure-xmem-server/start-zowe-zos

Version: v2.17.x LTS

Configuring high availability (optional)
Zowe has a high availability feature built-in. For Zowe in a high availability configuration, one workspace directory is required. This
workspace directory must be created on a shared file system (zFS directory) which all LPARs in a Sysplex can access. Review this article
and the following articles in this section for the configuration steps to enable the high availability feature. Note that configuring high
availability is optional.

REQUIRED ROLE: SYSTEM PROGRAMMER

Enable high availability when Zowe runs in Sysplex
Sysplex is required to make sure multiple Zowe instances can work together. Check Configuring Sysplex for high availability for
more details.

z/OSMF is an optional prerequisite of Zowe. If your Zowe instance works with z/OSMF, it's recommended to configure z/OSMF for
high availability in Sysplex.

The haInstances section must be defined in the Zowe YAML configuration. Check Zowe YAML Configuration File Reference for

more details.

Zowe caching service is required to convert stateful component to stateless component. Check Configuring the Caching Service
for HA for details.

Known limitations

To allow Sysplex Distributor to route traffic to the Gateway, you can only start one Gateway in each LPAR within the Sysplex. All
Gateways instances should be started on the same port configured on Sysplex Distributor.

Zowe App Server should be accessed through the Gateway with a URL like https://<dvipa-domain>:<external-

port>/zlux/ui/v1 .

Enable high availability when Zowe runs in Kubernetes
If you deploy Zowe into Kubernetes, all components can also achieve high availability if you enable more than one replicas for each
component.

HorizontalPodAutoscaler is recommanded to let Kubernetes scales the component based on workdload.

PodDisruptionBudget is recommended to let Kubernetes automatically handles disruptions like upgrade.

https://docs.zowe.org/stable/user-guide/configure-sysplex
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration
https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/user-guide/k8s-config#horizontalpodautoscaler
https://docs.zowe.org/stable/user-guide/k8s-config#poddisruptionbudget

Version: v2.17.x LTS

Configuring Sysplex for high availability
To deploy Zowe high availability, you must set up the Parallel Sysplex® environment. A Parallel Sysplex is a collection of z/OS®
systems that cooperatively use certain hardware and software components to achieve a high-availability workload processing
environment.

Sysplex environment requirements
Zowe high availability instances require a Sysplex environment that consists of the following:

One or more central processor complexes (CPCs) that can attach to a coupling facility

At least one coupling facility

At least one Sysplex timer

Connection to shared DASD

Shared SAF database, see Sharing a database with sysplex communication in data sharing mode

Sysplex Distributor with configured Dynamic VIPA TCP/IP address, see Configuring Sysplex Distributor for instructions

VSAM record-level sharing (RLS), see Preparing for VSAM record-level sharing

USS Shared file system, see How to share file systems in a Sysplex

JESPlex/JES2 Multi-Access Spool (MAS) environment

z/OSMF high availability, see Configuring z/OSMF high availability in Sysplex

Node.js v14.x (except v14.17.2), or v16.x

NOTE

It is highly recommended that Node.js is installed on a shared file system.

Configuring Sysplex Distributor
The following example DVIPA configuration ensures the availability of Zowe in Hot-Standby mode. For example, suppose that you
have a Sysplex of two z/OS systems: A, B.

1. Enable dynamic XCF on each host by adding the following TCP/IP definitions:

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.A 255.255.255.0 1 for SYSA

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.B 255.255.255.0 1 for SYSB

2. Define a DVIPA for both systems:

where,

x.x.x.A
Specifies the home address for SYSA.

https://www.ibm.com/docs/en/zos/2.1.0?topic=sd-sharing-database-sysplex-communication-in-data-sharing-mode
https://www.ibm.com/docs/en/zos/2.4.0?topic=sharing-preparing-vsam-record-level
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-ha

x.x.x.B
Specifies the home address for SYSB.

x.x.x.V
Specifies the Dynamic VIP Address.

7554
Specifies the port number of you Zowe API Mediation Layer Gateway. This should be the same port number you configured
for zowe.externalPort in zowe.yaml . See Zowe YAML configuration file reference to learn more about zowe.yaml .

The VIPADISTRIBUTE statement with PREFERRED and BACKUP settings is used to enable automatic dynamic VIPA takeover to occur, if

needed.

All Zowe instances are bound to the DVIPA x.x.x.V. With both z/OS systems active in the Sysplex, the preferred Zowe instance, SYSA
receives all new incoming requests. If SYSA fails, new work requests to Zowe are routed to the server on SYSB. When SYSA resumes
normal operations, new work requests for Zowe are routed to SYSA again. This is the default behavior because the AUTOSWITCHBACK
parameter of the VIPADISTRIBUTE statement is in effect by default.

If you do not want the distributor to switch back to the preferred target when it becomes available, you can specify the
NOAUTOSWITCHBACK parameter for the VIPADISTRIBUTE statement.

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

Version: v2.17.x LTS

Configuring z/OSMF for high availability in Sysplex
z/OSMF high availability (HA) should be configured in Hot Standby mode to ensure availability of REST services. The goal of this
configuration is to ensure that one z/OSMF server is always available to provide the REST services.

In Hot Standby mode, there is at least one backup (hot-standby) server and a preferred target server. Both targets are active, and both
z/OSMF servers are bound to the DVIPA. The preferred z/OSMF server receives all new incoming requests. When the preferred
z/OSMF server fails or the system becomes down, new requests are routed to the backup (hot-standby) server. The distributing DVIPA
does not perform load balancing of requests across multiple systems. For more information, read the following articles in IBM
Documentation:

Configuring z/OSMF for availability

Configuring z/OSMF for high availability

Sysplex environment requirements
Before you begin, ensure that the Sysplex environment meets the following requirements for z/OSMF REST services:

Shared SAF database. See Sharing a database with sysplex communication in data sharing mode in IBM Documentation.

USS Shared file system. See How to share file systems in a Sysplex in IBM Documentation.

JESPlex/JES2 Multi-Access Spool (MAS) environment

Sysplex distributor, configured Dynamic VIPA TCP/IP address

Extended MCS console (EMCS)

Setting up z/OSMF nucleus
This information is intended for a first-time z/OSMF setup. Follow these high-level steps to create a z/OSMF nucleus on your
system.

For detailed information about each step, see Create a z/OSMF nucleus on your system in IBM Documentation.

1. Create the z/OSMF security authorizations by running the sample JCL SYS1.SAMPLIB(IZUSEC). z/OSMF security authorizations
will be used by all z/OSMF servers across multiple systems.

2. Create a shared file system per z/OSMF server by running the sample JCL SYS1.SAMPLIB(IZUMKFS). It holds configuration
settings and the persistence data.

3. Copy the Sample Parmlib Member SYS1.SAMPLIB(IZUPRM00) to PARMLIB and modify it according to requirements of z/OSMF
HA parmlib member in Sysplex. Each system uses a different IZUPRMxx member. For example, IZUPRM0A and IZUPRM0B.

4. Copy the following z/OSMF procedures from SYS1.PROCLIB into your JES concatenation:

IZUSVR1 (Each z/OSMF server should use the different started procedure. For example, IZUSVRA and IZUSVRB.)

IZUANG1

IZUFPROC

https://www.ibm.com/docs/en/zos/2.2.0?topic=environment-configuring-zosmf-availability
https://www.ibm.com/docs/en/zos/2.4.0?topic=configurations-configuring-zosmf-high-availability
https://www.ibm.com/docs/en/zos/2.1.0?topic=sd-sharing-database-sysplex-communication-in-data-sharing-mode
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.izua300/izulite_CreateTheNucleus.htm

5. Define different STARTED profiles for z/OSMF servers.

Requirements of z/OSMF HA parmlib member in Sysplex

AUTOSTART_GROUP, more than one z/OSMF server (independent z/OSMF instances) is to be autostarted in a Sysplex. For
instance, System A will autostart a server and similarly, System B will autostart the second z/OSMF server.

z/OSMF has a default autostart group (IZUDFLT) which is used in monoplex or single z/OS image. To have more z/OSMF servers
autostarted in a Sysplex, you must associate each server and the systems it serves with a unique autostart group name. For
example, AUTOSTART_GROUP('IZUDFLA') for System A and AUTOSTART_GROUP('IZUDFLB') for System B

AUTOSTART(LOCAL) should be used by all z/OSMF instances.

HOSTNAME, the DVIPA address will be used as the z/OSMF host name for all instances.

HTTP_SSL_PORT, all servers are listening on the same port.

KEYRING_NAME, all servers should use the same key ring such as IZUKeyring.IZUDFLT .

SERVER_PROC, each z/OSMF server should use the different started procedure. For example, IZUSVRA and IZUSVRB.

ANGEL_PROC, all z/OSMF servers can connect to the same z/OSMF angel process such as IZUANG1.

SAF_PREFIX, they should use the same SAF profile prefix such as IZUDFLT.

USER_DIR, each instance uses a shared file system with a unique mount point for each AUTOSTART group that be automatically
started. For example, /global/zosmf/zosmfa and /global/zosmf/zosmfb .

Configuring z/OSMF for high availability
The following DVIPA configuration ensures the availability of z/OSMF for Hot-Standby. For example, suppose that you have a Sysplex
of two z/OS systems: A, B.

1. Enable dynamic XCF on each host by adding the following TCP/IP definitions:

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.A 255.255.255.0 1 for SYSA

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.B 255.255.255.0 1 for SYSB

2. Define a dynamic VIPA (DVIPA) for both systems:

where,

x.x.x.A is the home address for SYSA.

x.x.x.B is the home address for SYSB.

x.x.x.V is Dynamic VIP Address.

The VIPADISTRIBUTE statement with PREFERRED and BACKUP settings is used to enable automatic dynamic VIPA takeover to occur, if

needed.

Both z/OSMF servers are bound to the DVIPA x.x.x.V. With both z/OS systems active in the Sysplex, the preferred z/OSMF server, SYSA
receives all new incoming requests. If SYSA fails, new work requests for z/OSMF are routed to the server on SYSB. When SYSA resumes
normal operations, new work requests for z/OSMF are routed to SYSA again. This is the default behavior because the
AUTOSWITCHBACK parameter of the VIPADISTRIBUTE statement is in effect by default.

If you do not want the distributor to switch back to the preferred target when it becomes available, you can specify the
NOAUTOSWITCHBACK parameter for the VIPADISTRIBUTE statement.

Version: v2.17.x LTS

Configuring the Caching Service for high availability
Zowe can work in a high availability (HA) configuration where multiple instances of the Zowe launcher are started, either on the same
LPAR, or different LPARs connected through sysplex distributor. If you are only running a single Zowe instance on a single LPAR you do
not need to create a caching service so you may skip this step.

In an HA setup the different Zowe API Mediation Gateway servers share the same northbound port (by default 7554), and client traffic

to this port is distributed between separate gateways that in turn dispatch their work to different services. When any of the services
individually become unavailable the work can be routed to available services, which means that the initial northbound request will be
fulfilled.

Zowe uses the Caching Service to centralize the state data persistent in high availability (HA) mode. If you are runnning the caching
service on z/OS there are three storage methods: inMemory , infinispan or VSAM . If you are running the caching service off platform,

such as a Linux or Windows container image, it is also possible to specify redis or infinispan .

To learn more about how the Caching Service can be used, see Using the Caching Service.

NOTE

To enable Personal Access Token support when using the Caching Service, Infinispan is the required storage solution. Infinispan
is part of Zowe installation. No additional software or installation is required when using this storage solution. Infinispan is the
recommended storage method to use in production.

inMemory
This storage method is designed for quick start of the service and should be used only for single instance scenario and development
or test purpose. Do not use it in production or high availability scenario.

To use this method, set the zowe.components.caching-service.storage.mode value to inMemory in the zowe.yaml configuration

file. When this method is enabled, the Caching Service will not persist any data.

Infinispan
Infinispan is designed to be run mainly on z/OS since it offers good performance. To enable this method, set the value of
zowe.components.caching-service.storage.mode to infinispan in the zowe.yaml configuration file. Infinispan environment
variables are not currently following the v2 naming convention, so they must be defined into zowe.environments section. For more

information on these properties and their values see Infinispan configuration.

VSAM

This storage method allows you tu use VSAM dataset as a storage for Caching service. You can use zwe init vsam command to

generate proper dataset.

https://docs.zowe.org/stable/user-guide/user-guide/api-mediation/api-mediation-caching-service
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration

The command zwe init vsam uses the template JCL in SZWESAMP(ZWECSVSM) . You can edit and submit this yourself, or else if use

zwe init vsam which will copy the source template member from zowe.setup.mvs.hlq.SZWESAMP(ZWECVCSM) and create a target

JCL member in zowe.setup.mvs.jcllib(ZWECVSCM) with values extracted from the zowe.yaml file.

zowe.components.caching-service.storage.vsam.name

This specifies the data set name that the ZWECSVSM JCL will create. This is used to replace all occurrences of #dsname in the

ZWECSVSM data set.

NOTE

The ZWECSVSM JCL defines the key length and record length of the VSAM instance. If the key length and record length of

this JCL is changed, zowe.environments.CACHING_STORAGE_VSAM_KEYLENGTH and

zowe.environments.CACHING_STORAGE_VSAM_RECORDLENGTH must be set to the new values.

zowe.components.caching-service.storage.mode

This specifies whether you would like to use Record Level Sharing (RLS) for your VSAM data set. RLS is recommended for Sysplex

deployment. NONRLS is also an allowed value.

zowe.setup.vsam.storageClass

If you use the RLS mode, a storage class is required.

zowe.setup.vsam.volume

If you set to use the NONRLS mode, a storage volume is required.

To preview the member before submitting it, use the value --security-dry-run . Otherwise, the command automatically submits the

JCL and waits for its completion.

redis
Redis is not available if you are running the API Mediation Layer on z/OS under Unix System Services. Usage of redis is intended for
when API ML is running off platform, such as in a Linux or Windows container as part of a hybrid cloud deployment.

To enable this method, set the value of zowe.components.caching-service.storage.mode to redis in the zowe.yaml
configuration file. There are a number of values to control the redis nodes, sentinel and ssl properties that need to be set in the
zowe.yaml file. For more information on these properties and their values see Redis configuration.

https://www.ibm.com/support/pages/vsam-record-level-sharing-rls-overview
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis#redis-configuration

Version: v2.17.x LTS

Starting and stopping Zowe
The following article describes how to start and stop Zowe.

Zowe consists of three main started tasks:

ZWESISTC
Zowe cross memory server

ZWESASTC
Zowe cross memory auxiliary server

ZWESLSTC
Zowe main started task

Starting and stopping the cross memory server ZWESISTC on z/OS

The cross memory server is run as a started task from the JCL in the PROCLIB member ZWESISTC , and supports reusable address

spaces. This task can be started through with the operator start command with the REUSASID=YES keyword:

NOTE

If using SDSF to start the cross memory server, enter / before S .

The ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task manually.

NOTE

Starting and stopping of the ZWESLSTC started task for the main Zowe servers is independent of the ZWESISTC cross memory
server, which is an angel process. If you are running more than one ZWESLSTC instance on the same LPAR, the instances share

the same ZWESISTC cross memory server. Stopping ZWESISTC affects the behavior of all Zowe servers on the same LPAR that

use the same cross-memory server name, for example ZWESIS_STD . The Zowe cross memory server is designed to be a long-

lived address space. There is no requirement to recycle regularly. When the cross memory server is started with a new version of
its load module, the cross memory server abandons its current load module instance in LPA and loads the updated version.

To end the Zowe cross memory server process, issue the operator stop command:

NOTE

If using SDSF to stop the cross memory server, enter / before P .

Starting and stopping the cross memory auxiliary server ZWESASTC on
z/OS

Starting and stopping the cross memory auxiliary server ZWESASTC on z/OS is handled automatically by Zowe cross memory server. It

is not necessary to manually start or stop this started task.

Starting and stopping Zowe main server ZWESLSTC on z/OS with zwe server
command

Zowe ships zwe start and zwe stop commands to help you start and stop the Zowe main server.

To start Zowe, run the following command:

This command issues the S command to Zowe ZWESLSTC .

Example:

Job name ZWE1SV can be customized with zowe.job.name in your Zowe configuration file.

You can use zwe start command to start a Zowe high availability instance defined on other LPAR within the Sysplex.

Example:

The following information must be defined in the Zowe configuration file:

The zwe start command uses the ROUTE command to send the S ZWESLSTC command to the LPAR2 system.

To stop Zowe, run the following command:

This command issues the P command to the Zowe job.

Example:

Starting and stopping Zowe main server ZWESLSTC on z/OS manually

To start Zowe main server, you can issue the S ZWESLSTC command. Similar to the the MVS system command, you can customize the

JOBNAME .

Example:

If you have a Zowe high availability instance defined and want to start a specific HA instance, for example myinst1 , you can pass with

the HAINST parameter.

Example:

NOTE

The Zowe high availability instance name is case insensitive. HAINST=myinst1 and HAINST=MYINST1 are equivalent.

If you are starting a Zowe high availability instance for another LPAR in the Sysplex, you can use the ROUTE command to route the S

command to the target system.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-stop

Example: To start an HA instance myinst2 on LPAR2 when working on SYSNAME LPAR1 , issue the following command:

To stop the Zowe main server, issue the P <jobname> command.

With Zowe version 1, you can issue C command to stop Zowe main server. This command is no longer supported in version 2. The P
command is now required to ensure that the Zowe components shut down properly.

Stopping and starting a Zowe component without restarting Zowe main
server
You can restart a Zowe component with the MVS system command without restarting the whole Zowe main server. Before issuing the
modify command consider the following points:

By default, your Zowe main server job name is configured as ZWE1SV . You can find your customized value by checking the

zowe.job.name defined in the Zowe configuration file.

Determine the component name you want to stop or start. You can find a full list of installed components by listing the
<RUNTIME>/components directory and the Zowe extension directory.

To stop a running Zowe component, issue the following command:

Example:

To stop app-server , issue the following command:

To start a stopped Zowe component, issue the following command:

Example:

To start app-server , issue the following command:

NOTE

Not all components can be restarted with this method. Some components may rely on other components. It may be necessary to
restart affected components.

Version: v2.17.x LTS

Limiting started Zowe services to API Mediation Layer
As a Zowe user, you can start API Mediation Layer independently of other Zowe components. By default, the Gateway, Zowe System
Services, and Virtual Desktop start when Zowe runs. To limit consumed resources when the Virtual Desktop or Zowe System Services
are not required, it is possible to specify which components start in the context of Zowe. No change is required during the installation
process to support this setup.

Once Zowe is installed, use this procedure to limit which components start.

NOTE

Zowe System Services are required for some of functionalities of API Mediation Layer such as Client Certificates or OIDC.

Follow these steps:

1. Open the file zowe.yaml .

2. Find or add the property components.*.enabled and set this property to false for all components that should not be started.

3. Restart Zowe.

Version: v2.17.x LTS

Verifying Zowe installation on z/OS
After the Zowe™ started task ZWESLSTC is running, follow the instructions in the following sections to verify that the components are
functional.

Verifying Zowe Application Framework installation

Verifying API Mediation installation

Verifying z/OS Services installation

NOTE

Not all components may have been started. Which components have been started depends on your setting of the component
enabled status in Zowe configuration file (usually zowe.yaml).

Examples:

If you set enabled to be true for gateway , discovery and api-catalog , the API Mediation Layer and z/OS Services are

started.

If you set enabled to be true for app-server and zss , the Zowe Application Framework (Zowe desktop) are started.

Configurations that use containerization may only have ZSS started.

For more information, see YAML configurations - components.

Verifying Zowe Application Framework installation

If the Zowe Application Framework is installed correctly, you can open the Zowe Desktop from a supported browser.

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort

where,

myHost is the host on which you installed the Zowe Application Server.

httpsPort is the port number value components.app-server.port in zowe.yaml . For more information, see Configure

component app-server.

For example, if the Zowe Application Server runs on host myhost and the port number that is assigned to components.app-

server.port is 12345, you specify https://myhost:12345 . The web desktop uses page direct to the actual initial page which is

https://myhost:12345/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html . If the redirect fails, try the full URL.

If the desktop appears but you are unable to log on, check Cannot log into the Zowe desktop for troubleshooting tips.

Verifying API Mediation installation

https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration#yaml-configurations---components
https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration#configure-component-app-server
https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#cannot-log-in-to-the-zowe-desktop

Use your preferred REST API client to review the value of the status variable of the API Catalog service that is routed through the API
Gateway using the following URL:

where,

myHost is the host on which you installed the Zowe API Mediation Layer.

httpsPort is the port number value zowe.externalPort in zowe.yaml . For more information, see Domain and port to access
Zowe.

Example:

The following example illustrates how to use the curl utility to invoke API Mediation Layer endpoint and the grep utility to parse out
the response status variable value. The curl command is a powerful tool used for making HTTP requests from the command line. It

allows you to send and receive data from various protocols, including HTTP, HTTPS, FTP, and more.

-v : The -v option stands for "verbose." When you include this option, curl provides more detailed information during the

request and response process. It displays additional information such as the request headers, response headers, and other
debugging details.

-k : The -k option stands for "insecure" or "insecure SSL." When you include this option, curl allows insecure connections and

bypasses SSL certificate verification. It is useful when making requests to HTTPS URLs with self-signed certificates or when dealing
with SSL certificate issues. However, it's important to note that using -k removes security checks and may expose you to
potential security risks. Exercise caution when using this option, especially in production environments.

The response UP confirms that API Mediation Layer is installed and is running properly. For more instructions about curl command,
please see the tutorial.

Verifying z/OS Services installation

Zowe z/OS services usually are registered with Zowe APIML Discovery and exposed with certain service url like /<service>/api/v1 .

Here we give an example of verifying jobs-api shipped with Zowe. Please be aware that jobs-api is not enabled by default if you

created your Zowe configuration file from example-zowe.yaml . To enable jobs-api , you need to set components.jobs-

api.enabled to be true and restart Zowe. You can verify the installation of jobs-api service from an internet browser by entering

the following case-sensitive URL:

where,

gatewayPort is the port number that is assigned to zowe.externalPort in the zowe.yaml file used to launch Zowe. For more

information, see Domain and port to access Zowe.

The above link should prompt you to login. After you input correct user name and password of your target z/OS system, you should
see JSON format data of all jobs running on the system.

https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe
https://curl.se/docs/manual.html
https://docs.zowe.org/stable/user-guide/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe

Version: v2.17.x LTS

Configuring Zowe Application Framework
The Zowe Application ("App") Framework is configured in the Zowe configuration file. Configuration can be used to change things
such as verbosity of logs, the way in which the App server communicates with the Mediation Layer, how ZSS operates, whether to use
HTTPS or AT-TLS, what language the logs should be set, and many more attributes.

When you install Zowe™, the App Framework is configured as a Mediation Layer client by default. This is simpler to administer
because the App framework servers are accessible externally through a single port: API ML Gateway port. It is more secure because
you can implement stricter browser security policies for accessing cross-origin content.

You can modify the Zowe App Server and Zowe System Services (ZSS) configuration, as needed, or configure connections for the
Terminal app plugins.

Accessing the App Server

When the server is enabled and given a port within the configuration file, the App server will print a message ZWED0031I in the log
output. At that time, it is ready to accept network communication. When using the API Mediation Layer (recommended), app-server
URLs should be reached from the Gateway, and you should additionally wait for the message ZWEAM000I for the Gateway to be
ready.

When Zowe is ready, the app-server can be found at https://<zowe.externalDomain>:<components.gateway.port>/zlux/ui/v1

(Not recommended): If the API Mediation Layer is not used, or you need to contact the App server directly, the ZWED0031I message
states which port it is accessible from, though generally it will be the same value as specified within components.app-server.port . In

that case, the server would be available at https://<zowe.externalDomain>:<components.app-server.port>/

Accessing the Desktop

The app-server should be accessed through the gateway when both are present. When both are ready, the Desktop can be

accessed from the API Mediation Layer Gateway, such as

https://<zowe.externalDomain>:<components.gateway.port>/zlux/ui/v1/ , which will redirect to

https://<zowe.externalDomain>:

<components.gateway.port>/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html

Although you access the App server via the Gateway port, the App server still needs a port assigned to it which is the value of the
components.app-server.port variable in the Zowe configuration file.

(Not recommended): If the mediation layer is not used, the Desktop will be accessible from the App server directly at
/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html

Accessing ZSS

The zss server should be accessed through the gateway when both are present. When both are ready, ZSS can be accessed from the

API Mediation Layer Gateway, such as

https://<zowe.externalDomain>:<components.gateway.port>/zss/api/v1/

Although you access the ZSS server via the Gateway port, the ZSS server still needs a port assigned to it which is the value of the
components.zss.port variable in the Zowe configuration file.

If the mediation layer is not used, ZSS directly at https://<zowe.externalDomain>:<components.zss.port>/

Configuration file

app-server configuration

The app-server uses the Zowe server configuration file for customizing server behavior. For a full list of parameters, requirements, and
descriptions, see the json-schema document for the app-server which describes attributes that can be specified within the
configuration file section components.app-server

zss configuration

ZSS shares some parameters in common with the app-server, so you can consult the above json-schema document to find out which
parameters are valid within components.zss of the Zowe configuration file. However, some parameters within the app-server schema

are not used by ZSS, such as the node section. A ZSS-centric schema will be available soon.

Environment variables
In the latest version of Zowe, instance.env is no longer used. However, some environment variables that could be specified within

v1 can still be set within v2 in the zowe.environments section of the server configuration file. Environment variables starting with

ZWED_ map to values that can be specified within components.app-server and components.zss so they are redundant, but you can

refer to the above json-schema document to see which values are useful or deprecated.

Configuring the framework as a Mediation Layer client
The App Server and ZSS automatically register to the API Mediation Layer when present. If this is not desired, registration can disabled
by setting the properties components.app-server.mediationLayer.server.enabled=false for app-server and

components.zss.mediationLayer.enabled=false for ZSS.

Setting up terminal app plugins

Follow these optional steps to configure the default connection to open for the terminal app plugins.

Setting up the TN3270 mainframe terminal app plugin

The file _defaultTN3270.json within the tn3270-ng2 app folder /config/storageDefaults/sessions/ is deployed to the
configuration dataservice when the app-server runs for the first time. This file is used to tell the terminal what host to connect to by
default. If you'd like to customize this default, you can edit the file directly within the configuration dataservice <components.app-

server.instanceDir>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json . Or you can open the app, customize a session

https://github.com/zowe/zlux/blob/v2.x/staging/schemas/zlux-config-schema.json
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice

within the UI, click the save icon (floppy icon) and then copy that file from <components.app-server.usersDir>/<your
user>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json to <components.app-

server.instanceDir>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json . Either way, you will see a file with the
following properties:

Setting up the VT Terminal app plugin

The file _defaultVT.json within the vt-ng2 app folder /config/storageDefaults/sessions/ is deployed to the configuration
dataservice when the app-server runs for the first time. This file is used to tell the terminal what host to connect to by default. If you'd
like to customize this default, you can edit the file directly within the configuration dataservice <components.app-

server.instanceDir>/org.zowe.terminal.vt/sessions/_defaultVT.json . Or you can open the app, customize a session within

the UI, click the save icon (floppy icon) and then copy that file from <components.app-server.usersDir>/<your
user>/org.zowe.terminal.vt/sessions/_defaultVT.json to <components.app-

server.instanceDir>/org.zowe.terminal.vt/sessions/_defaultVT.json . Either way, you will see a file with the following

properties:

Network configuration
Note: The following attributes are to be defined in the Zowe configuration file.

The App Server can be accessed over HTTP and/or HTTPS, provided it has been configured for either. HTTPS should be used, as HTTP
is not secure unless AT-TLS is used. When AT-TLS is used by ZSS, components.zss.agent.http.attls must be set to true.

HTTPS

Both app-server and zss server components use HTTPS by default, and the port parameters components.app-server.port and

components.zss.port control which port they are accessible from. However, each have advanced configuration options to control

their HTTPS behavior.

The app-server component configuration can be used to customize its HTTPS connection such as which certificate and ciphers to

use, and these parameters are to be set within components.app-server.node.https as defined within the json-schema file

The zss component configuration can be used to customize its HTTPS connection such as which certificate and ciphers to use, and

these parameters are to be set within components.zss.agent.https as defined within the json-schema file

HTTP

The app-server can be configured for HTTP via the components.app-server.node.http section of the Zowe configuration file, as

specified within the app-server json-schema file.

The zss server can be configured for HTTP via the components.zss.agent.http section of the Zowe configuration file, as specified

within the zss json-schema file. Note that components.zss.tls must be set to false for HTTP to take effect, and that

components.zss.agent.http.attls must be set to true for AT-TLS to be recognized correctly.

Configuration Directories

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L15
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json#L81
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L73
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json#L99

When running, the App Server will access the server's settings and read or modify the contents of its resource storage. All of this data
is stored within a hierarchy of folders which correspond to scopes:

Product: The contents of this folder are not meant to be modified, but used as defaults for a product.

Site: The contents of this folder are intended to be shared across multiple App Server instances, perhaps on a network drive.

Instance: This folder represents the broadest scope of data within the given App Server instance.

Group: Multiple users can be associated into one group, so that settings are shared among them.

User: When authenticated, users have their own settings and storage for the Apps that they use.

These directories dictate where the Configuration Dataservice will store content. For more information, see the Configuration
Dataservice documentation

Old defaults

Prior to Zowe release 2.0.0, the location of the configuration directories were initialized to be within the <INSTANCE_DIR> folder

unless otherwise customized. 2.0.0 does have backwards compatibility for the existence of these directories, but <INSTANCE_DIR>
folder no longer exists, so they should be migrated to match the ones specified in the Zowe configuration file.

Folder New Location Old Location Note

siteDir
<zowe.workspaceDirectory>/app-

server/site

<INSTANCE_DIR>/workspace/app-

server/site

instanceDir
<zowe.workspaceDirectory>/app-

server

<INSTANCE_DIR>/workspace/app-

server

instanceDir term isn't used
anymore. workspaceDirectory
is used

groupsDir
<zowe.workspaceDirectory>/app-

server/groups

<INSTANCE_DIR>/workspace/app-

server/groups

usersDir
<zowe.workspaceDirectory>/app-

server/users

<INSTANCE_DIR>/workspace/app-

server/users

pluginsDir
<zowe.workspaceDirectory>/app-

server/plugins

<INSTANCE_DIR>/workspace/app-

server/plugins

App plugin configuration
The App framework will load plugins from Components such as extensions based upon their enabled status in Zowe configuration.
The server caches knowledge of these plugins in the <workspaceDirectory>/app-server/plugins folder. This location can be

customized with the components.app-server.pluginsDir variable in the Zowe configuration file.

Logging configuration

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice

For more information, see Logging Utility.

Enabling tracing

To obtain more information about how a server is working, you can enable tracing within the Zowe configuration file via
components.app-server.logLevels or components.zss.logLevels variable. For more information on all loggers, check out the Extended
documentation.

For example:

All settings are optional.

Log files

The app-server and zss will create log files containing processing messages and statistics. The log files are generated within the log
directory specified within the Zowe configuration file (zowe.logDirectory). The filename patterns are:

App Server: <zowe.logDirectory>/appServer-yyyy-mm-dd-hh-mm.log

ZSS: <zowe.logDirectory>/zssServer-yyyy-mm-dd-hh-mm.log

Retaining logs

By default, the last five log files are retained. You can change this by setting environment variables within the zowe.environments
section of the Zowe server configuration file. To specify a different number of logs to retain, set ZWED_NODE_LOGS_TO_KEEP for app-

server logs, or ZWES_LOGS_TO_KEEP for zss logs. For example, if you set ZWED_NODE_LOGS_TO_KEEP to 10, when the eleventh log is

created, the first log is deleted.

Controlling the logging location

At minimum, the log information for both app-server and zss are written to STDOUT such that messages are visible in the terminal
that starts Zowe and when on z/OS, the STC job log.

By default, both servers additionally log to files and the location of these files can be changed or logging to them can be disabled. The
following environment variables can be used to customize the app-server and zss log locations by setting the values within the
zowe.environments section of the Zowe configuration file.

ZWED_NODE_LOG_DIR : Overrides the zowe configuration file value of zowe.logDirectory for app-server, but keeps the default

filenames.

ZWES_LOG_DIR : Overrides the zowe configuration file value of zowe.logDirectory for zss, but keeps the default filenames.

ZWED_NODE_LOG_FILE : Specifies the full path to the file where logs will be written from app-server. This overrides both

ZWED_NODE_LOG_DIR and zowe.logDirectory . If the path is /dev/null then no log file will be written. This option does not

timestamp logs or keep multiple of them.

ZWES_LOG_FILE : Specifies the full path to the file where logs will be written from zss. This overrides both ZWES_LOG_DIR and

zowe.logDirectory . If the path is /dev/null then no log file will be written. This option does not timestamp logs or keep

multiple of them.

If the directory or file specified cannot be created, the server will run (but it might not perform logging properly).

https://docs.zowe.org/stable/extend/extend-desktop/mvd-logutility
https://docs.zowe.org/stable/extend/extend-desktop/mvd-core-loggers

ZSS configuration
Running ZSS requires a Zowe configuration file configuration that is similar to the one used for the Zowe App Server (by structure and
property names). The attributes that are needed for ZSS (components.zss) at minimum, are: port, crossMemoryServerName.

By default, ZSS is configured to use HTTPS with the same certificate information and port specification as the other Zowe services. If
you are looking to use AT-TLS instead, then you must set component.zss.tls variable to false and define component.zss.agent.http

section with port, ipAddresses, and attls: true as shown below

(Recommended) Example of the agent body:

(Not recommended) Unsecure, HTTP example with AT-TLS:

ZSS 64 or 31 bit modes

Two versions of ZSS are included in Zowe, a 64 bit version and a 31 bit version. It is recommended to run the 64 bit version to
conserve shared system memory but you must match the ZSS version with the version your ZSS plugins support. Official Zowe
distributions contain plugins that support both 64 bit and 31 bit, but extensions may only support one or the other.

Verifying which ZSS mode is in use

You can check which version of ZSS you are running by looking at the logs. At startup, the message ZWES1013I states which mode is
being used, for example:

ZWES1013I ZSS Server has started. Version 2.0.0 64-bit

Or

ZWES1013I ZSS Server has started. Version 2.0.0 31-bit

Verifying which ZSS mode plugins support

You can check if a ZSS plugin supports 64 bit or 31 bit ZSS by reading the pluginDefinition.json file of the plugin. In each component
or extension you have, its manifest file will state if there are appFw plugin entries. In each folder referenced by the appFw section, you

will see a pluginDefinition.json file. Within that file, if you see a section that says type: 'service' , then you can check its ZSS mode

support. If the service has the property libraryName64 , then it supports 64 bit. If it says libraryName31 , then it supports 31 bit. Both

may exist if it supports both. If it instead only contains libraryName , this is ambigious and deprecated, and most likely that plugin
only supports 31 bit ZSS. A plugin only supporting 31 bit ZSS must be recompiled for 64 bit support, so you must contact the
developers to accomplish that.

Example: the sample angular app supports both 31 bit and 64 bit zss

Setting ZSS 64 bit or 31 bit mode

You can switch between ZSS 64 bit and 31 bit mode by setting the value components.zss.agent.64bit to true or false in the Zowe

configuration file. The value will not take effect until next server restart.

Customizing ZSS session duration

https://github.com/zowe/sample-angular-app/blob/083855582e8a82cf48abc21e15fa20bd59bfe180/pluginDefinition.json#L50-L53

In a standard Zowe installation, all Zowe servers utilize the API Mediation Layer's token-based, single-sign on authentication. This
authentication in turn cooperates with z/OSMF, and the session duration is typically that of z/OSMF's, which defaults to 8 hours before
the session expires. In that situation, customization of session duration is best done by customizing z/OSMF's session duration, as a
part of its Liberty configuration.

If you are not using the API Mediation Layer, or are trying to contact ZSS directly, then ZSS's own session logic is used. When
authenticated directly to ZSS, it will respond to authenticated HTTP requests with a cookie which is valid by default for 1 hour. This can
be customized by creating and editing a file named "timeouts.json" within ZSS's instance directory. The default location is
<zowe.workspaceDirectory>/app-server/serverConfig/timeouts.json , because the default instance directory is

<zowe.workspaceDirectory>/app-server , but can be customized by editing the value of components.zss.instanceDir .

The timeouts.json file has the following layout:

Where you can have a "users" section that lists user accounts on the z/OS system, and "groups" section that lists groups on that
system. The numbers for each entry are in seconds, where in the example zoweuser1 has the default session duration value of 1 hour.
It is possible that a user specified in this file is also in a group specified in this file. If so, the user value takes priority. If a user
authenticates to ZSS and their user or group is not found in this file, then the default value of 1 hour is used. If this file is missing,
Zowe will print a message about it missing, but it does not harm Zowe as the default value of 1 hour would be used for all direct
authentications to ZSS.

Using AT-TLS in the App Framework
By default, both ZSS and the App server use HTTPS regardless of platform. However, some may wish to use AT-TLS on z/OS as an
alternative way to provide HTTPS. In order to do this, the servers must run in HTTP mode instead, and utilize AT-TLS for HTTPS. The
servers should never use HTTP without AT-TLS, it would be insecure. If you want to use AT-TLS, you must have a basic knowledge
of your security product and you must have Policy Agent configured. For more information on AT-TLS and Policy Agent, see the z/OS
Knowledge Center.

There are a few requirements to working with AT-TLS:

You must have the authority to alter security definitions related to certificate management, and you must be authorized to work
with and update the Policy Agent.

AT-TLS needs a TLS rule and keyring. The next section will cover that information.

Note: Bracketed values below (including the brackets) are variables. Replace them with values relevant to your organization. Always
use the same value when substituting a variable that occurs multiple times.

Creating AT-TLS certificates and keyring using RACF

In the following commands and examples you will create a root CA certificate and a server certificate signed by it. These will be placed
within a keyring which is owned by the user that runs the Zowe server. Note: These actions can be done for various Zowe servers,
but in these examples we set up ZSS for AT-TLS. You can subsitute ZSS for another server if desired.

Key variables:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.halx001/transtls.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz002/pbn_pol_agnt.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2/en/homepage.html

Variable Value

[ca_common_name]

[ca_label]

[server_userid]

[server_common_name]

[server_label]

[ring_name]

[output_dataset_name]

Note:

[server_userid] must be the server user ID, such as the STC user.

[server_common_name] must be the z/OS hostname that runs Zowe

1. Enter the following RACF command to generate a CA certificate:

2. Enter the follow RACF command to generate a server certificate signed by the CA certificate:

3. Enter the following RACF commands to create a key ring and connect the certificates to the key ring:

4. Enter the following RACF command to refresh the DIGTRING and DIGTCERT classes to activate your changes:

5. Enter the following RACF commands to verify your changes:

6. Enter the following RACF commands to allow the ZSS server to use the certificates. Only issue the RDEFINE commands if the
profiles do not yet exist.

Note: These sample commands use the FACILTY class to manage certificate related authorizations. You can also use the RDATALIB
class, which offers granular control over the authorizations.

7. Enter the following RACF command to export the CA certificate to a dataset so it can be imported by the Zowe server:

Defining the AT-TLS rule

To define the AT-TLS rule, use the sample below to specify values in your AT-TLS Policy Agent Configuration file:

Using multiple ZIS instances

When you install Zowe, it is ready to be used for 1 instance of each component. However, ZIS can have a one-to-many relationship
with the Zowe webservers, and so you may wish to have more than one copy of ZIS for testing or to handle different groups of ZIS

plugins.

The following steps can be followed to point a Zowe instance at a particular ZIS server.

1. Create a copy of the ZIS server. You could run multiple copies of the same code by having different STC JCLs pointing to the same
LOADLIB, or run different copies of ZIS by having JCLs pointing to different LOADLIBs.

2. Edit the JCL of the ZIS STC. In the NAME parameter specify a unique name for the ZIS server, for example:

Where ZWESIS_MYSRV is the unique name of the new ZIS.

3. Start the new ZIS with whatever PROCLIB name was chosen.

4. Stop the Zowe instance you wish to point to the ZIS server.

5. Locate the zowe configuration file for the Zowe instance, and edit the parameter components.zss.privilegedServerName to

match the name of the ZIS STC name chosen, such as ZWESIS_MYSRV

6. Restart the Zowe instance

7. Verify that the new ZIS server is being used by checking for the following messages in the ZWESLSTC server job log:

ZIS status - Ok (name='ZWESIS_MYSRV ', cmsRC=0, description='Ok', clientVersion=2)

Controlling access to apps
You can control which apps are accessible (visible) to all Zowe desktop users, and which are accessible only to individual users. For
example, you can make an app that is under development only visible to the team working on it.

You control access by editing JSON files that list the apps. One file lists the apps all users can see, and you can create a file for each
user. When a user logs into the desktop, Zowe determines the apps that user can see by concatenating their list with the all users list.

You can also control access to the JSON files. The files are accessible directly on the file system, and since they are within the
configuration dataservice directories, they are also accessible via REST API. We recommend that only Zowe administrators be allowed
to access the file system locations, and you control that by setting the directories and their contents to have file permissions on z/OS
that only allow the Zowe admin group read & write access. You control who can read and edit the JSON files through the REST API by
controlling who can access the configuration dataservice objects URLs that serve the JSON files.

Enabling RBAC

By default, RBAC is disabled and all authenticated Zowe users can access all dataservices. To enable RBAC, follow these steps:

1. To enable RBAC, set the components.zss.dataserviceAuthentication.rbac and components.app-server.dataserviceAuthentication.rbac
variables to true in the Zowe configuration file.

Controlling app access for all users

Note:

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server#starting-and-stopping-the-cross-memory-server-on-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/user-guide/start-zowe-zos/#starting-and-stopping-zowe-main-server-zweslstc-on-zos-with-zwe-server-command
https://docs.zowe.org/stable/user-guide/mvd-configuration#creating-authorization-profiles

<zowe.runtimeDirectory> variable comes from the Zowe configuration file.

1. Enable RBAC.

2. Navigate to the following location:

3. Copy the allowedPlugins.json file and paste it in the following location:

4. Open the copied allowedPlugins.json file and perform either of the following steps:

To make an app unavailable, delete it from the list of objects.

To make an app available, copy an existing plugin object and specify the app's values in the new object. Identifier and version
attributes are required.

5. Restart the app server.

Controlling app access for individual users

1. Enable RBAC.

2. In the user's ID directory path, in the \pluginStorage directory, create \org.zowe.zlux.bootstrap\plugins directories. For

example:

3. In the /plugins directory, create an allowedPlugins.json file. You can use the default allowedPlugins.json file as a

template by copying it from the following location:

4. Open the allowedPlugins.json file and specify apps that user can access. For example:

Notes:

Identifier and version attributes are required.

When a user logs in to the desktop, Zowe determines which apps they can see by concatenating the list of apps available to
all users with the apps available to the individual user.

5. Restart the app server.

Controlling access to dataservices

To apply role-based access control (RBAC) to dataservice endpoints, you must enable RBAC for Zowe, and then use a z/OS security
product such as RACF to map roles and authorities to the endpoints. After you apply RBAC, Zowe checks authorities before allowing
access to the endpoints.

You can apply access control to Zowe endpoints and to your app endpoints. Zowe provides endpoints for a set of configuration
dataservices and a set of core dataservices. Apps can use configuration endpoints to store and their own configuration and other data.
Administrators can use core endpoints to get status information from the App Framework and ZSS servers. Any dataservice added as
part of an app plugin is a service dataservice.

Defining the RACF ZOWE class

https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/user-guide/start-zowe-zos
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice#configuration-dataservice
https://docs.zowe.org/stable/user-guide/mvd-configuration#Administering-the-servers-and-plugins-using-an-API

If you use RACF security, take the following steps define the ZOWE class to the CDT class:

1. Make sure that the CDT class is active and RACLISTed.

2. In TSO, issue the following command:

If you receive the following message, ignore it:

3. In TSO, issue the following command to refresh the CDT class:

4. In TSO, issue the following command to activate the ZOWE class:

5. In TSO, issue the following command

Note You must run this command before creating generic profiles within ZOWE class.

For more information on RACF security administration, see the IBM Knowledge Center at
https://www.ibm.com/support/knowledgecenter/.

Creating authorization profiles

For users to access endpoints after you enable RBAC, in the ZOWE class you must create System Authorization Facility (SAF) profiles
for each endpoint and give users READ access to those profiles.

Endpoints are identified by URIs in the following format:

/ZLUX/plugins/<plugin_id>/services/<service>/<version>/<path>

For example:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Where the path is /users/fred .

SAF profiles have the following format:

ZLUX.<zowe.rbacProfileIdentifier>.<servicename>.<pluginid_with_underscores>.<service>.<HTTP_method>.

<url_with_forward_slashes_replaced_by_periods>

For example, to issue a POST request to the dataservice endpoint documented above, users must have READ access to the following
profile:

ZLUX.1.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

For configuration dataservice endpoint profiles use the service code CFG . For core dataservice endpoints use COR . For all other

dataservice endpoints use SVC .

Creating generic authorization profiles

Some endpoints can generate an unlimited number of URIs. For example, an endpoint that performs a DELETE action on any file
would generate a different URI for each file, and users can create an unlimited number of files. To apply RBAC to this type of endpoint
you must create a generic profile, for example:

https://www.ibm.com/support/knowledgecenter/

ZLUX.1.COR.ORG_ZOWE_FOO.BAZ.DELETE.**

You can create generic profile names using wildcards, such as asterisks (*). For information on generic profile naming, see IBM
documentation.

Configuring basic authorization

The following are recommended for basic authorization:

To give administrators access to everything in Zowe, create the following profile and give them UPDATE access to it: ZLUX.**

To give non-administrators basic access to the site and product, create the following profile and give them READ access to it:
ZLUX.*.ORG_ZOWE_*

To prevent non-administrators from configuring endpoints at the product and instance levels, create the following profile and do
not give them access to it: ZLUX.1.CFG.**

To give non-administrators all access to user, create the following profile and give them UPDATE access to it:
ZLUX.1.CFG.*.*.USER.**

Endpoint URL length limitations

SAF profiles cannot contain more than 246 characters. If the path section of an endpoint URL is long enough that the profile name
exceeds the limit, the path is trimmed to only include elements that do not exceed the limit. To avoid this issue, we recommend that
appliction developers maintain relatively short endpoint URL paths.

For information on endpoint URLs, see Dataservice endpoint URL lengths and RBAC

Multi-factor authentication configuration
Multi-factor authentication is an optional feature for Zowe.

As of Zowe version 1.8.0, the Zowe App Framework, Desktop, and all apps present in the SMP/E or convenience builds support out-of-
band MFA by entering an MFA assigned token or passcode into password field of the Desktop login screen, or by accessing the app-
server /auth REST API endpoint.

For a list of compatible MFA products, see Known compatible MFA products.

Session duration and expiration

After successful authentication, a Zowe Desktop session is created by authentication plugins.

The duration of the session is determined by the plugin used. Some plugins are capable of renewing the session prior to expiration,
while others may have a fixed session length.

Zowe is bundled with a few of these plugins:

sso-auth: Uses either ZSS or the API Mediation Layer for authentication, and ZSS for RBAC authorization. This plugin also
supports resetting or changing your password via a ZSS API. Whether ZSS or API Mediation Layer or both are used for
authentication depends upon SSO settings. Starting with Zowe 1.28.0, SSO is enabled by default such that only API Mediation

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha100/egnoff.htm
https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices#limiting-the-length-of-dataservice-paths-for-rbac
https://www.ibm.com/support/knowledgecenter/SSNR6Z_2.0.0/com.ibm.mfa.v2r0.azfu100/azf_server.htm
https://www.ibm.com/support/knowledgecenter/SSNR6Z_2.0.0/com.ibm.mfa.v2r0.azfu100/azf_oobconcepts.htm
https://docs.zowe.org/stable/user-guide/systemrequirements-zos#multi-factor-authentication-mfa

Layer is called at authentication time. By default, the Mediation Layer calls z/OSMF to answer the authentication request. The
session created mirrors the z/OSMF session.

trivial-auth: This plugin is used for development and testing, as it always returns true for any function. It could be used if there
were specific services you did not need authentication for, while you wanted authentication elsewhere.

When a session expires, the credentials used for the initial login are likely to be invalid for re-use, since MFA credentials are often one-
time-use or time-based.

In the Desktop, Apps that you opened prior to expiration will remain open so that your work can resume after entering new
credentials.

Configuration

When you use the default Zowe SMP/E or convenience build configuration, you do not need to change Zowe to get started with MFA.

To configure Zowe for MFA with a configuration other than the default, take the following steps:

1. Choose an App Server security plugin that is compatible with MFA. The sso-auth plugin is compatible.

2. Locate the App Server's configuration file in zowe.yaml .

3. Edit the configuration file to modify the section components.app-server.dataserviceAuthentication .

4. Set defaultAuthentication to the same category as the plugin of choice, as seen in its pluginDefinition.json file. For example:

sso-auth: "saf"

trivial-auth: "fallback"

The following is an example configuration for sso-auth , as seen in a default installation of Zowe:

Administering the servers and plugins using an API

The App Server has a REST API to retrieve and edit both the App Server and ZSS server configuration values, and list, add, update, and
delete plugins. Most of the features require RBAC to be enabled and for your user to have RBAC access to utilize these endpoints. For
more information see documentation on how to use RBAC

The API returns the following information in a JSON response:

API Description

/server (GET) Returns a list of accessible server endpoints for the Zowe App Server.

/server/config (GET)
Returns the Zowe App Server configuration which follows this
specification.

/server/log (GET) Returns the contents of the Zowe App Server log file.

https://docs.zowe.org/stable/user-guide/mvd-configuration.html#controlling-access-to-dataservices
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json

API Description

/server/loglevels (GET) Returns the verbosity levels set in the Zowe App Server logger.

/server/environment (GET)
Returns Zowe App Server environment information, such as the
operating system version, node server version, and process ID.

/server/reload (GET) Reloads the Zowe App Server. Only available in cluster mode.

/server/agent (GET) Returns a list of accessible server endpoints for the ZSS server.

/server/agent/config (GET) Returns the ZSS server configuration which follows this specification.

/server/agent/log (GET) Returns the contents of the ZSS log file.

/server/agent/loglevels (GET) Returns the verbosity levels of the ZSS logger.

/server/agent/environment (GET) Returns ZSS environment information.

/server/logLevels/name/:componentName/level/:level
(POST)

Specify the logger that you are using and a verbosity level.

/plugins (GET) Returns a list of all plugins and their dataservices.

/plugins (PUT)
Adds a new plugin or upgrades an existing plugin. Only available in
cluster mode (default).

/plugins/:id (DELETE) Deletes a plugin. Only available in cluster mode (default).

Swagger API documentation is provided in the <zowe.runtimeDirectory>/components/app-server/share/zlux-app-

server/doc/swagger/server-plugins-api.yaml file. To see it in HTML format, you can paste the contents into the Swagger editor at

https://editor.swagger.io/.

Note: The "agent" end points interact with the agent specified in the zowe configuration file. By default this is ZSS.

Managing Cluster Mode for app-server

On the Zowe servers, the component "app-server" has an environment variable "ZLUX_NO_CLUSTER" which controls whether or not it
uses cluster mode. Cluster mode is enabled by default. However, you might need to disable cluster mode under certain circumstances.
When cluster mode is disabled, make sure you are aware of the potential drawbacks and benefit.

When you disable cluster mode, you will lose the following benefits:

1. Performance under high user Count: This is due to the absence of redundant workers, which can impact the system's efficiency
when dealing with a large number of users.

https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json
https://editor.swagger.io/

2. Reduced downtime during unexpected exceptions: The low-downtime characteristic, where only one request is interrupted
compared to around 15 seconds of downtime, is compromised.

To turn the cluster mode on

In Zowe V1, do NOT include the ZLUX_NO_CLUSTER environment variable in the instance.env configuration.

In Zowe V2, do NOT include the zowe.environments.ZLUX_NO_CLUSTER in the zowe.yaml file.

To turn the cluster mode off

In Zowe V1, include ZLUX_NO_CLUSTER=1 in the instance.env configuration.

In Zowe V2, include zowe.environments.ZLUX_NO_CLUSTER=1 in the zowe.yaml file.

Version: v2.17.x LTS

Using the Configuration Manager
When you install the Zowe™ server components on z/OS, a utility called configmgr or "Configuration Manager" is bundled within. It
can be used directly in a few ways, or leveraged by the zwe command to empower it with several abilities and even performance

enhancements.

The purpose of Configuration Manager is to deliver unified, validated configuration data to programs without requiring the programs
to know where the configuration is stored or prove that the configuration is valid. This reduces the burden on each Zowe component
to support different data storage types such as both datasets AND files and also ensures that all Zowe components have sufficient
configuration validation to avoid silent or hard-to-troubleshoot errors.

Using zwe with Configuration Manager
Starting in Zowe version 2.3, the zwe command can use configmgr to gain several abilities and even performance enhancements.

This is designed to be non-disruptive, with no changes needed to Zowe Components that are v2 conformant. The biggest change is
that enabling Configuration Manager mode enforces strict validation of Zowe configuration. This is helpful to ensure there's no
configuration problems and even helps pinpoint issues, but if you previously had silent issues in your configuration, enabling this may
reveal them.

To enable Configuration Manager mode, you can either set zowe.useConfigmgr=true in your Zowe configuration file, or you can add

the --configmgr flag to a zwe command you are using. Not all zwe operations support Configuration Manager yet, but many do

and eventually all will.

Validation error reporting

Configuration Manager will not let Zowe servers start unless the configuration passes validation when checking it against the Zowe
configuration schema. This gives a degree of assurance that the servers will not encounter issues due to typographical errors or
missing required fields. It also avoids silent errors where a field might be an integer rather than a string.

When a validation error occurs, the command you ran will end with output that shows what and where the error was.

Example

Consider the following Zowe configuration section about certificates:

In the example, the certificate type PCKS12 does not exist. It is a typo. Without schema validation, the servers might start and then

crash due to the typo.

With the schema file, you can see that there are listed choices for certificate types:

The type can only be one from the enum list. This allows you to not only detect this error but also see the options available.

When zwe runs and fails schema validation due to the "PCKS12" typo, it will print out the following message:

This output shows that type has an issue. You can read the enum to see the choices before restarting Zowe.

JSON-Schema validation
Configuration Manager uses JSON Schema to validate a configuration. As a result, Zowe itself and all components and extensions
must have schema files for Configuration Manager to perform validation. Developers should read how to add schemas to components
as it is required in v2.

Zowe now publishes these schema files so that you can see all the configuration properties that are possible in Zowe, see how they
have changed between versions, and see what values are valid for them. Below is a list of some of these schemas:

Component Name Purpose
Github

Link

Base server-base Validates zowe.yaml except components section link

Base server-common Common structures reusable by other schemas link

Base
server-component-
manifest

Validates each components' manifest.yaml link

Base
trivial-component-
schema

For copying as a starting point for developers link

app-server appfw-plugin-definition
Validates any components' pluginDefinition.json for zwe components
install

link

app-server component Validates components.app-server link

discovery component Validates components.discovery link

gateway component Validates components.gateway link

zss component Validates components.zss link

explorer-ip component Trivially validates components.explorer-ip link

From the GitHub links above, if you want to see changes between versions, you can compare by the GitHub tags.

Splitting configuration into multiple storage types

When zwe is using Configuration Manager, the CONFIG= parameter in the z/OS ZWESLSTC JCL and the --config parameter in any

zwe command that supports --configmgr can take a list of YAML locations as an alternative to the backward-compatible single

YAML file used in prior Zowe versions.

When using a single Unix file, the syntax is just the path to the file, such as CONFIG=/my/zowe.yaml . However, when using multiple

storage types, you must use the syntax FILE(file1):PARMLIB(DSN(MEMBER)):... where each storage types is surrounded with

https://json-schema.org/
https://docs.zowe.org/stable/user-guide/extend/server-schemas
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/zowe-yaml-schema.json
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/server-common.json
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/manifest-schema.json
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/schemas/trivial-component-schema.json
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json
https://github.com/zowe/api-layer/blob/v2.x.x/schemas/discovery-schema.json
https://github.com/zowe/api-layer/blob/v2.x.x/schemas/gateway-schema.json
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zowe-schema.json
https://github.com/zowe/explorer-ip/blob/v2.x/master/schemas/trivial-schema.json

FILE() or PARMLIB() and storage types are separated by the colon : character. An example of using multiple configuration storage

types would be as follows:

Note: All PARMLIB() entries must have the same member name:

Note: Characters = , : , (and) are considered as reserved. It is highly recommended to avoid using of these characters in the name

of zowe.yaml file.

Each storage type in the list you provide must adhere to the same Zowe configuration schema, but the contents can be any subset
you want per storage types. Zowe will merge together the contents of all the storage types into one unified configuration, so the
collection of storage types must result in a configuration which is valid against the Zowe schema.

Schema validation occurs upon the merged result, not the individual storage type. There are a few reasons you may want to split your
Zowe configuration into multiple storage types, such as:

Having a Zowe configuration file that is very small and containing only what is not the default configuration of Zowe, and then
running Zowe with 2 configuration files: Your customizations, and the Zowe default such as CONFIG=FILE(/home/me/zowe-

customizations.yaml):FILE(/global/zowe/example-zowe.yaml)

Splitting the Zowe configuration among administrators with certain responsibilities. You could have a file about the z/OSMF
configuration, a file about the Java configuration, and so on. An example of this could look like CONFIG=FILE(/home/me/zowe-

customizations.yaml):FILE(/global/org/zosmf-zowe.yaml):FILE(/global/org/java-

zowe.yaml):FILE(/global/zowe/example-zowe.yaml)

Note: When specifying many storage types, you may reach the line length limit in your STC JCL. The default JCL contains
_CEE_ENVFILE_CONTINUATION=\ to allow you to continue the CONFIG parameter to multiple lines. An example of this is as follows:

When you use multiple storage types, Zowe constructs the unified configuration by having the storage types listed on the left override
the values of storage types to their right in the list. This means the left-most storage type's values take priority, and the right-most
storage type should be treated as a set of defaults. Here is an example of splitting configuration into multiple files:

Parmlib support
Zowe YAML content can be stored in PARMLIB as well. The structure is the same as in the unix files, so be sure to have sufficient record
length to fit the YAML content within the member. The syntax is PARMLIB(datasetname(member)) , and although you can have
multiple PARMLIB entries, each must have the same member name. In the previous section, there was an example of using multiple

files to split configuration into parts. This ability can be done with PARMLIB, FILE, or any mix of the two. An example of using PARMLIB
with Zowe configuration may look like this in your STC JCL:

Configuration templates

Each Zowe configuration provided to Zowe when using Configuration Manager can contain values which are templates. These
templates are not the literal values of a parameter, but will be substituted for a real value by Configuration Manager. This allows you
to simplify complex or tedious configuration such as:

Replacing occurrences of the same path in the configuration with templates that reference that path. Instead of needing to
update every occurrence of a path when it changes, you would only need to update it once.

Having a value that is linked to another, such as that you may only want the gateway component to be enabled when the
discovery component is enabled.

Having a value that is derived from multiple other values, such as a URL that has many parts.

Having a value that is a set of multiple conditions, having many fallback behaviors so that your configuration is valid for many
environments.

Templates are resolved after merging files, but before schema validation occurs, so you can split up your configuration into multiple
files and template them however you'd like if the merged, resolved result is valid against the Zowe configuration schema.

To make a template, you use the syntax ${{ assignment }} in which there must be a space after ${{ and before }} . The
assignment can be a ECMAScript 2020 statement, such as a JSON path or a conditional. Here are some examples of templates that you
can use to simplify your configuration:

Configuration Manager Unix executable

configmgr is a file located within <zowe.runtimeDirectory>/bin/utils in the Zowe server component runtime for z/OS. If you run

it with no arguments, it prints a help command that details what you can do with it. configmgr commands focus on providing input

files and schemas, and then providing output such as validation success or printing the configuration.

The configmgr executable needs the following as input:

A list of configuration locations. Each location can be a different type such as a Unix file or parmlib from a dataset, but each must
be YAML format. Every configuration object in the list must only contain data from the same schema because the list will be
merged together into a single configuration object during processing. The rules and syntax are the same as seen in the config
property of the Using zwe with Configuration Manager section.

A list of json-schema Unix files separated by a colon : , with the top-level schema being the left-most in the list. The unified

configuration will be validated against this top-level schema and any references in the other schema files in the list.

The configmgr executable can do the following with the input:

Report whether the configuration is valid against the schema. If invalid, a reason will be printed to help pinpoint issues.

Validate and then output a list of environment variables in the syntax used by Zowe components that use environment variables
to consume Zowe configuration.

Validate and then output a specific property of the configuration when given a JSON path to the property desired.

The configmgr binary does not need to be used for Zowe configuration and Zowe schemas alone. It can validate any YAML against
any json-schema. However, its environment variable output list is in the Zowe format.

Version: v2.17.x LTS

Zowe server component and extension management
This page covers how to install and manage Zowe server components or extensions by using zwe components commands.

Installing a component

Zowe ships the zwe components install command to help end-user to install any Zowe server extensions (extensions are

components that are not part of Zowe core). In order to be compatible with the command, components must follow Zowe server
component package format standard.

More information such as parameters and examples can be found on the zwe components install reference page

Note: The automatic tagging process is opinionated about which file extensions should be in which encoding. If this does not fit in
your needs, a pax format is recommended to include the tagging information into your package. This option is only applicable for

z/OS. The following list presents the allowed values:

yes

This option automatically tag the encoding of the files.

no

Do not automatically tag encoding of the files.

auto

Tag only when manifest is in ISO8859-1 encoding.

--log-dir|--log|-l

(String, Optional) Specifies the path to the log directory.

--debug|--verbose|-v

(Boolean, Optional) Enable debug level logging. This will help on troubleshooting issues.

--trace|-vv

(Boolean, Optional) Enable the most detail trace level logging. This will help on troubleshooting issues.

Enable and disable component
Zowe ships zwe components enable and zwe components disable commands to help you enable and disable Zowe server

component (extension). In order to be compatible with these commands, components must follow Zowe server component package
format standard.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/extend/packaging-zos-extensions#zowe-server-component-package-format
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable
https://docs.zowe.org/stable/extend/packaging-zos-extensions#zowe-server-component-package-format

Important these commands will update your zowe.yaml configuration file.

Note zwe components install command will enable the component globally if --skip-enable is not passed to it.

More information such as parameters and examples can be found on the zwe components enable reference page and the zwe

components disable reference page

Upgrading a component

zwe components install is only used for installing a component that is not yet installed. If you need to install a new version of an
existing component, you must use the zwe components upgrade command instead.

More information such as parameters and examples can be found on the zwe components install reference page

This command can be used to upgrade all components that have an upgrade available when using zwe with a component package

registry. More information can be found within the component package registry documentation

Uninstalling a component

zwe components uninstall can be used to remove a previously installed extension. It will not remove core components.

More information such as parameters and examples can be found on the zwe components uninstall reference page

Searching for a component

zwe components search helps you find components that are available for installation from your chosen component package registry.

This command requires that you have configured your Zowe instance for use with such a registry. Click here for more information on
how to set up and use a component package registry

More information such as parameters and examples can be found on the zwe components search reference page

Manual Component management

It's recommended to use zwe components for all component management. The information below is provided for troubleshooting

purposes.

Zowe core components

The Zowe runtime directory delivers its core components in the <RUNTIME_DIR>/components/ directory. A typical components
directory looks like this:

Same as all Zowe server components, Zowe core components can be enabled or disabled by setting components.

<component>.enabled to true or false .

Zowe z/OS extensions

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-upgrade
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/extend/component-registries
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-uninstall
https://docs.zowe.org/stable/extend/component-registries
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-search

All Zowe z/OS extension runtime programs are installed into a single location which is defined as zowe.extensionDirectory in

zowe.yaml . Each extension should be represented with the extension name in this directory, and use either a directory or a symbolic

link.

The Zowe launch script reads components.<component>.enabled and haInstances.<ha-instance>.components.

<component>.enabled defined in zowe.yaml to determine whether to start an extension in current HA instance. The value of this

enabled is boolean either true or false .

Example:

The vendor MYVENDOR has a product named MYAPP that installs into /usr/lpp/myvendor/myapp . There is one Zowe extension

shipped within the product in the directory /usr/lpp/myvendor/myapp/zowe-ext . This subdirectory is a Zowe extension so that the

product can be started and stopped with Zowe and run as an address space under the ZWESLSTC started task in the Zowe USS shell.

The directory /usr/lpp/myvendor/myapp/zowe-ext should include a manifest.yaml file to describe the extension. The script

/usr/lpp/myvendor/myapp/zowe-ext/bin/validate.sh checks that the environment is configured correctly and the script

/usr/lpp/myvendor/myapp/zowe-ext/bin/start.sh starts the vendor application. The /usr/lpp/myvendor/myapp/zowe-

ext/manifest.yaml should look like this:

Because MYAPP is shipped within another product, the installation should create a symbolic link in zowe.extensionDirectory

directory.

Also, myapp is enabled in zowe.yaml like this.

When the Zowe instance is launched by running zwe start command, it will read manifest commands instructions and call the

/usr/lpp/myvendor/myapp/zowe-ext/bin/start.sh script. The started task will create an address space under ZWESLSTC for the
vendor component. When the Zowe instance is stopped, the address space is terminated.

Version: v2.17.x LTS

Advanced API Mediation Layer Configuration
There are multiple options for customizing Zowe API Mediation Layer according to your specific use case. Review the various use cases
presented in this section, and follow the links to the corresponding documentation that describes how to perform your specific
customization. API ML customization can be performed in the following areas:

Enabling Single Sign On for Clients
Enabling single sign on for clients via client certificate configuration

Enabling single sign on for clients via Personal Access Token configuration

Enabling single sign on for clients via JWT token configuration

Enabling Single Sign On for Extending Services
Enabling single sign on for extending services via JWT token configuration

Enabling single sign on for extending services via PassTicket configuration

Customizing routing behavior
Configuring routing in a multi-tenant environment

Customizing Cross-Origin Resource Sharing (CORS)

Using encoded slashes

Customizing Gateway retry policy

Configuring a unique cookie name for a specific API ML instance

Retrieving a specific service within your environment

Distributing the load balancer cache

Setting a consistent service ID

Customizing management of API ML load limits
Customizing connection limits

Customizing Gateway timeouts

Customizing Java Heap sizes

Configuring authorization of API ML
Limiting access to information or services in the API Catalog

Configuring SAF resource checking

Configuring an authentication provider for API Mediation Layer

Configuring storage for the Caching service
Using Infinispan as a storage solution through the Caching service

Using VSAM as a storage solution through the Caching service

Using Redis as a storage solution through the Caching service

Customizing the API Catalog UI

Configuring AT-TLS for API Mediation Layer

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-single-sign-on-user
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-jwt
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-enable-single-sign-on-extenders
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-routing
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-multi-tenancy-routing
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-url-handling
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-retry-policy
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-unique-cookie-name-for-multiple-zowe-instances
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-access-specific-instance-of-service
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-distributed-load-balancer-cache
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-set-consistent-service-id
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-management-of-apiml-load-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-connection-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-timeouts
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-java-heap-sizes
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-authorization
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-limiting-access-to-info-or-services-in-api-catalog
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-saf-resource-checking
https://docs.zowe.org/stable/user-guide/authentication-providers-for-apiml
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-customizing-the-api-catalog-ui
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-at-tls

Version: v2.17.x LTS

Enabling single sign on for clients

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

As a system programmer or system administrator, you can customize the way API ML handles authentication towards clients such as
CLI and/or users. Each of the following methods limits the frequency the user is reqired to enter credentials to access API Mediation
Layer:

One method to minimize the frequency of re-entering credentials is via Gateway client certificate authentication, whereby you can
use a client certificate as the method of authentication for the API Mediation Layer Gateway.

For more information, see Enabling single sign on for clients via client certificate configuration

Another method to minimize the frequency of entering credentials is to use API Mediation Layer to generate, validate, and
invalidate a Personal Access Token (PAT). This method enables access to tools such as VCS without having to use credentials of a
specific person. The use of PAT does not require storing mainframe credentials as part of the automation configuration on a
server during application development on z/OS.

For more information, see Enabling single sign on for clients via personal access token configuration.

Minimizing re-entering user credentials can also be performed via the JWT token refresh endpoint. Enabling the refresh endpoint
allows you to exchange a valid JWT token for a new token with a new expiration date.

For more information, see Enabling single sign on for clients via JWT token configuration.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-jwt

Version: v2.17.x LTS

Enabling single sign on for clients via client certificate
configuration

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

You can authenticate against API ML onboarded APIs. This functionality is disabled by default. Follow the steps in this article to enable
authentication against API ML onboarded APIs.

There are two methods to enable client certificate functionality:

The original and default method via ZSS

The newer and recommended method via the internal mapper component of API Mediation Layer
The internal API ML mapper is simpler to configure and provides more functionality than ZSS.

Review this article to learn about the required configuration to authenticate with either method.

For information about the usage of the client certificate when this feature is enabled, see Authenticating with client certificates.

General prerequisites

Zowe has correct TLS setup

The external CA used for issuing client certificates to specific users is imported to the truststore or keyring of the API Mediation
Layer.

IMPORTANT:

The Zowe runtime user must be enabled to perform identity mapping in SAF. For more information about identity mapping
in SAF, see Configure main Zowe server to use client certificate identity mapping.

Configure Internal API ML Mapper
Use the following procedure to enable the zowe.yaml file to use a client certificate as the method of authentication for the API
Mediation Layer Gateway. Note that the use of the internal API ML mapper is the recommended method.

1. Open the zowe.yaml configuration file.

2. Configure the following properties:

components.gateway.apiml.security.x509.enabled
This property is the global feature toggle. Set the value to true to enable client certificate functionality.

components.gateway.apiml.security.useInternalMapper
This property is the global feature toggle. Set the value to true to enable Internal Mapper

3. Restart Zowe.

https://docs.zowe.org/stable/user-guide/authenticating-with-client-certificates
https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-main-zowe-server-to-use-distributed-identity-mapping

Configure ZSS
For information about configuring ZSS, see Configure components zss in the References section of Zowe Docs.

Prerequisites for ZSS

When using ZSS for authentication, ensure that you satisfy the following prerequisites before you set up client certificate
authentication:

1. Set the password for the Zowe runtime user. The user is created with the NOPASSWORD parameter by the Zowe installer. It is

necessary to change this password.

For RACF, issue the following TSO command:

ALTUSER <ZOWE_RUNTIME_USER (ZWESVUSR by default)> PASSWORD(<NEWPASSWORD>)

For other security systems, refer to the documentation for an equivalent command.

2. Verify that the Zowe runtime user is allowed to log in to z/OSMF. (Check that the user is a member of the default IZUUSER
group.)

NOTE

Ensure that you have the Issuer certificate imported in the truststore or in the SAF keyring. Alternatively, you can generate these
certificates in SAF.

IMPORTANT:

PassTicket generation must be enabled for the Zowe runtime user. The user must be able to generate a PassTicket for the
user and for the APPLID of z/OSMF. For more information, see Configuring Zowe to use PassTickets.

TIP

There is a limitation with respect to performing authentication using Z Secure Services (ZSS) with ACF2 systems. If you are using
ACF2, and are using Zowe v2.14 or a later version, use the recommended internal API ML mapper.

Enabling zowe.yaml to use a client certificate

Use the following procedure to enable the zowe.yaml file to use a client certificate as the method of authentication for the API
Mediation Layer Gateway.

1. Open the zowe.yaml configuration file.

2. Configure the following properties:

components.gateway.apiml.security.x509.enabled
This property is the global feature toggle. Set the value to true to enable client certificate functionality.

https://docs.zowe.org/stable/appendix/zowe-yaml-configuration#configure-component-zss
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets#configuring-zowe-to-use-passtickets

components.gateway.apiml.security.zosmf.applid
When z/OSMF is used as an authentication provider, provide a valid APPLID to allow for client certificate authentication. The

API ML generates a passticket for the specified APPLID and subsequently uses this passticket to authenticate to z/OSMF. The

default value in the installation of z/OSMF is IZUDFLT .

NOTE

The following steps are only required if the ZSS hostname or default Zowe user name are altered:

3. Change the following property if user mapping is provided by an external API:

NOTE

Skip this step if user mapping is not provided by an external API.

components.gateway.apiml.security.x509.externalMapperUrl
The API Mediation Gateway uses an external API to map a certificate to the owner in SAF. This property informs the Gateway
about the location of this API. ZSS is the default API provider in Zowe. You can provide your own API to perform the mapping. In
this case, it is necessary to customize this value.

The following URL is the default value for Zowe and ZSS:

4. Add the following property if the Zowe runtime userId is altered from the default ZWESVUSR :

NOTE

Skip this step if the Zowe runtime userId is not altered from the default ZWESVUSR .

components.gateway.apiml.security.x509.externalMapperUser
To authenticate to the mapping API, a JWT is sent with the request. The token represents the user that is configured with this
property. The user authorization is required to use the IRR.RUSERMAP resource within the FACILITY class. The default value is

ZWESVUSR . Permissions are set up during installation with the ZWESECUR JCL or workflow.

If you customized the ZWESECUR JCL or workflow (the customization of zowe runtime user: // SET ZOWEUSER=ZWESVUSR * userid

for Zowe started task) and changed the default USERID, create the

components.gateway.apiml.security.x509.externalMapperUser property and set the value by adding a new line as in the

following example:

Example:

5. Restart Zowe.

You enabled zowe.yaml to use a client certificate.

Version: v2.17.x LTS

Enabling single sign on for clients via Personal Access
Token configuration

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

Review this article for steps that enable single sign on via Personal Access Tokens.

Prerequisite using the Caching Service

To enable Personal Access Token support when using the Caching Service, Infinispan is the required storage solution. Infinispan is
part of Zowe installation. No additional software or installation is required when using this storage solution.

To enable this storage method, set the value of zowe.components.caching-service.storage.mode to infinispan in the

zowe.yaml configuration file. Infinispan environment variables are not currently following the v2 naming convention, so they must be
defined into zowe.environments section. For more information on these properties and their values see Infinispan configuration.

Enabling Personal Access Tokens

Use the following procedure to enable Personal Access Tokens.

1. Open the file zowe.yaml .

2. Find or add the property with the value components.gateway.apiml.security.personalAccessToken.enabled: true .

3. Restart Zowe.

For more information about using Personal Access Tokens, see Authenticating with a Personal Access Token.

NOTE

To enable Personal Access Token support when using the Caching Service, Infinispan is the required storage solution. Infinispan
is part of Zowe installation. No additional software or installation is required when using this storage solution.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration
https://docs.zowe.org/stable/user-guide/api-mediation/authenticating-with-personal-access-token

Version: v2.17.x LTS

Enabling single sign on for clients via JWT token
configuration

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

As a system programmer, you can customize how JWT authentication is performed, the service that provides the JWT authentication
token, whether it's possible to refresh JWT token and other characteristics of JWT for consumption.

Using SAF as an authentication provider

Enabling a JWT token refresh endpoint

Authorization

Additional customizable properties when using JWT tokens

Using SAF as an authentication provider

By default, the API Gateway uses z/OSMF as an authentication provider. It is possible to switch to SAF as the authentication provider
instead of z/OSMF. The intended usage of SAF as an authentication provider is for systems without z/OSMF. If SAF is used and the
z/OSMF is available on the system, the created tokens are not accepted by z/OSMF. Use the following procedure to switch to SAF.

1. Open the zowe.yaml configuration file.

2. Find or add the following property, and set the value to saf :

3. Restart Zowe.

Authentication requests now utilize SAF as the authentication provider. API ML can run without z/OSMF present on the system.

Enabling a JWT token refresh endpoint
Enable the /gateway/api/v1/auth/refresh endpoint to exchange a valid JWT token for a new token with a new expiration date. Call

the endpoint with a valid JWT token and trusted client certificate. When using the z/OSMF authentication provider, enable API
Mediation Layer for PassTicket generation and configure the z/OSMF APPLID.

For more information, see Configure Passtickets.

1. Open the file zowe.yaml .

2. Configure the following properties:

components.gateway.apiml.security.allowtokenrefresh: true
Add this property to enable the refresh endpoint.

components.gateway.apiml.security.zosmf.applid
If you use z/OSMF as an authentication provider, provide a valid APPLID . The API ML generates a PassTicket for the specified

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets

APPLID and subsequently uses this PassTicket to authenticate to z/OSMF. The default value in the installation of z/OSMF is

IZUDFLT .

NOTE

Problems have been noted with the functionality of the property components.gateway.apiml.security.allowtokenrefresh .

For more information about the bug, see issue #3468 in the api-layer repo.

We recommend you use the following workaround:

1. Configure the following parameter in environments :

2. Restart Zowe.

Authorization
Authorization is used to set the access rights of an entity.

In the API ML, authorization is performed by any of the following z/OS security managers:

ACF2

IBM RACF

Top Secret.

An authentication token is used as proof of valid authentication. The authorization checks, however, are always performed by the z/OS
security manager.

Additional customizable properties when using JWT tokens
You can also customize the following properties when authenticating with a JWT token:

components.gateway.apiml.security.auth.zosmf.ServiceId
This parameter specifies the z/OSMF service id used as authentication provider. The service id is defined in the static definition of
z/OSMF. The default value is zosmf .

components.gateway.apiml.security.auth.tokenProperties.expirationInSeconds
This property is relevant only when the JWT is generated by the API Mediation Layer and specifies to the time before expiration.

API ML generation of the JWT occurs in the following cases:

z/OSMF is only available as an older version which does not support JWT tokens

The SAF provider is used

To use a custom configuration for z/OSMF which changes the expiration of the LTPA token, it is necessary to also set the
expiration in this parameter.

https://github.com/zowe/api-layer/issues/3468
https://www.broadcom.com/products/mainframe/identity-access/acf2
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zsecurity/zsecc_042.htm
https://www.broadcom.com/products/mainframe/identity-access/top-secret

Version: v2.17.x LTS

Enabling single sign on for extending services

ROLES: SYSTEM PROGRAMMER, API SERVICE EXTENDER

Enabling Single Sign On (SSO) in Zowe involves configuring JWT tokens or PassTickets for secure authentication. The JWT token
configuration requires setting up a custom HTTP header to store the token, thereby enhancing secure communication with
southbound services.

For more information, see Enabling single sign on for extending services via JWT token configuration.

PassTicket configuration, alternatively, allows services that do not natively support JWT tokens or client certificates to authenticate via
the API Gateway. This authentication process requires the activation of PassTicket support, recording the APPLID, and configuring the
Zowe started task user ID. Additionally, custom HTTP headers can be set up for PassTickets and user IDs, ensuring secure and
streamlined access within the Zowe ecosystem.

For more information, see Enabling single sign on for extending services via PassTicket configuration.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets

Version: v2.17.x LTS

Enabling single sign on for extending services via JWT
token configuration

ROLE: SYSTEM PROGRAMMER

Adding a custom HTTP Auth header to store Zowe JWT token

If a southbound service needs to consume the Zowe JWT token from an HTTP request header to participate in the Zowe SSO, you can
define a custom HTTP header name as part of the Gateway configuration. The southbound service must use the zoweJwt scheme in

order to leverage this functionality. Once the HTTP header name is defined, each request to the southbound service contains the JWT
token in the custom header.

Use the following procedure to add the custom HTTP header.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.security.auth.jwt.customAuthHeader and set the value which

represents the header's name.

3. Restart Zowe.

Requests through the Gateway towards the southbound service now contain the custom HTTP header with the JWT token.

Version: v2.17.x LTS

Enabling single sign on for extending services via
PassTicket configuration
One option for enabling single sign on is by configuring Zowe to use PassTickets, whereby API services can authenticate with API
Mediation Layer. Follow the procedures described in this article to configure Zowe to use PassTickets, and to enable Zowe to use
PassTickets to authenticate towards specific extending services.

REQUIRED ROLE: SECURITY ADMINISTRATOR

Overview of PassTickets

Configuring Zowe to use PassTickets
Enabling PassTicket support

Enabling PassTickets with ACF2

Enable PassTickets with Top Secret

Enabling PassTickets with RACF

Configuring security to allow the Zowe API Gateway to generate PassTickets for an API service
Generating PassTickets using ACF2

Generating PassTickets using Top Secret

Generating PassTickets using RACF

Validating if the PassTicket Application is created

Adding custom HTTP Auth headers to store user ID and PassTicket

Overview of PassTickets

API clients can use various supported methods to access an API service such as a Zowe JWT token or a client certificate even if the API
service itself does not support the JWT token or a client certificate. An intermediary for this support can be through the use of
PassTickets.

When an API client provides a valid authentication method to API ML, the API Gateway generates a valid PassTicket for any API service
that supports PassTickets. A PassTicket is a one-time only password that is generated for a specific user ID. The API Gateway uses the
PassTicket to access that API service. The API Gateway provides the user ID and password in the Authorization header of the HTTP
requests using the Basic authentication scheme.

Configuring Zowe to use PassTickets

Configuring Zowe to use PassTickets involves two processes:

Enabling the use of PassTickets in your External Security Manager (ESM)

Configuring security to allow the Zowe API Gateway to generate PassTickets for an API service

Enabling the use of PassTickets in your External Security Manager (ESM)

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication#Basic_authentication_scheme

This section applies to users who do not already have PassTickets enabled in the system, or users who need to define a PassTicket for
a new APPLID. If you already have an APPLID that you intend to use to define your API service, skip to the section Configuring security
to allow the Zowe API Gateway to generate PassTickets for an API service.

TIP

To validate if a PassTicket is already defined, use the commands that correspond to your ESM. If the PassTicket is defined, the
access of the zoweuser can be determined.

Validating an existing PassTicket for ACF2

In your ESM command line interface or other security environment, execute the following commands:

-

A wildcard symbol that lists all resources

<applid>-

Lists everything related to specified applid in a resource (in this case, SAF), or specified in a profile (in this case,
PTKTDATA)

Validating an existing PassTicket for Top Secret

In your ESM command line interface or other security environment, execute the following commands:

.

A wildcard symbol that lists all resources

IRRPTAUTH.<applid>.

Returns everything about the specified applid for IRRPTAUTH

Validating an existing PassTicket for RACF

In your ESM command line interface or other security environment, execute the following commands:

Ensure that you validate PKTDATA access for APPL.

*

A wildcard symbol that resturns all resources

RLIST PTKTDATA <applid> SSIGNON ALL

Validates all applid for PTKDATA class

Click here for details about validating an existing PassTicket for ACF2.

Click here for details about validating an existing PassTicket for Top Secret.

Click here for details about validating an existing PassTicket for RACF.

RLIST PTKTDATA IRRPTAUTH.<applid>.* ALL

Validates all applid permissions for PTKDATA class

Follow these steps to enable PassTicket Support specific to your ESM. Consult with your security administrator to perform the
following procedures.

Enabling PassTickets with ACF2

1. In your ESM command line interface or other security environment, define the application session key by entering the
following commands, if the session key is not already defined.

applid
Specifies the application ID used for PassTicket validation to authenticate connections to the server.

MULT-USE
This setting lets you reuse the same PassTicket multiple times.

key-description
Specifies the secured sign-on hexadecimal application key of 16 hexadecimal digits (8-byte or 64-bit key). Each application
key must be the same on all systems in the configuration and the values must be kept secret and secured.

2. Complete the PassTicket setup by entering the following commands:

The PassTicket record is now active in the system.

3. Enable the started task user ID to generate PassTickets for the application by entering commands similar to the following:

<userid>

Specifies the Zowe server user ID

You configured Zowe to use PassTickets using ACF2.

Enabling PassTickets with Top Secret

Before you begin this procedure, verify that the PTKTDATA class and ownership for the PassTicket resource (IRRPTAUT) have not

already been defined.

1. Update the resource descriptor table (RDT) to define the PTKTDATA class by entering the following commands:

NOTE

The PTKTDATA resource is not a predefined class.

Click here for details about configuring Zowe to use PassTickets using ACF2.

Click here for details about configuring Zowe to use PassTickets using Top Secret.

The PTKTDATA resource is added to the RDT.

NOTE

Include RESCODE(n) in the range of 101 to 13F to make PTKTDATA a prefixed resource class.

2. Assign ownership for the PassTicket resource (IRRPTAUT). Execute the following commands:

3. Define PassTicket for application ID applid without replay protection.

applid
Specifies the application ID used for PassTicket validation to authenticate connections to the server.

key-description
Specifies the secured sign-on hexadecimal application key of 16 hexadecimal digits (8-byte or 64-bit key). Each application
key must be the same on all systems in the configuration and the values must be kept secret and secured.

4. Permit access to the PassTicket resource defined in the previous step for the LDAP Server by executing the following
command:

stc-userid
Specifies the ACID that you created when you created LDAP Server started task User IDs. The parameter is "CALDAP" by
default.

You configured Zowe to use PassTickets using Top Secret.

Enabling PassTickets with RACF

1. Activate the PTKTDATA class, which encompasses all profiles containing PassTicket information.

In your ESM command line interface or other security environment, execute the following command:

2. Specify the application ID requiring access through PassTicket for the ZOWE server with the following commands:

*applid
A one to 8 character name designated for the application.

NOTE

This name is usually provided by the site security administrator.

3. Define the profile for the application with the following command:

key-description
Specifies the secured sign-on hexadecimal application key of 16 hexadecimal digits (8-byte or 64-bit key). Each application
key must be the same on all systems in the configuration and the values must be kept secret and secured.

Replace key-description with the application name defined previously.

Click here for details about configuring Zowe to use PassTickets using RACF.

IMPORTANT

PassTickets for the API service must have the replay protection switched off. This links a secured sign-on application key
with the application.

4. Allow the application ID (applid) to use PassTickets:

userid
Specifies the value of the LDAP Server started task.

5. Refresh the RACF PTKTDATA definition with the new profile:

You configured Zowe to use PassTickets using RACF.

Configuring security to allow Zowe API Gateway to generate PassTickets for an API service

As a security administrator, you can issue security commands to allow the Zowe started task user ID to generate PassTickets for the
API service.

Specify the following variables when generating PassTickets for the API service to enable the Zowe started task user ID:

applid
The APPLID value used by the API service for PassTicket support (e.g. OMVSAPPL)

zowe-user-id
The Zowe started task user ID used during the Zowe installation

In the following examples of ESM configuration, replace these variables with actual values.

Use the configuration format that corresponds to your ESM as presented in the following examples.

Generating PassTickets using ACF2

Grant the Zowe started task user ID permission to generate PassTickets for users of the API service.

Example:

Generating PassTickets using Top Secret

Grant the Zowe started task user ID permission to generate PassTickets for users of the API service.

Example:

Click here for details about generating PassTickets using ACF2.

Click here for details about generating PassTickets using Top Secret.

Generating PassTickets using RACF

Grant the Zowe started task user ID permission to generate PassTickets for users of the API service.

Example:

Validating if the PassTicket Application is created

In your ESM command line interface or other security environment, execute the following commands:

applid
The APPLID value used by the API service for PassTicket support

Successful execution of this validation command shows your application and the specific access of the application.

Adding custom HTTP Auth headers to store user ID and PassTicket
(Optional)

If a downstream (southbound) service needs to consume the PassTicket and the user ID from custom headers to participate in the
Zowe SSO, you can define the custom HTTP headers names as part of the Gateway configuration. The southbound service must use
the httpBasicPassTicket scheme in order to leverage this functionality. Once the HTTP headers names are defined, each request to

the southbound service contains the PassTicket and the user ID in the custom headers.

Use the following procedure to add the custom HTTP headers.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.security.auth.passticket.customAuthHeader and set the value which

represents the name of the header.

3. Find or add the property components.gateway.apiml.security.auth.passticket.customUserHeader and set the value which

represents the name of the header.

4. Restart Zowe.

Requests through the Gateway towards the southbound service now contain the custom HTTP headers with the PassTicket and the
user ID.

Click here for details about generating PassTickets using RACF.

Version: v2.17.x LTS

Customizing routing behavior

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

The Zowe API Mediation Layer offers a range of routing configurations for enhanced functionality and security.

You can customize your configuration for how API ML manages both northbound and southbound load limits in single instances,
including changing the number of concurrent connections per route passing through the API Gateway, and changing the global
Gateway timeout value for the API ML instance.

To change the number of concurrent connections per route passing through the API Gateway, see Customizing connection limits.

To change the global Gateway timeout value for the API ML instance, see Customizing Gateway timeouts.

Also see the following properties in API Gateway configuration parameters:

server.maxTotalConnections

server.maxConnectionsPerRoute

Customizing CORS enables the Gateway to handle Cross-Origin Resource Sharing requests, while settings for encoded slashes and
unique cookie names cater to specific operational needs of onboarding applications and multiple Zowe instances.

For more information, see Customizing Cross-Origin Resource Sharing (CORS)

To onboard applications which expose endpoints that expect encoded slashes, see Using encoded slashes

The Gateway retry policy, customizable through zowe.yaml, optimizes request handling, which can be especially useful in high
availability scenarios.

To customize the Gateway retry policy, see Customizing Gateway retry policy.

Additionally, API ML supports specific instance access and load balancer cache distribution, improving service identification and
scalability. These configurations, including service ID adjustments for compatibility with Zowe v2, demonstrate Zowe's adaptability and
robustness in API management.

To configure a unique cookie name for each instance to prevent overwriting of the default cookie name in the case of multiple Zowe
instances, or for more complex deployment strategies, see Configuring a unique cookie name for a specific API ML instance.

To determine which service instance is being called, you can customize the Gateway to output a routed instance header. For more
information, see Retrieving a specific service within your environment.

To distribute the load balancer cache between instances of the API Gateway, see Distributing the load balancer cache.

To modify the service ID to ensure compatibility of services that use a non-conformant organization prefix with Zowe v2, see Setting a
consistent service ID.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-connection-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-timeouts
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-url-handling
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-retry-policy
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-unique-cookie-name-for-multiple-zowe-instances
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-access-specific-instance-of-service
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-distributed-load-balancer-cache
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-set-consistent-service-id

Version: v2.17.x LTS

Configuring routing in a multi-tenant environment
In addition to the domain-specific Discovery Service, which is typically in the same LPAR, in a multi-sysplex environment, the API
Gateway may also need to register with a Central Discovery Service which gathers information about all installed API Gateways in
isolated sysplex environments. Data from the Central Discovery Service can then be used by the Central Gateway for routing to
individual API Gateways.

Follow these steps to register with additional Discovery Services:

1. Open the zowe.yaml configuration file.

2. Add the property components.gateway.apiml.service.additionalRegistration and set the value to a list of Discovery

service clusters to additional Disovery Services.

Example:

3. Restart Zowe.

Version: v2.17.x LTS

Customizing Cross-Origin Resource Sharing (CORS)

ROLE: SYSTEM PROGRAMMER

As a system programmer, you can enable the Gateway to terminate CORS requests for itself and also for routed services. By default,
Cross-Origin Resource Sharing (CORS) handling is disabled for Gateway routes gateway/api/v1/** and for individual services. After

enabling the feature as stated in the following procedure, API Gateway endpoints start handling CORS requests. Individual services can
control whether they want the Gateway to handle CORS for them through the Custom Metadata parameters.

When the Gateway handles CORS on behalf of the service, the Gateway sanitizes the following defined headers from the
communication (upstream and downstream) in the following comma -separated list:

The resulting request to the service is not a CORS request. No additional specification of the service is required. The list can be
overridden by specifying a different comma-separated list in the property
components.gateway.apiml.service.ignoredHeadersWhenCorsEnabled in zowe.yaml .

Additionally, the Gateway handles the preflight requests on behalf of the service when CORS is enabled in Custom Metadata, replying
with CORS headers:

Access-Control-Allow-Methods: GET,HEAD,POST,DELETE,PUT,OPTIONS

Access-Control-Allow-Headers: origin, x-requested-with

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

Alternatively, list the origins as configured by the service, associated with the value customMetadata.apiml.corsAllowedOrigins in
Custom Metadata.

If CORS is enabled for Gateway routes but not in Custom Metadata, the Gateway does not set any of the previously listed CORS
headers. As such, the Gateway rejects any CORS requests with an origin header for the Gateway routes.

Use the following procedure to enable CORS handling.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.service.corsEnabled and set the value to true .

3. Restart Zowe.

Requests through the Gateway now contain a CORS header.

https://docs.zowe.org/stable/user-guide/extend/extend-apiml/onboard-spring-boot-enabler/#custom-metadata.md

Version: v2.17.x LTS

Using encoded slashes

ROLE: SYSTEM PROGRAMMER

By default, the API Mediation Layer accepts encoded slashes in the URL path of the request. If you are onboarding applications which
expose endpoints that expect encoded slashes, it is necessary to keep the default configuration. We recommend that you change the
property to false if you do not expect the applications to use the encoded slashes.

Use the following procedure to reject encoded slashes.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.service.allowEncodedSlashes and set the value to false .

3. Restart Zowe.

Requests with encoded slashes are now rejected by the API Mediation Layer.

Version: v2.17.x LTS

Customizing Gateway retry policy
Use the following procedure to change the Gateway retry policy.

ROLE: SYSTEM PROGRAMMER

All requests are disabled as the default configuration for retry with one exception: the server retries GET requests that finish with

status code 503 .

1. Open the zowe.yaml configuration file.

2. Configure the following properties:

components.gateway.ribbon.retryableStatusCodes
This property provides a list of status codes, for which the server should retry the request.

Example: components.gateway.ribbon.retryableStatusCodes: "503, 404"

components.gateway.ribbon.OkToRetryOnAllOperations
Specifies whether to retry all operations for this service. The default value is false . In this case, only GET requests are retried if
they return a response code that is listed in ribbon.retryableStatusCodes . Setting this parameter to true enables retry

requests for all methods which return a response code listed in ribbon.retryableStatusCodes .

NOTE

Enabling retry can impact server resources due to request body buffering.

components.gateway.ribbon.MaxAutoRetries
Specifies the number of times a failed request is retried on the same server. This number is multiplied with
ribbon.MaxAutoRetriesNextServer . The default value is 0 .

components.gateway.ribbon.MaxAutoRetriesNextServer
Specifies the number of additional servers that attempt to make the request. This number excludes the first server. The default
value is 5 .

3. Restart Zowe.

Version: v2.17.x LTS

Configuring a unique cookie name for a specific API ML
instance

ROLE: SYSTEM PROGRAMMER

By default, in the API Gateway, the cookie name is apimlAuthenticationToken . To prevent overwriting of the default cookie name in

the case of multiple Zowe instances, a unique cookie name can be configured for each instance.

Follow this procedure to configure a unique cookie name for the instances:

1. Open the zowe.yaml configuration file.

2. Find or add the property components.gateway.apiml.security.auth.uniqueCookie , and set it to true . A unique cookie name

is generated as apimlAuthenticationToken.cookieIdentifier .

Example:
If this parameter is set to true , and the cookieIdentifier is 1 , the name of the cookie transforms to

apimlAuthenticationToken.1 .

If this property is not set to true , the cookie name remains apimlAuthenticationToken by default.

3. Restart Zowe.

Version: v2.17.x LTS

Retrieving a specific service within your environment

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR

Output a routed instance header
The API Gateway can output a special header that contains the value of the instance ID of the API service that the request has been
routed to. This is useful for understanding which service instance is being called.

The header name is X-InstanceId , and the sample value is discoverable-client:discoverableclient:10012 . This is identical to

instanceId property in the registration of the Discovery service.

Use the following procedure to output a special header that contains the value of the instance ID of the API service.

1. Open the file zowe.yaml .

2. Find or add the property with value components.gateway.apiml.routing.instanceIdHeader:true .

3. Restart Zowe.

Version: v2.17.x LTS

Distributing the load balancer cache

ROLE: SYSTEM PROGRAMMER

You can choose to distribute the load balancer cache between instances of the API Gateway. To distribute the load balancer cache, it is
necessary that the caching service is running. Gateway service instances are reuqired to have the same DN (Distinguished name) on
the server certificate. This may be relevant for the HA setups.

Use the following procedure to distribute the load balancer cache between instances of the API Gateway.

1. Open the file zowe.yaml .

2. Find or add the property with value components.gateway.apiml.loadBalancer.distribute: true .

3. Restart Zowe.

Version: v2.17.x LTS

Setting a consistent service ID

ROLE: API SERVICE EXTENDER

As an API service extender you can modify the service ID to ensure compatibility of services that use a non-conformant organization
prefix with Zowe v2.

For more information, see the following parameter in the article Discovery Service configuration parameters:

components.discovery.apiml.discovery.serviceIdPrefixReplacer
This parameter is used to modify the service ID of a service instance, before it registers to API ML. Using this parameter ensures
compatibility of services that use a non-conformant organization prefix with v2, based on Zowe v2 conformance.

Version: v2.17.x LTS

Customizing management of API ML load limits

ROLE: SYSTEM PROGRAMMER

As a system programmer, you can customize your configuration for how API ML manages both northbound and southbound load
limits in single instances:

To change the number of concurrent connections per route passing through the API Gateway, see Customizing connection limits.

To change the global Gateway timeout value for the API ML instance, see Customizing Gateway timeouts.

Also see the following properties in API Gateway configuration parameters:

server.maxTotalConnections

server.maxConnectionsPerRoute

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-connection-limits
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-gateway-timeouts

Version: v2.17.x LTS

Customizing connection limits

ROLE: SYSTEM PROGRAMMER

TCP/IP Connection Limits
By default, the API Gateway accepts up to 100 concurrent connections per route, and 1000 total concurrent connections. Any further
concurrent requests are queued until the completion of an existing request. The API Gateway is built on top of Apache HTTP
components that require these two connection limits for concurrent requests.

Use the following procedure to change the number of concurrent connections:

1. Open the file zowe.yaml .

2. Find or add the property zowe.components.gateway.server.maxConnectionsPerRoute and set the value to an appropriate

positive integer. Defaults to 100 max reusable connections per route.

3. Find or add the property zowe.components.gateway.server.maxTotalConnections and set the value to an appropriate positive

integer. Defaults to 1000 max total concurrent connections.

Websocket Limits
The API Mediation Layer supports Websocket connections. It is possible to configure the limits around timeouts. All the values are in
milliseconds. Customizing this limit may be practical if you see problems such as with the usage of the TN3270 terminal in Virtual
Desktop.

Use the following procedure to change the limits:

1. Open the file zowe.yaml .

2. Find or add the property zowe.components.gateway.server.websocket.connectTimeout , and set the value to an appropriate

positive integer. This timeout limits how long the API Gateway waits until it drops connection if it cannot reach the target server.
The default is 45 seconds (45000 milliseconds).

3. Find or add the property zowe.components.gateway.server.websocket.stopTimeout , and set the value to an appropriate

positive integer. This timeout handles how long the API Gateway will wait for the graceful stopping of the WebSocket connection.
The default is 30 seconds (30000 milliseconds).

4. Find or add the property zowe.components.gateway.server.websocket.asyncWriteTimeout , and set the value to an

appropriate positive integer. This timeout handles how long it takes before the server fails with unsuccessful response when
trying to write a message to the Websocket connection. The default is 60 seconds (60000 milliseconds).

5. Find or add the property zowe.components.gateway.server.websocket.maxIdleTimeout , and set the value to an appropriate

positive integer. This timeout handles how long the Websocket connection remains open if there is no communication happening
over the open connection. The default is one hour (3600000 milliseconds).

6. Find or add the property zowe.components.gateway.server.websocket.requestBufferSize and set the value to an
appropriate positive integer. This property handles the max request size allowed in WebSocket handshake requests. The default is
8K.

Version: v2.17.x LTS

Customizing Gateway timeouts

ROLE: SYSTEM PROGRAMMER

Use the following procedure to change the global timeout value for an API Mediation Layer instance.

1. Open the file zowe.yaml .

2. Configure the following properties:

components.gateway.apiml.gateway.timeoutmillis
This property defines the global value for http/ws client timeout.

NOTE

Ribbon configures the client that connects to the routed services.

components.gateway.ribbon.connectTimeout
Specifies the value in milliseconds which corresponds to the period in which API ML should establish a single, non-managed
connection with the service. If omitted, the default value specified in the API ML Gateway service configuration is used.

components.gateway.ribbon.readTimeout
Specifies the time in milliseconds of inactivity between two packets in response from this service to API ML. If omitted, the default
value specified in the API ML Gateway service configuration is used.

components.gateway.ribbon.connectionManagerTimeout
The HttpClient employs a special entity to manage access to HTTP connections called by the HTTP connection manager. The
purpose of an HTTP connection manager is to serve as a factory for new HTTP connections, to manage the life cycle of persistent
connections, and to synchronize access to persistent connections. Internally, the connections that are managed serve as proxies
for real connections. ConnectionManagerTimeout specifies a period during which managed connections with API ML should be

established. The value is in milliseconds. If omitted, the default value specified in the API ML Gateway service configuration is
used.

components.gateway.httpclient.requestConnectionTimeout
Specifies the HTTP Client Request Connection Timeout for southbound services from the API Gateway. This setting defines the
period that the API Gateway waits for a response from the southbound server before issuing a connection refused response. The
value is in milliseconds. An example value of a 30 second connection timeout would be 30000.

Example:

3. Restart Zowe.

You completed customization of Gateway timeouts.

Version: v2.17.x LTS

Customizing Java Heap sizes

ROLE: SYSTEM PROGRAMMER

The Zowe API Mediation Layer is a Java-based application. As such, one of the main performance considerations is the size of the Java
memory heap, where all objects are stored. The Java heap size has a direct impact on the available capacity of the applications.
Aspects to consider when defining the size are, for example, how many concurrent requests the application should support, and the
expected size of average requests. As a systems programmer, you can customize the available Java memory heap size for API
Mediation Layer components.

By default, all services (Gateway, Discovery, API Catalog, Caching Service) have a Java heap size of 32 MB as the initial size, and a
maximum heap size of 512 MB.

To change the default settings, set components.<component>.heap.init and components.<component>.heap.max

component

Specifies one of the following services:
gateway

discovery

caching-service

api-catalog

Example with Gateway Service:

The unit is megabytes and cannot be changed. The new values are 1 GB.

Recommendation

It is recommended to have a fixed heap size in a production environment.

Version: v2.17.x LTS

Configuring authorization for API ML

ROLE: SYSTEM ADMINISTRATOR

In Zowe's API Mediation Layer, system administrators can limit access to services and information in the API Catalog by hiding
sensitive data like service instance URLs, configurable via the apiml.catalog.hide.serviceInfo property in zowe.yaml. Additionally, SAF
resource checking for user authorization on specific endpoints is facilitated through various providers, such as Endpoint, Native, and
Dummy. These configurations, modifiable in the zowe.yaml file, enhance security by controlling service exposure and ensuring proper
authorization checks within the Zowe ecosystem.

Limiting access to information or services in the API Catalog

Configuring SAF resource checking

Configurint Health Endpoint Protection

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-limiting-access-to-info-or-services-in-api-catalog
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-saf-resource-checking
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-health-endpoint-protection

Version: v2.17.x LTS

Limiting access to information or services in the API
Catalog

ROLE: SYSTEM ADMINISTRATOR

As a system administrator, you can limit access to information and/or services available within the API Catalog and through the API
Mediation Layer and check for the authorization of the user on certain endpoints.

Choose from the following use cases:

Use the property apiml.catalog.hide.serviceInfo to hide the instance URL value of all services registered to the API ML in

the API Catalog.

See the section Hide service information.

The API ML can check for the authorization of the user on certain endpoints. Access to a SAF resource is checked via an External
Security Manager (ESM).

See the article SAF Resource Checking.

Hide service information
1. Open the file zowe.yaml .

2. Configure the following properties:

apiml.catalog.hide.serviceInfo

This parameter is used to hide the instance URL value of all services registered to the API ML in the API Catalog. This
customization can be useful when the service owner does not want to expose sensitive information such as the hostname.

Set the value of the *apiml.catalog.hide.serviceInfo parameter to true to hide the instance URL for all services

registered to the API Catalog.

In your Zowe YAML configuration (typically zowe.yaml), set this parameter by defining

configs.apiml.catalog.hide.serviceInfo .

Follow this example to define this parameter globally.

Example:

An alternative is to define this parameter only for a high availability instance on lpar1.

Example:

3. Restart Zowe.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-saf-resource-checking

Version: v2.17.x LTS

Configuring SAF resource checking

ROLES: SYSTEM PROGRAMMER, SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

You can use various SAF resource providers depending on your use case to handle the SAF authorization check. Follow the procedure
in this article that applies to your specific configuration use case.

SAF Resource Checking Providers
API ML can check for the authorization of the user on certain endpoints. Access to a SAF resource is checked with ESM.

Verification of the SAF resource is provided by the following three providers:

endpoint

This is the highest priority provider, such as a REST endpoint call (ZSS or similar one). This option is disabled by default. In Zowe,
ZSS has the API to check for SAF resource authorization.

native

The Native JZOS classes from Java are used to determine SAF resource access. This is the default provider.

dummy

This is the lowest priority provider. This is the dummy implementation and is defined in a file.

NOTE

Verification of the SAF resource uses the first available provider based on the specified priority. The default configuration
resolves to the native provider.

You can select a specific provider by specifying the components.gateway.apiml.security.authorization.provider key in the

zowe.yaml file. Use the parameter value to strictly define a provider. If verification is disabled, select the endpoint option.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.security.authorization.provider and set desired value.

3. Restart Zowe.

Examples:

To configure the endpoint provider, add the following additional property:

components.gateway.apiml.security.authorization.endpoint.enabled: true

components.gateway.apiml.security.authorization.provider: native

components.gateway.apiml.security.authorization.provider: dummy

To use the endpoint provider, customize the URL corresponding to the SAF resource authorization. By default, the ZSS API is
configured and used.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.security.authorization.endpoint.url and set desired value. The

default value for ZSS API is https://${ZWE_haInstance_hostname}:${GATEWAY_PORT}/zss/api/v1/saf-auth

3. Restart Zowe.

REST endpoint call

The REST provider calls the external API to retrieve information about access rights. To enable the feature outside of the mainframe,
such as when running in Docker, you can use a REST endpoint call using the GET method:

Method: GET

URL: {base path}/{userId}/{class}/{entity}/{level}

Response:

NOTE

For more information about this REST endpoint call, see ZSS implementation.

Native

The Native provider is the easiest approach to use the SAF resource checking feature on the mainframe.

Enable this provider when classes com.ibm.os390.security.PlatformAccessControl and

com.ibm.os390.security.PlatformReturned are available on the classpath. This approach uses the following method described in

the IBM documentation: method.

NOTE

Ensure that the version of Java on your system has the same version of classes and method signatures.

Dummy implementation

Use the Dummy provider for testing purpose outside of the mainframe.

Create the file saf.yml and locate it in the folder, where is application running or create file mock-saf.yml in the test module (root

folder). The highest priority is to read the file outside of the JAR. A file (inner or outside) has to exist.

The following YAML presents the structure of the file:

NOTES

Classes and resources are mapped into a map, user IDs into a list.

https://github.com/zowe/zss/blob/master/c/authService.c
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zsecurity.api.80.doc/com.ibm.os390.security/com/ibm/os390/security/PlatformAccessControl.html?view=kc#checkPermission-java.lang.String-java.lang.String-java.lang.String-int-

The load method does not support formatting with dots, such as shown in the following example: Example: {CLASS}.
{RESOURCE} Ensure that each element is separated.

The field safAccess is not required to define an empty file without a definition.

Classes and resources cannot be defined without the user ID list.

When a user has multiple definitions of the same class and resource, only the most privileged access level loads.

Version: v2.17.x LTS

Configuring API Gateway Health Check Protection

ROLE: SYSTEM PROGRAMMER

As a system programmer, you can configure the security setting for the health check endpoint of the API Gateway. This setting
determines whether the health check endpoint is accessible without authentication, or alternatively requires authentication. Enabling
protection for the health check endpoint can enhance the security of the API Gateway by restricting access to sensitive status
information about the Gateway.

Use the following procedure to set the value of the health check endpoint of the API Gateway:

1. Open the file zowe.yaml .

2. Configure the following property:

components.gateway.apiml.gateway.health.protected

This property defines whether the health check endpoint is accessible with or without authentication.

NOTE

The default value of this parameter is false . We recommend setting this parameter to true for production environments.

Example:

In this example, setting protected to true protects the health check endpoint by requiring authentication. Only authenticated users

can access the health check endpoint. This ensures that sensitive information about the status of the Gateway is not exposed to
unauthenticated users.

To allow open access to the health check endpoint, set the parameter to false . Setting this parameter to false permits access to

this endpoint without authentication. In this case, anyone can access the health check endpoint and obtain information about the
status of the Gateway.

Environment Recommendations

When setting this parameter, we recommend applying the following values according to your environment:

In Production Environments
It is recommended to set apiml.gateway.health.protected to true to enhance security and protect sensitive information

about the API Gateway's health status.

In Development/Testing Environments
setting apiml.gateway.health.protected to false can simplify the testing process, reduce development overhead, and assist

with debugging.

Version: v2.17.x LTS

Configuring an authentication provider for API
Mediation Layer

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

Choose from the following providers to handle authentication for the API Gateway:

z/OSMF Authentication Provider

SAF Authentication Provider

NOTE

For development purposes, a dummy authentication provider is also available. This provider is not intend for production
purposes. For more information, see Dummy Authentication Provider in Deploy API Mediation Layer locally.

TIP

In most cases, we recommend you use the z/OSMF Authentication Provider. z/OSMF is part of z/OS. As such, this provider is
the best option for providing the authentication API.

When z/OSMF is not available, we recommend you use the SAF Authentication provider. With the SAF provider, the API
Gateway acts as the authentication service. The provided credentials are validated directly by API Gateway via SAF APIs.

z/OSMF Authentication Provider
The z/OSMF Authentication Provider allows the API Gateway to authenticate with the z/OSMF service. The user needs z/OSMF

access in order to authenticate.

Use the following properties of the API Gateway to enable the z/OSMF Authentication Provider :

SAF Authentication Provider
The SAF Authentication Provider allows the API Gateway to authenticate directly with the z/OS SAF provider that is installed on

the system. The user needs a SAF account to authenticate.

Use the following property of the API Gateway to enable the SAF Authentication Provider :

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-layer-development-setup#dummy-authentication-provider

Version: v2.17.x LTS

Using Infinispan as a storage solution through the
Caching service
As an API developer, you can configure Infinispan as a storage solution through the Caching service. This article describes how to
configure your storage solution for Infinispan. You can configure Infinispan for high availability as well as to replicate data to provide
data durability and availability.

Using Infinispan as a storage solution through the Caching service
Understanding Infinispan

Infinispan replica instances

Infinispan configuration

Understanding Infinispan
Infinispan is a storage solution that stores data structures in key-value pairs. The API Caching service uses hash sets, where each
service storing data via the Caching service has its own hash, and each data entry is a key-value entry within that service's Infinispan
hash set.

For more information on Infinispan, see the official Infinispan documentation.

Infinispan replica instances

Infinispan can be used with both a standalone instance and high availability mode. When using multiple Caching Service instances, it
is necessary to specify all of the cluster nodes (members). Each Infinispan node is bound to a specific Caching Service instance and
runs on a different port and host, which can be configured. For more information about configuring multiple Infinispan modes, see the
Infinispan configuration.

For more information on Infinispan replication and how to configure a replica instance, see the Infinispan Cross-site Replication
documentation.

Infinispan configuration

Configure Infinispan as a storage solution through the Caching service by setting the following configuration parameters in the
zowe.yaml .

zowe.components.caching-service.storage.infinispan.initialHosts

This property specifies the list of cluster nodes (members). In case of multiple instances, the value for each Caching Service
instance can be either a list of all the members, separated by a comma, or just the replica. The format is
${haInstance.hostname}[${zowe.components.caching-service.storage.infinispan.jgroups.port}] .

either a list of all the members, separated by a comma, or just the replica. The format is ${haInstance.hostname}

[${zowe.components.caching-service.storage.infinispan.jgroups.port}] .

https://infinispan.org/documentation/
https://infinispan.org/docs/stable/titles/xsite/xsite.html

zowe.components.caching-service.storage.infinispan.persistence.dataLocation

The path where the Soft-Index store keeps its data files for the Infinispan Soft-Index Cache Store. The default value is data . If you

run the Caching Service in HA and the instances use the same filesystem, you have to specify a different value of the
CACHING_STORAGE_INFINISPAN_PERSISTENCE_DATALOCATION property for each instance. For more information, see the Soft-

Index File Store.

zowe.components.caching-service.storage.infinispan.jgroups.port

The port number used by Infinispan to synchronise data among cahing-service instances.

Example of Caching service HA configuration using Infinispan:

https://infinispan.org/blog/2014/10/31/soft-index-file-store

Version: v2.17.x LTS

Using VSAM as a storage solution through the Caching
service
As an API developer, you can configure VSAM as a storage solution through the Caching service. The procedure in this article
describes how to configure your storage solution for VSAM. Configuring VSAM ensures that you do not lose data if you need to
restart. Configuring VSAM also makes it possible to leverage multiple caching services concurrently, whereby clients can retreive data
through VSAM.

Understanding VSAM

VSAM configuration

VSAM performance

Understanding VSAM

Virtual Storage Access Method (VSAM) is both a data set type, and a method for accessing various user data types. Using VSAM

as an access method makes it possible to maintain disk records in a unique format that is not understandable by other access
methods. VSAM is used primarily for applications, and is not used for source programs, JCL, or executable modules. ISPF cannot be
used to display or edit VSAM files. VSAM can be used to organize records into four types of data sets: key-sequenced, entry-
sequenced, linear, or relative record. The API Caching service supports VSAM as a storage method to cache APIs, and uses the Key

Sequence Data Set (KSDS) dataset. Each record has one or more key fields, and a record can be retrieved (or inserted) by the key

value, thereby providing random access to data. Records are of variable length. IMS™ uses KDSDs.

For more information about VSAM, see the IBM documentation.

VSAM configuration

Configure VSAM as a storage solution through the Caching service by modifying the following configuration parameters in
zowe.components.caching-service in zowe.yaml .

storage.vsam.name

The ZFile filename. The ZFile is a wrapper around a z/OS file based on the supplied name and options. This method calls the
fopen() and fldata() C-library routines. The ZFile filename should follow the specific naming convention //'DATASET.NAME' .

storage.vsam.keyLength

The VsamKey length. The default value is 128 bytes.

storage.vsam.recordLength

The record length. The default value is 4096 bytes.

storage.vsam.encoding

The character encoding. The default value is IBM-1047.

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_169.htm

VSAM performance

Accessing VSAM via java results in a performance limitation. The VSAM solution has been tested in a few scenarios.

The following sequence describes the test process:

1. Load 1000 records into the cache concurrently (5 threads).

2. Update all records for 120 seconds with increasing the thread count, up to <x> amount of threads.

3. Read all records for 120 seconds with increasing the thread count, up to <x> amount of threads.

4. Read and update all records for 120 seconds with increasing the thread count, up to <x> amount of threads.

5. Delete all loaded records from the cache concurrently (5 threads).

Tests were run with 3 scenarios:

Low load: 5 threads

Medium load: 15 threads

High load: 50 threads

Test subjects:

Single Caching Service with VSAM storage

Two Caching Services with shared VSAM storage

Results:

The most important operation is READ .

Two Caching Services achieve better READ performance than a single Caching Service.

Based on data from the testing results, the READ performance appears to be acceptable, ranging from 300 ms to 1000 ms.

With two Caching Services and a high load, READ performance significantly increased.

Response times of other operations are also acceptable, yet error rates increase with higher concurrency.

Two Caching Services produce higher load on shared resource (VSAM) and have higher error rate.

VSAM implemetation appears to be sufficient for user-based workloads. For light automation workloads VSAM implementation
appears to be acceptable as well. For heavy workloads this implementatin may not be sufficient.

VSAM does not scale well beyond 1000 RPM on a node.

Version: v2.17.x LTS

Using Redis as a storage solution through the Caching
service
As an API developer, you can configure Redis as a storage solution through the Caching service. This article describes how to
configure your storage solution for Redis. You can configure Redis for high availability as well as to replicate data to provide data
durability and availability.

Understanding Redis

Redis configuration

Understanding Redis

Redis is an off-Z storage solution that stores data structures in key-value pairs. The API Caching service uses hash sets, where each
service storing data via the Caching service has its own hash, and each data entry is a key-value entry within that service's Redis hash
set.

For more information on Redis, see the official Redis documentation.

Redis replica instances

Redis can be used with one standalone instance. For data durability, however, a master/replica configuration is recommended. Redis
replicas automatically connect, and re-connect when necessary, to the master Redis instance and attempt to be an exact copy of the
master.

For more information on Redis replication and how to configure a replica instance, see the official Redis Replication documentation.

Redis Sentinel

Redis Sentinel is a configuration that provides high availability for Redis master/replica instances. Sentinel instances are used to
monitor the master instance and use a quorum to automatically determine if a failover procedure needs to occur from a master
instance to one of its replicas.

For more information on Redis Sentinel and how to configure Sentinel instances with master/replica instances, see the official Redis
Sentinel documentation.

Redis SSL/TLS

Redis supports SSL/TLS starting in version 6. For information on enabled SSL/TLS with Redis, see the official Redis TLS Support
documentation.

Redis and Lettuce

The Lettuce library is used to connect to Redis. Lettuce uses Master or Sentinel node registration information to automatically discover
other instances. The IP address used to register between nodes is therefore what Lettuce uses to connect to downstream replica
instances. This means the IP address of replica instances, or the IP address of both master and replica instances in the case of Sentinel

https://redis.io/documentation
https://redis.io/topics/replication
https://redis.io/topics/replication
https://redis.io/topics/replication
https://lettuce.io/

topology, must be accessible to the Caching service. For example, in a master/replica topology running in separate Docker containers,
the replica container's IP address needs to be accessible to the Caching service, rather than only exposing a port.

Redis configuration

Configure Redis as a storage solution through the Caching service by setting the following environment variables. Environment
variables can be set by adding them to the zowe.components.caching-service section of the zowe.yaml configuration file.

storage.redis.masterNodeUri

The URI used to connect to the Redis master instance in the form username:password@host:port .

The host section of the URI is mandatory

The port section is optional and if not included defaults to 6379 .

The username section is optional and if not included defaults to the Redis default username default .

The password section is optional, but must be included if a username is included. If the password is not set a username
cannot be set.

storage.redis.timeout

The timeout duration in seconds for the Caching service when first connecting to Redis. Defaults to 60 seconds.

storage.redis.sentinel.enabled

A flag indicating if Redis is being used with Redis Sentinel instances. Defaults to false .

storage.redis.sentinel.masterInstance

The Redis master instance ID used by the Redis Sentinel instances. Required if Redis Sentinel is being used.

storage.redix.sentinel.nodes

The URI used to connect to a Redis Sentinel instance in the form username:password@host:port .

The host section of the URI is mandatory

The port section is optional and if not included defaults to 6379 .

The password section is optional and defaults to no password.

To supply multiple Redis Sentinel URIs, concatenate the URIs with a comma , .

storage.redix.ssl.enabled

A flag indicating if Redis is being used with SSL/TLS support. Defaults to true .

storage.redis.ssl.keystore

The keystore file used to store the private key. Defaults to the Caching Service's keystore.

storage.redis.ssl.keystorePassword

The password used to unlock the keystore. Defaults to the Caching Service's keystore password.

storage.redis.ssl.truststore

The truststore file used to keep other parties public keys and certificates. Defaults to the Caching Service's truststore.

storage.redix.ssl.truststorePassword

The password used to unlock the truststore. Defaults to the Caching Service's truststore password.

Version: v2.17.x LTS

Customizing the API Catalog UI

ROLE: SYSTEM ADMINISTRATOR

As a system administrator, you can customize the API Catalog UI to have a similar interface to your organization's service, or with your
existing visualization portal.

To customize the logotype and selected syle options in the zowe.yaml file, see API Catalog branding.

To replace or remove the API Catolog service from the Gateway home page and health checks, see Replace or remove the Catalog
with another service.

API Catalog branding
It is possible to customize the logotype and selected style options directly in zowe.yaml .

1. Open the file zowe.yaml .

2. Configure the following properties by setting them under ZWE_configs_apiml_catalog_customStyles :

logo
Specifies the location of the logo that will replace the default Zowe logo in the API Catalog header. The supported image
formats are: svg , png and jpg/jpeg .

titlesColor
Specifies the title color.

fontFamily
Specifies the font family to use across the API Catalog.

headerColor
Specifies the HTML color of the header element in the API Catalog home page

backgroundColor
Specifies the HTML color of the main background across the API Catalog

textColor
Specifies the HTML color of the main text across the API Catalog

docLink
Specifies a custom link to be displayed in the header. Use this property to refer to applicable documentation. The format is
<link_name>|<link_url>

Example: docLink: Custom Documentation|https://somedoc.com

Follow this example to define this parameter globally.

Example:

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation/configuration-customizing-the-api-catalog-ui/#replace-or-remove-the-catalog-with-another-service

Properties in the example that are not set default to Zowe API Catalog css values.

3. Restart Zowe.

Replace or remove the Catalog with another service
By default, the API Mediation Layer contains the API Catalog as a service showing available services. As the API Mediation Layer can be
successfully run without this component it is possible to replace or remove the service from the Gateway home page and health
checks. The following section describes the behavior of the Gateway home page and health checks.

The default option displays the API Catalog.

A value can also be applied to components.gateway.apiml.catalog.serviceId .

Examples:

none
Nothing is displayed on the Gateway home page and the Catalog is removed from /application/health

alternative-catalog
An alternative to the API Catalog is displayed

metrics-dashboard
A possible dashboard that could appear in place of the API Catalog

NOTES:

If the application contains the homePageUrl and statusPageRelativeUrl , then the full set of information is displayed.

If the application contains the homePageUrl the link is displayed without the UP information.

If the application contains the statusPageRelativeUrl then UP or DOWN is displayed based on the statusPage without
the link.

Use the following procedure to change or replace the Catalog service.

1. Open the file zowe.yaml .

2. Find or add the property components.gateway.apiml.catalog.serviceId . Set the value with the following options:

Set the value to none to remove the Catalog service.

Set the value to the ID of the service that is onboarded to the API Mediation Layer.

3. Restart Zowe.

Version: v2.17.x LTS

Configuring AT-TLS for API Mediation Layer
Review this article for descriptions of the configuration parameters required to make Zowe API Mediation Layer work with AT-TLS,
including AT-TLS inbound and outbound rules, using AT-TLS in high availability, and troubleshooting. Security recommendations are
also provided.

ROLE: SECURITY ADMINISTRATOR

AT-TLS configuration for Zowe

AT-TLS rules
Inbound rules

Outbound rules
For z/OSMF

For communication between API Gateway and other core services

For communication between API Gateway and southbound services

Ciphers

Using AT-TLS for API ML in High Availability

AT-TLS Troubleshooting

AT-TLS configuration for Zowe

TIP

Support for AT-TLS was introduced in Zowe v1.24. In this early version, startup was not possible in some versions of Zowe. For
full support, we recommend that you upgrade to v2.13 or a later version of Zowe.

Follow these steps to configure Zowe to support AT-TLS:

1. Enable the AT-TLS profile and disable the TLS application in API ML.
Update zowe.yaml with the following values under gateway , discovery , api-catalog , caching-service and metrics-

service in the zowe.components section.

Example:

While API ML does not handle TLS on its own with AT-TLS enabled, API ML requires information about the server certificate that is
defined in the AT-TLS rule. Ensure that the server certificates provided by the AT-TLS layer are trusted in the configured Zowe keyring.
Ideally, AT-TLS should be configured with the same Zowe keyring.

If there is an outbound AT-TLS rule configured for the link between the API Gateway and z/OSMF, set the zowe.zOSMF.scheme
property to http .

NOTES

AT-TLS is supported in the API Cloud Gateway Mediation Layer component beginning with version 2.17.

As the Gateway is a core component of API ML, other components that need to interact with the Gateway, such as Zowe
ZLUX App Server, also require AT-TLS configuration.

IMPORTANT SECURITY CONSIDERATION

Configuring AT-TLS for the Zowe API Mediation Layer requires careful consideration of security settings. These security settings
apply to the Client Certificate authentication feature in Zowe API Mediation Layer components, as well as for onboarded services
that support the x.509 client certificates authentication scheme.

Outbound AT-TLS rules (i.e. to make a transparent https call through http) that are configured to send the server certificate
should be limited to the services that require service to service authentication. If an API ML-onboarded southbound service
needs to support x.509 client certificate authentication, we recommend to use the integrated TLS handshake capabilities of API
ML. Do not configure an outbound AT-TLS rule for these services.

The Discovery Service endpoints are not reachable by standard API Gateway routing by default.

AT-TLS rules
This section describes suggested AT-TLS settings, and serves as guidelines to set your AT-TLS rules.

Inbound rules

A generic inbound rule can be set for all core API Mediation Layer services:

The PortRange of this inbound rule is taken from the list of API Mediation Layer components in the zowe.yaml file. The PortRange
should cover the following components:

Component Port

Gateway default port 7554

Discovery default port 7553

Caching Service 7555

API Catalog default port 7552

Metrics Service default port 7551

Follow this step:

Replace ApimlKeyring with the keyring configured for your installation. Follow the SAF keyring instructions in the article Zowe

Certificates overview to configure keyrings for your Zowe instance.

Note the setting HandshakeRole . This setting applies to core services which authenticate through certificates with each other. This

setting allows the API Gateway to receive and accept X.509 client certificates from API Clients.

https://docs.zowe.org/stable/getting-started/zowe-certificates-overview#saf-keyring

Outbound rules

For z/OSMF

NOTE

Jobname is defined explicitly for the API Gateway and is formed with the zowe.job.prefix setting from zowe.yaml plus AG as
the Gateway identifier.

For communication between API Gateway and other core services

For communication between API Gateway and southbound services

IMPORTANT

The outbound connection from the Gateway Service to the Discovery Service must be configured without a
CertificateLabel . Ensure that the certificate label is not included to avoid sending the certificate in case routing would be

possible to the Discovery Service. Note that this route is disabled by default.

Outbound connections from the Gateway to southbound services (onboarded services) must not send the server certificate
if the service accepts x.509 Client Certificate authentication. If the server certificate is sent, it is the server user who would be
authenticated.

Ciphers

NOTE

This list of ciphers is provided as an example only. Actual ciphers should be customized according to your specific configuration.

The list of supported ciphers should be constructed according to the TLS supported versions. Ensure that the cipher list has matches
with non-AT-TLS-aware clients.

Using AT-TLS for API ML in High Availability

AT-TLS settings for a Zowe API Mediation Layer installation configured in High Availability mode do not differ extensively. Changes
need to be made to the previously described rules to allow for cross-lpar communication:

Ensure that the RemoteAddr setting in the rules accounts for the following connections:

Discovery Service to Discovery Service. This is the replica request.

Gateway Service to southbound services running in another LPAR.

Southbound services to Discovery Service. This applies during onboarding.

Multi-tenancy deployment

For specific scenario when Central API ML is running on z/OS with AT-TLS enabled, it is important to override protocol for external
URL. This information is used by the Central API ML to call domain API ML and it needs to reflect outbound AT-TLS rule. In this case,
update your domain API ML configuration as follows:

AT-TLS Troubleshooting

This section describes some common issues when using AT-TLS with API ML and how to resolve these issues.

The message This combination of port requires SSL is thrown

Make sure the URL starts with https:// . This message indicates that AT-TLS rules are in place and it is trying to connect on port 80 to

the API Gateway, however the latter is still only listening on the secure port 443.

Solution:
Review settings in the API Gateway. Ensure that the changes described in AT-TLS configuration for Zowe are applied.

AT-TLS rules are not applied

If the application is responding in http, the application may not be properly configured to support http-only calls. AT-TLS is not
correctly configured.

Solution:
Ensure the rules are active and that the filters on port range and job names are properly set.

Non matching ciphers

An error can occur if the list of ciphers does not match between the ones configured in the AT-TLS rules and the ones used by non AT-
TLS-aware clients.

Solution:
Review the supported TLS versions and ciphers used in both the client and the server.

Version: v2.17.x LTS

Zowe CLI
The resources here provide information about various Zowe CLI topics, such as learning basic skills, installation, developing, and
troubleshooting.

TIP

To identify the resources most relevant for you, use the following definitions of Zowe CLI skill levels.

Beginner: You're starting out and want to learn the fundamentals.

Intermediate: You have some experience but want to learn more in-depth skills.

Advanced: You have lots of experience and are looking to learn about specialized topics.

Fundamentals
Zowe skill level: Beginner

Zowe CLI overview

New to Zowe CLI? This overview topic introduces what is Zowe CLI.

Architecture

Review the Zowe architecture to understand how Zowe CLI works in the Zowe framework.

Zowe CLI FAQs

If you have a question, it's a good idea to try the FAQ, which answers the most commonly asked questions about Zowe CLI.

Quick start
Zowe skill level: Beginner

Zowe CLI quick start

Get started with Zowe CLI quickly and easily.

Blog: Getting Started with Zowe CLI

This blog enables you to get started with Zowe CLI quickly.

Installing
Zowe skill level: Beginner

System requirements

https://docs.zowe.org/stable/getting-started/overview#zowe-cli
https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://docs.zowe.org/stable/getting-started/zowe_faq#zowe-cli-faq
https://docs.zowe.org/stable/getting-started/cli-getting-started
https://medium.com/zowe/getting-started-with-zowe-cli-7a29420c6be7
https://docs.zowe.org/stable/user-guide/systemrequirements-cli

Review this topic to ensure that your system meets the requirements for installing Zowe CLI.

Installing Zowe CLI

Follow the steps to install a new release of Zowe CLI.

Configuring and updating
Zowe skill level: Intermediate

Configuring Zowe CLI environment variables

Explains how to configure Zowe CLI environment variables, such as changing log levels, setting the home directory location, and
daemon mode.

Updating Zowe CLI

Learn how to update Zowe CLI to a more recent version using different methods.

Using Zowe CLI and plug-ins
Zowe skill level: Intermediate

Using Zowe CLI

Learn about how to use Zowe CLI, including connecting to the mainframe, managing profiles, integrating with API Mediation
Layer, and more.

Zowe CLI extensions and plug-ins

This information guides you to explore the extensions and plug-ins available to Zowe CLI and install plug-ins to extend the
capabilities of Zowe CLI. Plug-ins add functionality to the product in the form of new command groups, actions, objects, and
options.

Docs: Zowe CLI command reference guide

View detailed documentation on commands, actions, and options in Zowe CLI. The reference document is based on the @zowe-

v2-lts version of the CLI.

The content also contains the web help for all Zowe ecosystem-conformant plug-ins that contributed to this website.

You can read an interactive online version, download a PDF document, or download a ZIP file containing the HTML for the online
version:

Browse online

Download CLI reference in PDF format

Download CLI reference in ZIP format

Best practices

https://docs.zowe.org/stable/user-guide/cli-installcli
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-updatingcli
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/zowe_web_help.zip

Are you looking for recommendations and tips on how to best use Zowe CLI to meet your needs? These resources provide best
practices recommendations.

Blog: Zowe CLI Tips & Tricks

Zowe CLI and TSO commands

This blog shows how to configure and use the TSO command feature of Zowe.

Developing a Zowe CLI plug-in
Zowe skill level: Advanced

Zowe CLI extenders can build plug-ins that provide new commands.

Developing for the CLI

Learn about developing for Zowe CLI.

Zowe CLI core repository

If you want to start working with the code immediately, check out this code repository.

Tutorials

Follow these tutorials to get started working with a sample plug-in.

Contributing to Zowe CLI
Zowe skill level: Advanced

Contributing guidelines

This document is a summary of conventions and best practices for development within Zowe CLI or development of Zowe CLI
plug-ins. The guidelines contain critical information about working with the code, running, writing, and maintaining automated
tests, developing consistent syntax in your plug-in, and ensuring that your plug-in integrates with Zowe CLI properly.

Conformance Program

This topic introduces the Zowe Conformance Program. Conformance provides Independent Software Vendors (ISVs), System
Integrators (SIs), and end users greater confidence that their software will behave as expected. As vendors, you are invited to
submit conformance testing results for review and approval by the Open Mainframe Project. If your company provides software
based on Zowe CLI, you are encouraged to get certified today.

Blog: Zowe Conformance Program Explained

This blog describes the Conformance Program in more details.

Troubleshooting and support

https://medium.com/modern-mainframe/zowe-cli-tips-tricks-79607b8dbd4e
https://medium.com/zowe/zowe-ci-and-tso-commands-14e5445fca1e
https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin
https://github.com/zowe/zowe-cli
https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#tutorials
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md
https://docs.zowe.org/stable/extend/zowe-conformance-program
https://medium.com/zowe/zowe-conformance-program-7f1574ade8ea

Troubleshooting Zowe CLI

Learn about the tools and techniques that are available to help you troubleshoot and resolve problems. You can also find a list of
common issues about Zowe CLI.

Submit an issue

If you have an issue that is specific to Zowe CLI, you can submit an issue against the zowe-cli repository on GitHub.

Community resources

Slack channel

Join the #zowe-cli Slack channel to ask questions about Zowe CLI, propose new ideas, and interact with the Zowe community.

Zowe CLI squad meetings

Join Zowe CLI squad meetings to get involved.

Zowe CLI Blogs on Medium

Read a series of blogs about Zowe CLI on Medium to explore use cases, best practices, and more.

Community Forums

Look for discussion on Zowe topics on the Open Mainframe Project Community Forums.

https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli
https://github.com/zowe/zowe-cli/issues/new
https://openmainframeproject.slack.com/
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://medium.com/zowe/search?q=Zowe%20CLI
https://community.openmainframeproject.org/c/zowe

Version: v2.17.x LTS

Zowe CLI System requirements
Before installing Zowe CLI, ensure that your environment meets the prerequisites that are described here.

Client-side requirements
Zowe CLI is supported on Windows, Linux, and Mac operating systems. Meet the following requirements before you install the CLI:

Node.js

The JavaScript runtime environment Node.js must be installed to run JavaScript applications (such as Zowe CLI) outside of a web
browser.

To install Node.js:

1. Go to Node.js LTS to select and install a runtime version with active support.

For a list of supported LTS versions, see Nodejs Releases.

2. Restart the command prompt after installing Node.js, if required.

3. Verify that Node.js is installed:

Node.js is installed on your PC when a message returns with the correct Node.js version.

If you issue the node --version command and get an error message, confirm that your PATH environment variable includes the path

to the Node.js installation location.

IMPORTANT

If you are installing Zowe CLI with Node.js 16 on a Windows operating system, see Installing Zowe CLI with Node.js 16 on
Windows.

npm

Node Package Manager (npm) is included with most Node.js installations and is used to install and manage Node.js packages on your
personal computer.

Your installed version of npm must be compatible with your version of Node.js.

To determine the installed version of npm:

1. Issue the following command in the command prompt:

A message returns with the installed version of npm.

2. Verify that your installed version of npm is compatible with your version of Node.js by referring to the Node.js release matrix.

https://nodejs.org/en/
https://nodejs.org/en/about/previous-releases
https://docs.zowe.org/stable/user-guide/cli-install-cli-nodejs-windows
https://nodejs.org/en/about/previous-releases#looking-for-latest-release-of-a-version-branch

If your npm version is not compatible, install a new version of Node.js.

IMPORTANT

If you are running npm version 8.11.0 or 8.12.0 and you are installing Zowe CLI on a computer that cannot access the Internet or
has restricted Internet access, your Zowe CLI installation appears to complete successfully.

However, when you issue Zowe commands that access the Secure Credential Store, the commands return error messages. To
circumvent this problem, install npm 8.12.1 or later on your computer. If you cannot upgrade to 8.12.1 or later, see Zowe
Commands Fail with Secure Credential Errors.

Secure Credential Store

On Linux systems, you must install the packages gnome-keyring and libsecret (or libsecret-1-0 on Debian and Ubuntu).

For information about how to configure Secure Credential Store on headless Linux and z/Linux, see Configure Secure Credential Store
on headless Linux operating systems.

Plug-in client requirements

If you plan to install plug-ins, review the Software requirements for CLI plug-ins.

IMPORTANT

Ensure that you meet the client-side requirements for the IBM Db2 plug-in before it is installed.

Host-side requirements

IBM z/OSMF

IBM z/OSMF must be configured and running.

You do not need to install the full Zowe solution to install and use Zowe CLI. Minimally, an instance of IBM z/OSMF must be running
on the mainframe before you can issue Zowe CLI commands successfully. z/OSMF enables the core capabilities, such as retrieving data
sets, executing TSO commands, submitting jobs, and more. If Zowe API Mediation Layer (API ML) is configured and running, Zowe CLI
users can choose to connect to API ML rather than to every separate service.

Plug-in services

Services for plug-ins must be configured and running.

Plug-ins communicate with various mainframe services. The services must be configured and running on the mainframe before issuing
plug-in commands. For example, the CICS plug-in requires an instance of IBM CICS Transaction Server on the mainframe with the CICS
Management Client Interface (CMCI) API running.

Zowe CLI on z/OS is not supported

https://docs.zowe.org/stable/troubleshoot/cli/known-cli#zowe-commands-fail-with-secure-credential-errors
https://docs.zowe.org/stable/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

Zowe CLI can be installed on an IBM z/OS environment and run under Unix System Services (USS). However, the IBM Db2 plug-in
cannot run on z/OS due to native code requirements. As such, Zowe CLI is not supported on z/OS and is currently experimental.

Free disk space

Zowe CLI requires approximately 100 MB of free disk space. The actual quantity of free disk space consumed might vary depending
on your operating system, the plug-ins that you install, and the user profiles that are saved to disk.

Version: v2.17.x LTS

Zowe CLI Installation checklist
The following checklists summarize the required steps for a base installation (first-time installation) in the order you should perform
them.

The checklist includes a brief description of the steps, with links to the comprehensive information required for the installation. The
checklist also identifies the roles that are typically required to complete the step, which enables the pre-installation planning team
(systems administrator, DevOps architect, application developer, and so on) to focus on the tasks for which they are responsible.

Use the Status column to track your progress.

For a printable version of this checklist, click here.

Addressing the prerequisites

To plan your Zowe CLI installation, review the following checklist.

Step Description Role
Time

Estimate
Status

Review the Zowe CLI
information roadmap

Learn about various Zowe CLI topics
Systems administrator, application
developer, systems programmer,
DevOps architect

.25 hrs

Review the release
notes

Read about new features and
enhancements included with this
release of Zowe CLI

Systems administrator, DevOps
architect

.25 hours

Address the
requirements

Install the client-side and host-side
software, and ensure that there is
sufficient free disk space

Systems administrator
See Note-
1

(Optional) Install API
Mediation Layer

Install the Zowe Runtime, which
includes API Mediation Layer

Systems administrator 8 hrs

Install z/OSMF Follow the steps to install z/OSMF Systems administrator
See Note-
2

Determine the profile
types that you want to
use

Learn about configuration and how to
use team profiles

Systems administrator, DevOps
architect

.25 hrs

Note-1: Allow .25 hours to install the client-side software. The amount of time to install the host-side software depends upon your
site's implementation. For example, do you require z/OSMF, REST APIs, or both, to support the Mediation Layer? See the information

https://docs.zowe.org/stable/Zowe_CLI_Installation_Checklist.xlsx
https://docs.zowe.org/stable/user-guide/user-roadmap-zowe-cli
https://docs.zowe.org/stable/whats-new/release-notes/release-notes-overview
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/install-zos
https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-setting-up-zosmf-first-time
https://docs.zowe.org/stable/user-guide/user-guide/cli-using-using-team-profiles

for the specific server-side software that you require to determine how much time to allow for complete server-side installation and
configuration.

Note-2: Allow 15 to 25 hours to install and configure z/OSMF. The length of time varies depending on the External Security Manager
(ESM) that you are running in your site.

You are now ready to install Zowe CLI!

Installing Zowe CLI
To install Zowe CLI, review the following checklist.

Step Description Role
Time

Estimate
Status

Install Zowe CLI Install Zowe CLI from an online registry or a local package
Systems
administrator

.5 hrs

Install Zowe CLI
(quick start)

Use the Quick Start method if you possess prerequisite
knowledge of command line tools and writing scripts, and you
want to get started with Zowe CLI quickly and easily.

Systems
administrator

.25 hrs

(Optional) Install
Zowe CLI plug-ins

Install Zowe CLI plug-ins from an online registry or a local
package.

Systems
administrator

.25 hrs

You are now ready to configure Zowe CLI!

Configuring Zowe CLI
To configure Zowe CLI, review the following checklist.

Step Description Role
Time

Estimate
Status

Configure
environment
variables

Learn how to store configuration options
that are common to your environment.

Systems administrator, DevOps
architect, application developer

.25 hrs

Configure Zowe
profiles

Learn how to configure Zowe team
profiles and user profiles.

Systems administrator, DevOps
architect, application developer

.25 hrs

Configure daemon
mode

Learn how to configure Zowe CLI to run as
persistent background process (daemon).

Systems administrator, DevOps
architect, application developer

.25 hrs

https://docs.zowe.org/stable/user-guide/cli-installcli
https://docs.zowe.org/stable/getting-started/cli-getting-started
https://docs.zowe.org/stable/user-guide/cli-installplugins
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-using-initializing-team-configuration
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode

Version: v2.17.x LTS

Installing Zowe CLI
Install Zowe™ CLI on your computer.

If your role is that of a systems administrator or you are familiar with command-line tools and want to get started using Zowe CLI
quickly, see Zowe CLI quick start. You can learn about new CLI features in the Release notes.

After you install Zowe CLI and Zowe CLI plug-ins using your preferred installation method, see Using CLI to learn about how to
connect Zowe CLI to the mainframe, create Zowe CLI profiles and team profiles, integrate Zowe CLI with API ML, enable daemon
mode, and much, much more!

Installation guidelines

To install CLI on Windows, Mac, and Linux operating systems, follow the steps in Install Zowe CLI from npm or Install Zowe CLI from
a local package.

However, to install Zowe CLI on z/Linux, z/OS UNIX System Services (USS), or on an operating system where the Secure Credential
Store is not required or cannot be installed, use the following installation guidelines:

To install Zowe CLI on a z/Linux operating system and you require the Secure Credential Store:
i. Follow the steps in Configure Secure Credential Store on headless Linux operating systems.

ii. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.

To install Zowe CLI on a z/Linux operating system and you do not require the Secure Credential Store:
i. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.

ii. Follow the steps in Configure Zowe CLI on operating systems where the Secure Credential Store is not available.

To install Zowe CLI on a USS system or on an operating system where you cannot install the Secure Credential Store:
i. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.

ii. Follow the steps in Configure Zowe CLI on operating systems where the Secure Credential Store is not available.

Installation notes

As you are installing Zowe CLI, you might encounter error messages that relate to cpu-features and ssh . You can safely ignore

error messages of this type; the installation completes successfully. This behavior can occur when you install CLI from npm and
from a local package.

Prerequisites
Meet the software requirements for Zowe CLI.

Meet the software requirements for each plug-in.

Prerequisite notes

If you are installing Zowe CLI on a computer that is running Node.js 16 on a Windows operating system, see Installing Zowe CLI
with Node.js 16 on Windows.

https://docs.zowe.org/stable/getting-started/cli-getting-started
https://docs.zowe.org/stable/whats-new/release-notes/release-notes-overview
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/stable/user-guide/cli-configure-cli-on-os-where-scs-unavailable
https://docs.zowe.org/stable/user-guide/cli-configure-cli-on-os-where-scs-unavailable
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-install-cli-nodejs-windows

If you are running NPM version 7 (npm@7) or NPM version 8 (npm@8) on a Windows operating system, ensure that your computer

is connected to the Internet.

Issue the following command before you install Zowe CLI:

Linux users might need to prepend sudo to npm commands. For more information, see Troubleshooting Zowe CLI.

Install Zowe CLI from npm
Use the following procedure to install Zowe CLI from an npm registry:

1. To install or update the core CLI, open a command-line window:

Zowe CLI is installed.

2. (Optional) Address the Software requirements for CLI plug-ins. You can install most plug-ins without meeting the requirements.
However, the plug-ins will not function until you configure the back-end APIs. The IBM Db2 plug-in requires additional
configuration to install.

3. (Optional) To install all available plug-ins to Zowe CLI, issue the following command:

Zowe CLI is installed on your computer. Issue the zowe --help command to view a list of available commands. For information about

how to connect the CLI to the mainframe, create profiles, integrate with API ML, and more, see Using Zowe CLI.

Install Zowe CLI from a local package
Use the following procedure to install Zowe CLI from a local package:

1. Meet the prerequisites for installing Zowe CLI.

2. Navigate to Download Zowe and click the Zowe <X.Y.Z> CLI Core button.

3. Read the End User License Agreement for Zowe and click I agree to download the core package.

zowe-cli-package-<X.Y.Z>.zip is downloaded to your computer.

4. (Optional) Meet the prerequisites for installing Zowe CLI plug-ins.

5. (Optional) Navigate to Download Zowe and click the Zowe <X.Y.Z> CLI Plugins button to download the plug-ins.

6. (Optional) Read the End User License Agreement for Zowe plug-ins and click I agree to download the plugins package.

zowe-cli-plugins-next-<X.Y.Z>.zip is downloaded to your computer.

7. Unzip the contents of zowe-cli-package-<X.Y.Z>.zip (and optionally zowe-cli-plugins-<X.Y.Z>.zip) to a working

directory.

8. To install Zowe CLI Core, open a command-line window and issue the following commands to the working directory that you
used in Step 7:

https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://www.zowe.org/download.html
https://www.zowe.org/download.html

NOTE

If an EACCESS error displays, see Resolving EACCESS permissions errors when installing packages globally in the npm
documentation.

9. (Optional) To install Zowe CLI plug-ins, issue the following command to the working directory that you used in Step 7:

Zowe CLI and the optional plug-ins are installed on your computer. Issue the zowe --help command to view a list of available

commands. For information about how to connect the CLI to the mainframe, create profiles and team profiles, integrate with API ML,
enable daemon mode, and more, see Using CLI.

https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally
https://docs.zowe.org/stable/user-guide/cli-using-usingcli

Version: v2.17.x LTS

Configuring Secure Credential Store on headless Linux
operating systems
Perform the following configurations on headless and z/Linux operating systems.

NOTE

For CI/CD pipelines, we recommend using the credential management provided by the CI/CD tool (for example, Jenkins
credentials or GitHub secrets) to store credentials and load them into environment variables in the pipeline. See Using
environment variables for more information.

Headless Linux requirements
Ensure that you installed the Secure Credential Store requirements that are described in System Requirements.

Unlock the Gnome keyring to allow you to load and store credentials on headless Linux operating systems. You can unlock the
keyring manually or automatically.

NOTE

On z/Linux operating systems, complete the steps in Configuring z/Linux before you continue.

Unlocking the keyring manually

Issue the following commands to unlock the keyring manually. You must unlock the keyring in each user session.

NOTE

The gnome-keyring-daemon -r --unlock --components=secrets prompts you to specify a password. Press Ctrl+D twice
after you specify the password.

Unlocking the keyring automatically

When you are using SSH or TTY to log in to Linux, you can configure the Gnome keyring to unlock automatically when you log in.

NOTE

The following steps were tested on CentOS, SUSE, and Ubuntu operating systems. The steps do not work on WSL (Windows
Subsystem for Linux) because it bypasses TTY login. Results may vary on other Linux distributions.

Follow these steps:

1. Install the PAM module for Gnome keyring. The package name depends on your distribution:

gnome-keyring-pam : CentOS, Fedora, SUSE

https://docs.zowe.org/stable/user-guide/cli-using-using-environment-variables#store-credentials-securely-in-cicd-pipelines
https://docs.zowe.org/stable/user-guide/systemrequirements-cli

libpam-gnome-keyring : Debian, Ubuntu

2. Apply the following edits to the files /etc/pam.d/login (for TTY login), and /etc/pam.d/sshd if it exists (for SSH login).

Add the following statement to the end of the auth section:

Add the following statement to end of the session section:

3. Add the following commands to ~/.bashrc . The first command will launch DBus, which the Gnome keyring requires. The second

command starts the keyring daemon so that it is ready to be used by Zowe CLI commands.

4. Restart your computer.

Issue a Zowe CLI command that uses secure credentials to test that automatic unlock of the keyring works.

Configuring z/Linux

The Secure Credential Store (SCS) does not contain the native, pre-built binaries that are required to access the credential vault on
z/Linux operating systems.

Because the credential manager is now a built-in function of Zowe CLI, developers must build the credential mananger binaries on
z/Linux systems during the Zowe CLI installation process.

The following steps describe how to install and build the credential store binaries on z/Linux (Red Hat Enterprise Linux (RHEL) and
Ubuntu) systems.

1. Install the following Linux packages on the z/Linux system:

make

gcc-c++ (sometimes available as g++)

gnome-keyring

libsecret (sometimes available as libsecret-1-0)

libsecret-devel (sometimes available as libsecret-1-dev)

Python 3.6 or later

NOTE

If you are installing the Linux packages on a z/Linux system, the system where you are configuring SCS might require
Internet access. When a site hosts its own package repositories, the repositories might not contain all of the packages that
are required to configure the SCS. In this scenario, the z/Linux system requires Internet access to install the required
packages.

2. If you are configuring SCS on a Ubuntu z/Linux operating system, no further action is required. You can now install Zowe CLI. For
all other platforms (RHEL), continue to the next step.

3. Enable the rhel-#-for-system-z-optional-rpms repository to download libsecret-devel.

Replace # with the major version of RHEL that is running on the z/Linux system.

If your license entitles you to this repository, issue the following command to enable it:

4. If you are configuring SCS to run on RHEL V8.x or later, no further action is required. You can now install Zowe CLI. For RHEL V7.x,
continue to the next step.

5. Install the Red Hat Developer Toolset to ensure that you are running a version of the gcc-c++ compiler that can build the SCS
native binaries.

Issue the following commands to enable the repositories that are required to install the toolset:

6. Install the toolset:

7. After you install the toolset on RHEL V7.x, you can install Zowe CLI.

Important: The SCS is installed every time that you install or update Zowe CLI. On RHEL V7.x, ensure that the Red Hat Developer
Toolset is enabled every time you install or update Zowe CLI. When you do not enable the toolset, secure credential management
is not available on the system. To ensure that the toolset is enabled when you install Zowe CLI, issue the following commands
instead of the standard NPM install commands. For example:

When you run these commands, Zowe CLI is installed globally and the system will use the latest version of the C++ compiler to
build the native components. Refer back to the instructions to set up the Secure Credential Storage component of the Zowe CLI.

Version: v2.17.x LTS

Configure Zowe CLI on operating systems where the
Secure Credential Store is not available
By default, Zowe CLI attempts to store sensitive information and credentials in the operating system’s credential manager. When the
information cannot be stored securely, Zowe CLI displays an error when you attempt to create V1 style profiles or a V2 configuration.
The actions that are required to disable secure credential management differ depending on the type of configuration being used.

V1 profiles
Existing V1 profiles will continue to function properly. However, it will not be possible to create new profiles without disabling secure
credential management. To disable secure credential management for V1 profiles:

1. Navigate to the .zowe/settings directory.

2. Modify the imperative.json file by replacing the Credential Manager override value to the following:

3. Save the changes.

Team configuration
Team configuration is stored in zowe.config.json .

Team configuration can be created without access to the Secure Credential Store. However, team configuration does not store
sensitive user information on the system. Subsequent commands prompt for the user’s sensitive information when it not provided on
the command line, and will attempt to save it with the new Auto Store functionality. Users may experience errors when Auto Store
cannot save sensitive information securely. To mitigate this error, disable the Auto Store functionality by changing the value of the
autoStore property from true to false in the zowe.config.json or zowe.config.user.json file.

Example:

Version: v2.17.x LTS

Installing Zowe CLI with Node.js 16 on Windows
There are several preferred installation workarounds when you encounter the following scenarios:

Using Node.js version 16 with npm version 8 on Windows, want to install from the TGZ, and have restricted Internet access

Unable to install Zowe CLI while offline using the TGZ bundle

The workaround installation options are, in order of preference:

Configure NPM proxy to access the public NPM registry (npmjs.org) so that the install from TGZ can succeed. To configure an
NPM proxy:

If your proxy is HTTP: npm config set proxy <proxyUrl>

If your proxy is HTTPS: npm config set https-proxy <proxyUrl>

Install CLI from an online registry instead of TGZ. This may also require configuring an NPM proxy. See Installing Zowe CLI from
an online registry.

Downgrade NPM to version 6. To downgrade from a newer version of NPM, issue the command: npm install -g npm@6.x

Additional Considerations
There are issues with Node 16 and bundled optional dependencies in offline node installs. Because of the issues, the optional cpu-
features package was removed from the offline .tgz file that is available from zowe.org and Broadcom. The installation process

attempts to reach a configured registry and to use any NPM proxy configured on the system. If the attempt fails, the installation
process completes normally.

cpu-features changes the SSH cipher order that is used on the zowe uss issue ssh commands, favoring chacha20-poly1305

cipher in cases where CPUs do not have built in AES instructions. This should not affect performance.

https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-from-an-online-registry

Version: v2.17.x LTS

Install CLI from Online Registry Via Proxy
​This topic describes how to install Zowe CLI using the NPM install command when you are working behind a proxy server. Use this
installation method when your site blocks access to public npm.

You can install Zowe CLI from an online registry via proxy on Windows, macOS, or Linux operating systems:

This method requires access to an internal server that will allow you to connect to the appropriate registries. For other installation
methods, see Installing CLI.

Your default registry must be public npm (or a mirror of public npm).

If you previously installed the CLI and want to update to a current version, see Updating Zowe CLI​

Follow these steps:

1. Identify the proxy server, including the IP address or hostname and the port number.​

If your proxy server does not require login credentials, issue the following commands to add the proxy URL to the NPM
config file:

[proxy_name]: The IP or hostname

[port_number]: The port number of the proxy server.

If your proxy server requires login credentials, issue the following commands to add the proxy URL, with login credentials, to
the NPM config file:

[username] and [password]: The required login credentials

[proxy_name]: The IP or hostname

[port_number]: The port number of the proxy server

2. Ensure that you meet the System requirements for CLI.

3. To install Zowe CLI, issue the following command. On Linux, you might need to prepend sudo to your npm commands:

4. (Optional) To install open-source Zowe plug-ins:

a. Ensure that your system meets the Software requirements for Zowe CLI plug-ins.

b. Issue the following command to install all of the plug-ins:

Zowe CLI is installed.

5. (Optional) Verify that a Zowe plug-in is operating correctly.

[my-plugin]: The syntax for the plug-in. For example, @zowe/cics@zowe-v2-lts .​

6. (Optional) Test the connection to z/OSMF. See Testing connections to z/OSMF

7. (Optional) Access the Zowe CLI Help (zowe --help) or the Zowe CLI Web Help for a complete reference of Zowe CLI.​After you

install Zowe CLI, you can connect to the mainframe directly issuing a command, by creating user profiles and making use of them

https://docs.zowe.org/stable/user-guide/cli-updatingcli
https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/user-guide/cli-using-test-zosmf-connection

on commands, or by using environment variables. For more information, see Displaying help.

https://docs.zowe.org/stable/user-guide/cli-using-displaying-help

Version: v2.17.x LTS

Updating Zowe CLI
Zowe™ CLI is updated continuously. You can update Zowe CLI to a more recent version using online registry method or the local
package method.

You must update Zowe CLI using the method that you used to install Zowe CLI.

Updating to the Zowe CLI V2 Long-term Support (v2-lts) version
If you are running Zowe CLI version v1.8.x to v1.27.x, you can update to @zowe-v2-lts (LTS version) to leverage the latest Zowe CLI

and plug-ins functionality.

1. Update Zowe CLI. Open a command line window and issue the following command:

2. Update Zowe plug-ins. Issue the following command to install all Zowe plug-ins:

Note: To install a subset of the plug-ins, remove the syntax for the plug-ins that you do not want to update. For example:

3. (Optional) Migrate your Zowe CLI profiles from your current installation to your V2 installation. Issue the following command:

Although you can run Zowe CLI V2 successfully using CLI V1 profiles, we strongly recommend using CLI V2 profiles.

Note: Profile data is backed up in case you want to revert the profiles to your previous Zowe CLI installation.

4. (Optional) If you no longer require the profiles for your previous Zowe CLI installation, you can delete them. Issue the following
command:

Important: We do not recommend deleting the profiles from your previous Zowe CLI installation until you have tested your V2
installation and are satisfied with its performance.

You updated to the Zowe CLI V2-LTS version!

Ensure that you review the Release Notes, which describes Notable Changes in this version. We recommend issuing familiar
commands and running scripts to ensure that your profiles/scripts are compatible. You might need to take corrective action to address
the breaking changes.

Identify the currently installed version of Zowe CLI
Issue the following command (case-sensitive):

Identify the currently installed versions of Zowe CLI plug-ins

Issue the following command:

Update Zowe CLI from the online registry

https://docs.zowe.org/stable/whats-new/release-notes/v2_0_0

You can update Zowe CLI to the latest version from the online registry on Windows, Mac, and Linux computers.

Note: The following steps assume that you previously installed the CLI as described in Installing Zowe CLI from an online registry.

1. Update Zowe CLI. Open a command line window and issue the following command:

2. Update Zowe plug-ins. Issue the following command to install all Zowe plug-ins:

Note: To install a subset of the plug-ins, remove the syntax for the plug-ins that you do not want to update. For example:

3. Recreate any user profiles that you created before you updated to the latest version of Zowe CLI.

Update or revert Zowe CLI to a specific version
Optionally, you can update Zowe CLI (or revert) to a known version. The following example illustrates the syntax to update Zowe CLI
to version 7.0.0:

Update Zowe CLI from a local package

To update Zowe CLI from an offline (.tgz), local package, uninstall your current package then reinstall from a new package using the

Install from a Local package instructions. For more information, see Uninstalling Zowe CLI and Installing Zowe CLI from a local
package.

Important! Recreate any user profiles that you created before the update.

https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-uninstall
https://docs.zowe.org/stable/user-guide/cli-installcli#installing-zowe-cli-from-a-local-package

Version: v2.17.x LTS

Uninstalling Zowe CLI
You can uninstall Zowe™ CLI from the desktop if you no longer need to use it.

Important! The uninstall process does not delete the profiles and credentials that you created when using the product from your
computer. To delete the profiles from your computer, delete them before you uninstall Zowe CLI.

The following steps describe how to list the profiles that you created, delete the profiles, and uninstall Zowe CLI.

1. Open a command-line window.

Note: If you do not want to delete the Zowe CLI profiles from your computer, go to Step 5.

2. List all configuration files that you created. Issue the following command:

Example:

3. Delete all of the configuration files that are listed. Issue the following command:

Tip: For this command, use the results of the zowe config list command.

4. Uninstall Zowe CLI by issuing the following command:

Note: You might receive an ENOENT error when issuing this command if you installed Zowe CLI from a local package (.tgz) and

the package was moved from its original location. In the event that you receive the error, open an issue in the Zowe CLI GitHub
repository.

The uninstall process removes all Zowe CLI installation directories and files from your computer.

5. Delete the ~/.zowe or %homepath%\.zowe directory on your computer. The directory contains the Zowe CLI log files and other
miscellaneous files that were generated when you used the product.

Tip: Deleting the directory does not harm your computer.

Version: v2.17.x LTS

Configuring Zowe CLI environment variables
This section explains how to configure Zowe CLI using environment variables.

By default, Zowe CLI configuration is stored on your computer in the C:\Users\user01\.zowe directory. The directory includes log
files, profile information, and installed CLI plug-ins. When troubleshooting, refer to the logs in the imperative and zowe folders.

NOTE

For information on how to use environment variables to execute commands more efficiently, see Using environment variables.

Setting the CLI home directory
You can set the location on your computer where Zowe CLI creates the .zowe directory, which contains log files, profiles, and plug-ins
for the product:

Environment
variable

Description Values Default

ZOWE_CLI_HOME
Zowe CLI home directory
location

Any valid path on your
computer

Your computer default home
directory

Setting a shared plug-in directory

You can set the location of a shared directory to manage plug-ins for multiple users.

A project administrator can pre-install, and update, a plug-in stored in the shared directory to make the same version of that plug-in
available to all users. This avoids managing separate copies of a plug-in across a development team.

The plug-in directory must be defined before any Zowe CLI plug-ins are installed.

Any plug-in installed before specifying the environment variable cannot be managed with Zowe CLI. To resolve this, re-install the
plug-in after the environment variable is set.

Environment variable Description Values Default

ZOWE_CLI_PLUGINS_DIR
Zowe CLI plug-in directory
location

Any valid path on your
computer

Plug-ins folder inside the Zowe CLI
home

Setting CLI log levels
You can set the log level to adjust the level of detail that is written to log files:

https://docs.zowe.org/stable/user-guide/cli-using-using-environment-variables

Setting the log level to TRACE or ALL might result in sensitive data being logged. For example, command line arguments are logged

when TRACE is set.

Environment variable Description Values Default

ZOWE_APP_LOG_LEVEL Zowe CLI logging level
Log4JS log levels (OFF , TRACE , DEBUG , INFO ,

WARN , ERROR , FATAL)
WARN

ZOWE_IMPERATIVE_LOG_LEVEL
Imperative CLI Framework
logging level

Log4JS log levels (OFF , TRACE , DEBUG , INFO ,

WARN , ERROR , FATAL)
WARN

Setting CLI daemon mode properties
By default, the CLI daemon mode binary creates or reuses a file in the user's home directory each time a Zowe CLI command runs. In
some cases, this behavior might be undesirable. For example, the home directory resides on a network drive and has poor file
performance. To change the location that the daemon uses, set the environment variables that are described in the following table:

Platform
Environment

variable
Description Values Default

All ZOWE_DAEMON_DIR

Lets you override the complete
path to the directory that will hold
daemon files related to this user.
The directory can contain the
following files:

daemon.lock

daemon.sock

daemon_pid.json

Any valid
path on
your
computer

<your_home_dir>/.zowe/daemon

Examples:

Windows:
%HOMEPATH%\.zowe\daemon

Linux: $HOME/.zowe/daemon

Windows
(only)

ZOWE_DAEMON_PIPE

Lets you override the last two
segments of the name of the
communication pipe between the
daemon executable (.exe) and the
daemon.

Any valid
path on
your
computer

`\.\pipe%USERNAME%\ZoweDaemon

Setting other environment variables

Platform
Environment

variable
Description Values Default

All ZOWE_V3_ERR_FORMAT For Zowe V2, reformats the message displayed in REST
request errors so problem details, and service response and

TRUE , FALSE ,

blank

blank

Platform
Environment

variable
Description Values Default

diagnostic information, display in a reader friendly manner.
In Zowe V3, this will be the only error format used and this
environment variable will not be available.

All CI

Set by most Continuous Integration environments
automatically. Set to any value, disables progress bars in
Zowe CLI.

Any
(CI environment
name, typically)

blank

All FORCE_COLOR

For most CLI tools, sets the color depth to be used by the
CLI on the terminal. Set to 0 , disables color and progress
bars in Zowe CLI. Set to any other valid, non-blank value,
enables color and progress bars in Zowe CLI.

See the subsequent Note regarding Zowe CLI daemon
configuration.

0 , 1 , 2 , 3 ,

TRUE , blank
blank

NOTE

When a user does not set FORCE_COLOR and uses the Zowe CLI daemon, the daemon determines if the terminal running the

daemon supports colors and progress bars. If it does, the daemon automatically sets FORCE_COLOR to a supported setting in all
requests sent to the Zowe CLI daemon server component.

Version: v2.17.x LTS

Configuring an environment variables file
If it is not possible to configure your own system environment variables, create a special configuration file to set these variables for
Zowe CLI commands.

Although not common, there are cases where users do not have the ability to configure their own system environment variables. This
can happen when users are working on hosted integrated development environments (IDEs), or in a highly locked down environment.

When working under these kinds of restrictions, you can set environment variables that apply to CLI commands. To do this, create a
.zowe.env.json file storing key-value pairs that specify your configurations.

Note: Use a .zowe.env.json file only when it is not possible to set your own system environment variables. If you are able to

configure environment variables in your system, continue to do so.

How .zowe.env.json works

When a Zowe command is issued, the command initializes the Imperative CLI Framework so that it loads all the utilities that allow the
command to function. Imperative reads the .zowe.env.json configuration file and sets the environment variables before any loggers

or Zowe CLI finish their own initialization.

The .zowe.env.json environment variables are set for only the duration of a Zowe CLI command.

If an existing environment variable is set in your system and the variable is also in .zowe.env.json , the values in .zowe.env.json

overwrite it.

.zowe.env.json can be used to set any environment variable. This allows setting environment variables to change the default

behavior of Node.JS, in addition to all of the Zowe environment variables.

Creating the configuration file
Create a dedicated JSON file to store settings for environment variables.

Follow these steps:

1. In your Files Explorer, go to the home directory (%HOMEPATH% for Windows, $HOME for Linux and Mac) or the path set in the
ZOWE_CLI_HOME environment variable.

2. Create a JSON file titled .zowe.env.json .

3. Use an IDE to open .zowe.env.json and enter environment variables, as in the following example:

NOTE: If you have the ZOWE_CLI_HOME environment variable set in your system, do not include it in the .zowe.env.json file.

Otherwise, unexpected behavior can occur.

Using daemon mode

Daemon mode is a long-running background process that significantly improves Zowe CLI performance.

When changes are made to your work environment, daemon mode does not capture the changes. Restarting daemon mode lets the
daemon capture any updates since its last start up.

This means that if the Zowe CLI daemon is in use, the daemon must be restarted when the .zowe.env.json file is created or updated.

Issue the following command to stop the currently running daemon and start a new daemon:

See Restart daemon mode for more information.

https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode/#restart-daemon-mode

Version: v2.17.x LTS

Zowe Explorer
The resources here provide information about various Zowe Explorer subject areas, such as learning basic skills, installation,
developing, and troubleshooting.

TIP

To identify the resources most relevant for you, use the following definitions of Zowe Explorer skill levels.

Beginner: You're starting out and want to learn the fundamentals.

Intermediate: You have some experience but want to learn more in-depth skills.

Advanced: You have lots of experience and are looking to learn about specialized topics.

Fundamentals
Zowe skill level: Beginner

Zowe Explorer overview

New to Zowe Explorer? This overview topic introduces the key features, main components, and benefits of Zowe Explorer.

Zowe Explorer FAQs

If you have a question, review the FAQ, which answers the most commonly asked questions about Zowe Explorer.

Blog: Visual Studio Code for Mainframe Via the Zowe Explorer Extension

This Medium article outlines the basics of Zowe Explorer, including Getting Started videos.

Installing and configuring
Zowe skill level: Beginner

Installing Zowe Explorer

This page includes the system requirements and steps for installing the Zowe Explorer.

Video: Getting started with Zowe Explorer (Part 1)

Video: Getting started with Zowe Explorer (Part 2)

These videos help you to get started with Zowe Explorer and show the basic data set use cases.

Zowe Explorer Profiles

This page describes how to create and work with Zowe Explorer profiles. Having a profile enables you to use all functions of the
extension, activate the Secure Credential Store plug-in to securely store credentials, and more.

https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/getting-started/zowe_faq#zowe-explorer-faq
https://medium.com/zowe/visual-studio-code-for-mainframe-via-the-zowe-explorer-extension-b679054ffaf7
https://docs.zowe.org/stable/user-guide/ze-install#installing-zowe-explorer
https://youtu.be/G_WCsFZIWt4
https://youtu.be/X4oSHrI4oN4
https://docs.zowe.org/stable/user-guide/ze-profiles

Using Zowe Explorer
Zowe skill level: Intermediate

Using Zowe Explorer

This page includes usage tips and sample use cases for data sets, USS files, JOBs, and TSO commands. Familiarize yourself with
the extension and make the best use of available options and features.

Extending Zowe Explorer
Zowe skill level: Advanced

Extend Zowe Explorer

Learn how to create extensions for Zowe Explorer to introduce new functionalities.

Zowe Explorer CICS Extension

Learn how to install the CICS extension. The extension adds CICS functionality to the Visual Studio Code extension, which lets you
interact with CICS regions and programs.

Zowe Explorer FTP Extension

Learn how to install and use the FTP extension. The extension adds the FTP protocol to the Zowe Explorer VS Code extension,
which lets use z/OS FTP Plug-in for Zowe CLI profiles to connect and interact with z/OS USS.

Zowe Explorer repository

The GitHub repository of contains the source code of Zowe Explorer and other Zowe Explorer-related extensions. Check out the
landing page README in the repository to find out how to contribute to the extension.

Developing for Eclipse Theia

This article contains information on how to develop for Eclipse Theia.

Contributing to Zowe Explorer
Zowe skill level: Advanced

Contributing guidelines

This document is intended to be a living summary of conventions & best practices for development of the Visual Studio Code
Extension for Zowe.

Conformance Program

This topic introduces the Zowe Conformance Program. Conformance provides Independent Software Vendors (ISVs), System
Integrators (SIs), and end users greater confidence that their software will behave as expected. As vendors, you are invited to
submit conformance testing results for review and approval by the Open Mainframe Project. If your company provides software
based on Zowe CLI, you are encouraged to get certified today.

https://docs.zowe.org/stable/user-guide/ze-usage
https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer
https://docs.zowe.org/stable/user-guide/ze-using-zowe-explorer-cics-ext
https://docs.zowe.org/stable/user-guide/ze-ftp
https://github.com/zowe/zowe-explorer-vscode
https://github.com/zowe/zowe-explorer-vscode/wiki/Developing-for-Theia
https://github.com/zowe/zowe-explorer-vscode/blob/master/CONTRIBUTING.md
https://docs.zowe.org/stable/extend/zowe-conformance-program

Blog: Zowe Conformance Program Explained

This Medium article provide more details about the Conformance Program, including useful references.

Troubleshooting and support

Troubleshooting Zowe Explorer

Learn about the tools and techniques that are available to help you troubleshoot and resolve problems. You can also find the list
of Zowe Explorer issues.

Submit an issue

If you have an issue that is specific to Zowe Explorer, you can submit an issue against the vscode-extension-for-zowe
repository.

Community resources
Slack channel

Join the # zowe-explorer Slack channel to ask questions, propose new ideas, and interact with the Zowe community.

Zowe Explorer squad meetings

You can join one of the Zowe Explorer squad meetings to get involved.

Zowe Blogs on Medium

Read a series of blog articles about Zowe on Medium to explore use cases, best practices, and more.

Community Forums

Look for discussion on Zowe topics on the Open Mainframe Project Community Forums.

https://medium.com/zowe/zowe-conformance-program-7f1574ade8ea
https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-ze
https://github.com/zowe/zowe-explorer-vscode/issues
https://openmainframeproject.slack.com/
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://medium.com/zowe
https://community.openmainframeproject.org/c/zowe

Version: v2.17.x LTS

Zowe Explorer System Requirements
Before installing Zowe Explorer, make sure that you meet the following requirements.

Client side requirements

Operating systems

MacOS 10.15 (Catalina), 11 (Big Sur), 12 (Monterey)

Unix-like:
CentOS 8+

RHEL 8+

Ubuntu 20.04+

Windows 10+

Integrated development environments:

VS Code 1.53.2+

Eclipse Che

Red Hat CodeReady Workspaces

Theia 1.18+

Zowe Explorer is compatible with Theia 1.18.0 or higher. However, we recommend using a Theia community release as Zowe
Explorer could experience possible unexpected behaviors with the latest Theia releases.

Server side requirements

IBM z/OSMF is configured and running.
Minimally, an instance of IBM z/OSMF must be running on the mainframe before you can run Zowe Explorer successfully.

z/OSMF enables the core capabilities, such as retrieving data sets, executing TSO commands, submitting jobs, and more.

Applicable plug-in services are configured and running on the mainframe.
Plug-ins communicate with various mainframe services. The services must be configured and running on the mainframe
before issuing plug-in commands.

See Zowe Explorer CICS Extension system requirements.

See Zowe Explorer FTP Extension system requirements.

https://www.centos.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://ubuntu.com/
https://code.visualstudio.com/
https://www.eclipse.org/che/
https://www.redhat.com/en/technologies/jboss-middleware/codeready-workspaces
https://theia-ide.org/
https://theia-ide.org/releases/
https://docs.zowe.org/stable/getting-started/user-guide/ze-using-zowe-explorer-cics-ext#system-requirements
https://docs.zowe.org/stable/getting-started/user-guide/ze-ftp-using-ze-ftp-ext#system-requirements

Version: v2.17.x LTS

Visual Studio Code (VS Code) Extension for Zowe

The Zowe Explorer extension for Visual Studio Code (VS Code) modernizes the way developers and system administrators interact with
z/OS mainframes, and lets you interact with data sets, USS files, and jobs.

Install the extension directly to VSCode to enable the extension within the GUI. Working with data sets and USS files from VSCode can
be more convenient than using 3270 emulators, and complements your Zowe CLI experience. The extension provides the following
benefits:

Enables you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

Enables you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

Provides a more streamlined way to access data sets, USS files, and jobs.

Lets you create, edit, and delete Zowe CLI zosmf compatible profiles.

Note: Zowe Explorer is a subcomponent of Zowe. The extension demonstrates the potential for plug-ins powered by Zowe.

Software Requirements
Ensure that you meet the following prerequisites before you use the extension:

Get access to z/OSMF.

Install Visual Studio Code.

Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs REST interface. For more information,
see z/OS Requirements.

Create a Zowe CLI zosmf profile so that the extension can communicate with the mainframe.

For development, install Node.js v14.0 or later.

Profile notes:

You can use existing Zowe CLI zosmf profiles created with Zowe CLI v.2.0.0 or later.

Zowe CLI zosmf profiles that are created in Zowe Explorer can be interchangeably used in Zowe CLI.

Optionally, you can continue using Zowe CLI V1 profiles with Zowe Explorer. For more information, see Working with Zowe
Explorer profiles.

Installing Zowe Explorer
Use the following steps to install Zowe Explorer:

1. Address the software requirements.

2. Open Visual Studio Code, and navigate to the Extensions tab on the Activity Bar.

codecovcodecov unknownunknown chatchat on Slackon Slack

https://code.visualstudio.com/
https://zowe.org/home/
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements
https://nodejs.org/en/download/
https://docs.zowe.org/stable/user-guide/ze-profiles#working-with-zowe-explorer-profiles

3. Type Zowe Explorer in the Search field.

Zowe Explorer appears in the list of extensions in the Side Bar.

4. Click the green Install button to install the extension.

5. Restart Visual Studio Code.

The extension is now installed and available for use.

Note: For information about how to install the extension from a VSIX file and run system tests on the extension, see the

Developer README.

You can also watch the following videos to learn how to get started with Zowe Explorer, and work with data sets.

https://github.com/zowe/zowe-explorer-vscode#build-locally

Getting Started with Zowe Explorer: Part 1Getting Started with Zowe Explorer: Part 1

Zowe Explorer Video: How to Work with Data Sets Part 2Zowe Explorer Video: How to Work with Data Sets Part 2

Configuring Zowe Explorer

Configure Zowe Explorer in the settings file of the extension.

To access the extension settings, follow these steps:

1. Click the Settings icon at the bottom of the Activity Bar.

2. Select the Settings option.

3. Open the Extension option listed in the Commonly Used menu.

https://www.youtube.com/watch?v=G_WCsFZIWt4
https://www.youtube.com/watch?v=X4oSHrI4oN4

4. Select Zowe Explorer to access its settings.

5. Scroll the list to find the setting that needs modification.

Modifying creation settings for data sets, USS files, and jobs

Follow these steps:

1. In Zowe Explorer settings, scroll to a data set, USS file, or job setting type.

2. Click the setting's corresponding Edit in settings.json link.

This opens the settings.json file in an Editor tab. (The suggestions widget also opens if the functionality is enabled.)

3. Edit the settings in the file as needed.

4. Save the file to keep changes.

Modifying temporary file location settings

Change the default folder location where temporary files are stored with the following steps:

1. Navigate to Zowe Explorer settings.

2. Under the data set, USS, or jobs settings that you want to edit, click the Edit in settings.json link.

3. Modify the following definition in the file:

Replace /path/to/directory with the new folder location.

4. Save the file to keep the change.

Modifying the Secure Credentials Enabled setting

When environment conditions do not support the Zowe CLI built-in Credential Manager, change the Secure Credentials Enabled
setting with the following steps:

1. Navigate to Zowe Explorer settings.

2. Scroll to Security: Secure Credentials Enabled.

3. Deselect the checkbox to disable secure credentials.

When disabled, if the autoStore setting in the zowe.config.json file is set to true, z/OS credentials are stored as text in the file.

If the autoStore setting is set to false, you are prompted for the missing credentials in Visual Studio Code. These are stored and
used for the duration of the session.

Setting confirmation requirements for submitting jobs

Submitting the wrong job can risk potential problems on your server. This can happen when the user enters the wrong job or
inadvertently selects the Submit Jobs option.

To help prevent this, enable the option to require confirmation before submitting a job. Once enabled, a dialog window asking for
user confirmation displays when Submit Jobs is selected.

To configure confirmation settings for submitting a job, follow these steps:

1. On the VS Code menu bar, click File, Preferences, and click Settings to display the Settings editor.

2. Select the User or Workspace tab, depending on the settings you want to update.

3. In the Settings navigation menu, open the Extensions menu and click Zowe Explorer.

4. In the Jobs: Confirm Submission section, open the drop-down menu to select a different confirmation setting.

If enabled, a confirmation dialog displays when a job matching the selected option is submitted.

Relevant Information

In this section you can find useful links and other information relevant to Zowe Explorer that can improve your experience with the
extension.

For information about how to develop for Eclipse Theia, see Theia README.

For information about how to create a VSCode extension for Zowe Explorer, see VSCode extensions for Zowe Explorer.

Visit the #zowe-explorer channel on Slack for questions and general guidance.

https://github.com/zowe/zowe-explorer-vscode/wiki/Developing-for-Theia
https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer
https://openmainframeproject.slack.com/

Version: v2.17.x LTS

Zowe Explorer profiles
After you install Zowe Explorer, you must have a Zowe Explorer profile to use all functions of the extension.

INFO

You can continue using Zowe V1 profiles with Zowe Explorer V2. See Working with Zowe CLI V1 profiles for more information.

Configuring Zowe V2 profiles

Zowe V2 uses team profiles to simplify profile management by letting you edit, store, and share mainframe connection details in one
location, a configuration file.

You can use a text editor or an IDE to populate configuration files with the connection information for your mainframe services. By
default, your global team configuration file is located in the .zowe home folder, whereas the project configuration file is located in the

main directory of your project.

You can create profiles that you use globally, given that the names of the globally-used profiles are different from your other profile
names.

NOTE

When multiple profiles are available in Zowe CLI, project configuration takes precedence over global configuration. To learn
more, see How Zowe CLI uses configurations.

Creating team configuration files

Create a team configuration file:

1. Navigate to the explorer tree.

2. Hover over DATA SETS, USS, or JOBS.

3. Click the + icon.

4. Select Create a New Team Configuration File.

5. If no workspace is open, a global configuration file is created. If a workspace is open, choose either a global configuration file or a
project-level configuration file.

6. Edit the config file to include the host information and save the file.

7. Refresh Zowe Explorer by either clicking the button in the notification message shown after creation, alt + z , or the Zowe

Explorer: Refresh Zowe Explorer command palette option.

https://docs.zowe.org/stable/user-guide/user-guide/cli-using-understand-profiles-configs

Your team configuration file appears either in your .zowe folder if you choose the global configuration file option, or in your

workspace directory if you choose the project-level configuration file option. The notification message that displays in VS Code
after the configuration file creation includes the path of the file created.

Managing profiles

Change profile validations and edit the profiles in your project or global configuration files:

1. Right-click on your profile.

2. Select the Manage Profile option to choose from several authentication and profile management actions for the credentials
detected in your Zowe Explorer session.

Authentication options display according to the detected credentials:

Add Credentials to store a username and password. Credentials are stored securely in the credential vault when the team or
user profile has values in the secure array. Otherwise, the credentials are stored as plain text in the profile.

Update Credentials to update the username and password. Credentials are stored securely in the credential vault when the
team or user profile has values in the secure array. Otherwise, the credentials are stored as plain text in the profile.

Log in to authentication service to obtain a new authentication token when the token in the profile is no longer valid or is
missing

Log out of authentication service to invalidate the token in the profile so a valid token is not stored

Profile management options displays for specific profile actions:

Disable/Enable Profile Validation to disable or enable validation of access to z/OSMF

Edit Profile to update profile information in an Editor tab

Hide Profile to hide the profile name from the tree view

Delete Profile to manually remove the profile information in an Editor tab

3. Refresh the view by clicking the Refresh icon in the DATA SETS, USS, or JOBS tree view.

You successfully edited your configuration file.

Sample profile configuration

View the profile configuration sample. In the sample, the default lpar1.zosmf profile will be loaded upon activation.

You can use the sample to customize your profile configuration file. Ensure that you edit the host and port values before you work

in your environment.

Working with Zowe V1 profiles

INFO

Zowe V1 profiles are defined by having one yaml file for each user profile.

Managing Zowe V1 profiles

You must have a zosmf compatible profile before you can use Zowe Explorer. You can set up a profile to retain your credentials, host,

and port name. In addition, you can create multiple profiles and use them simultaneously.

To create a zosmf compatible profile:

1. Navigate to the explorer tree.

2. Click the + button next to the DATA SETS, USS, or JOBS bar.

NOTE

If you already have a profile, select it from the drop-down menu in the picker field.

3. Select the Create a New Connection to z/OS option.

NOTE

When you create a new profile, username and password fields are optional. However, the system prompts you to specify
your credentials when you use the new profile for the first time.

4. Follow the instructions, and enter all required information to complete the profile creation.

You successfully created a Zowe CLI zosmf profile. Now you can use all the functionalities of the extension.

To edit a profile:

1. Right-click the profile and select Update Profile option.

2. Edit the profile information in the picker field.

To hide a profile from the tree view, right-click the profile and select the Hide Profile option.

To delete a profile from your system, right-click the profile and select the Delete Profile option.

Validating profiles

Zowe Explorer includes the profile validation feature that helps to ensure that z/OSMF is accessible and ready for use. If a profile is
valid, the profile is active and can be used. By default, the feature is automatically enabled. You can disable the feature by right-
clicking on your profile and selecting the Disable Validation for Profile option. Alternatively, you can enable or disable the feature
for all profiles in the VS Code settings.

1. Navigate to the VS Code settings.

2. Open Zowe Explorer Settings.

3. Enable or disable the automatic validation of profiles option.

4. Restart VS Code.

Using base profiles and tokens with existing profiles

As a Zowe user, you can leverage the base profile functionality to access multiple services through Single Sign-on. Base profiles enable
you to authenticate using Zowe API Mediation Layer (API ML). You can use base profiles with more than one service profile. For more
information, see Base Profiles.

Before you log in and connect your service profile, ensure that you have Zowe CLI v6.16 or higher installed.

Accessing services through API ML using SSO

Connect your service profile with a base profile and token:

1. Open Zowe CLI and issue the following command:

2. Follow the onscreen instructions to complete the login process.

https://docs.zowe.org/stable/user-guide/cli-using-using-profiles-v1#base-profiles
https://docs.zowe.org/stable/user-guide/cli-install-cli-checklist

A local base profile is created that contains your token. For more information about the process, see Token Management.

3. Run Zowe Explorer and click the + icon.

4. Select the profile you use with your base profile with the token.

The profile appears in the tree and you can now use this profile to access z/OSMF via the API Mediation Layer.

For more information, see Integrating with API Mediation Layer.

Logging in to the Authentication Service

If the token for your base profile is no longer valid, you can log in again to get a new token with the Log in to Authentication
Service feature.

NOTE

The feature is only available for base profiles.

The feature supports only API Mediation Layer at the moment. Other extenders may use a different authentication service.

1. Open Zowe Explorer.

2. Right-click your profile.

3. Select the Log in to Authentication Service option.

You are prompted to enter your username and password beforehand.

The token is stored in the corresponding base profile.

If you do not want to store your token, request from the server to end the session of your token. Use the Log out from
Authentication Service feature to invalidate the token.

1. Open Zowe Explorer.

2. Right-click your profile.

3. Select the Log out from Authentication Service option.

Your token has been successfully invalidated.

https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml#how-token-management-works
https://docs.zowe.org/stable/user-guide/cli-using-integrating-apiml

Version: v2.17.x LTS

Zowe Chat (Technical Preview)
Zowe Chat Technical Preview is an early access build of the newest incubating technology in Zowe, Zowe Chat! Zowe Chat is a chatbot
that aims to enable a ChatOps collaboration model by bringing simple access to z/OS resources and tools within the chat tools you
use everyday in your organization. As this is an early access build, it is recommended to deploy the technical preview in development
and test environments.

The following topics will guide you in setting up and using Zowe Chat.

1. System Requirements

2. Configuring Chat Tools

3. Installing Zowe Chat

4. Configuring Zowe Chat

5. Starting, stopping, and monitoring

6. Uninstalling Zowe Chat

Deployment diagram
Zowe Chat works by connecting to your chat tool of a choice as a Bot account, and is configured against a single sysplex environment
through a z/OSMF installation. Zowe Chat requires network connectivity to each of the configuration endpoints. For more details and
information on installation and configuration, follow the topics above.

https://docs.zowe.org/stable/user-guide/zowe-chat/systemrequirements-chat
https://docs.zowe.org/stable/user-guide/zowe-chat/systemrequirements-chat#chat-tool-requirements
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_install_overview
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_overview
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_start_stop
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_uninstall

Version: v2.17.x LTS

System requirements
Before installing Zowe Chat, ensure that your target environment meets the prerequisites that are described in this article.

Zowe Chat must be able to communicate with the chat tool you plan to use. More information is provided in the network
requirements section.

Linux System Requirements
Node.js

Optional: Zowe CLI

z/OS System Requirements
z/OSMF

Network Requirements
Ports

Connectivity Requirements

Chat Tool Requirements

Linux system requirements
The chat server must meet the following requirements:

Operating System: Any Linux distribution (Linux or zLinux)

NOTE

Zowe Chat can only be deployed to Linux or zLinux environments now. z/OS support is pending further review. If you are
interested in running Zowe Chat on z/OS, let us know by opening a question.

Processor count: 1

Memory: 4 GB

Disk space: 300 M

Node.js

Node.js v16.x. Zowe Chat has not yet been tested with 14.x or 18.x.

If Node.js is not included out of the box in your Linux distribution, you must install it. To install Node.js, follow the instructions on
the Node.js Download Page. It is recommended that you use a package manager as outlined here if possible.

Zowe CLI (Optional)

If you want to run Zowe CLI on Zowe Chat, you must install Zowe CLI on your Zowe Chat server. To install Zowe CLI, see Installing
Zowe CLI.

https://github.com/zowe/zowe-chat/issues/new/choose
https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/
https://docs.zowe.org/stable/user-guide/cli-installcli

z/OS system requirements

z/OSMF

IBM z/OS Management Facility (z/OSMF) Version 2.3 or Version 2.4.

z/OSMF is included with z/OS so does not need to be separately installed. You must configure z/OSMF with REST APIs enabled
because these APIs are used by Zowe Chat as data provider.

For non-production use of Zowe Chat (such as development, proof-of-concept, demo), you can set up z/OSMF Lite. See
Configuring z/OSMF Lite (non-production environment).

For production use of Zowe Chat, see Configuring z/OSMF.

Network requirements

Ports

The following ports are required to run Zowe Chat. You can change the defaults as part of the Zowe Chat configuration. See the
Configuring Zowe Chat topic for more detail.

Port
number

Configuration file Configuration field Description

7701 $ZOWE_CHAT_HOME/config/chatServer.yaml webapp.port

Used to host a web
application required to
login users

7702
$ZOWE_CHAT_HOME/config/chatTools/<mattermost |

msteams | slack>.yaml
messagingApp.port

Used as the messaging
endpoint by some chat
tools.

Connectivity Requirements

Zowe Chat requires network connectivity to the mainframe system z/OSMF is running on, as well as network connectivity to the chat
tool of your choice. Since mainframes reside inside organizations’ private networks, by default we assume that Zowe Chat will also be
deployed in such a private network, and recommend it. Each chat tool has its own connectivity requirements that require additional
consideration as part of your installation plan.

Slack:

Public internet access is required. There are two ways to connect to Slack, over HTTP or using Socket mode. Socket mode sets up
a persistent connection to the Slack chat platform using secure WebSockets, while in HTTP mode Slack issues requests directly to
Zowe Chat over HTTP.

We strongly recommend that you use Socket mode, as it reduces your overall network configuration burden and is equally secure
when compared to HTTP mode.

Socket mode requires that Zowe Chat has outbound public internet access.

https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf-lite
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_overview

HTTP mode requires that Zowe Chat has both outbound and inbound public internet access. To set up inbound access, you
must configure your network firewall or use proxy servers to ensure that the Slack platform (on the public net) can reach the
HTTP endpoint of the Zowe Chat server (on your private network).

For more Slack related configuration, see Configuring the chat tool Slack.

Microsoft Teams:

Both outbound and inbound public internet access are required if you plan to connect your Zowe Chat with Microsoft Teams chat
platform, and will require network firewall configuration or use of proxy servers to allow the inbound traffic.

For more Teams-related configuration, see Configuring messaging endpoint for Microsoft Teams.

Mattermost:

Mattermost requires both outbound and inbound network access. However, the specific connectivity details depend on the
deployment of Mattermost in your organization.

If you use a cloud-hosted instance of Mattermost, you will require network firewall configuration or use of proxy servers to allow
inbound traffic to reach Zowe Chat.

If you use an on-premises instance of Mattermost, no additional network configuration is required.

Chat Tool Requirements
See Configuring chat platforms for information.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_configure_endpoint
https://docs.zowe.org/stable/user-guide/zowe-chat/systemrequirements-chat/chat_configure_chat_platforms

Version: v2.17.x LTS

Configuring chat platforms
Before you install Zowe Chat on your site, you must set up a bot in the chat tool you plan to connect with Zowe Chat. You will use the
information from the bot setup in a future Zowe Chat configuration step.

Mattermost
Must be version 7.0 or newer. See Configuring Mattermost chat platform.

Microsoft Teams

See Configuring Microsoft Teams chat platform.

Slack
See Configuring Slack chat platform.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack

Version: v2.17.x LTS

Configuring Mattermost
If you use Mattermost as your chat platform, you must configure your Mattermost before using Zowe Chat. You need to create an
administrator account, a team, and a bot account in Mattermost.

1. Installing Mattermost chat platform server

You can use commands to install Mattermost Container on your server.

2. Creating administrator account and Mattermost team

After you start the Mattermost container, you can create an administrator account and a team in Mattermost, and invite your
colleagues to join the team.

3. Creating the bot account

Create a bot account in Mattermost.

4. Inviting the created bot to your Mattermost team

Invite your bot user to your team so that you can invite it to your Mattermost channel, and talk with it in the channel.

5. Inviting the created bot to your Mattermost channel

You can create your own private channel in Mattermost, invite your bot user to your channel by adding new members, and talk
with it in the channel.

6. Enabling insecure outgoing connections for mouse navigation

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_install_mattermost
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_admin_account
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_bot_account
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_invite_team
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_invite_channel
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_enable_connection

Version: v2.17.x LTS

Installing Mattermost chat platform server
You can use commands to install Mattermost Container on your server.

Mattermost is a chat solution whose free trial version is available as a Container image. You can use it for your PoC or testing
environment. If you want to use Mattermost in your production environment, you must follow the Mattermost installation guide to
install the enterprise version. The following steps show you how to install Mattermost Container in Preview Mode to explore its
function.

Installing

To install Mattermost Container on a Linux® server, perform the following steps:

1. Make sure that Docker/Podman is set up on the Linux server, and you can access Docker Hub -mattermost/mattermost-preview
on the Linux server.

NOTE

The following command will use Docker as example. You can simply replace Docker with Podman if you are using Podman.

2. Run the following command to pull the mattermost-preview image:

3. Run the following command to install Mattermost in Preview Mode.

For more information about installing Mattermost in Preview Mode on local machines by using Docker, see Local Machine Setup
using Docker.

4. Run the following command to verify that the Mattermost container is started.

When you see the name is mattermost in the response, your Mattermost container is started.

Your Mattermost is installed successfully.

Next steps
You must configure your Mattermost before using Zowe Chat. You need to create an administrator account, a team, and a bot account
in Mattermost. See Creating administrator account and Mattermost team.

https://docs.mattermost.com/guides/administrator.html#installing-mattermost
https://hub.docker.com/r/mattermost/mattermost-preview
https://docs.mattermost.com/install/docker-local-machine.html
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_admin_account

Version: v2.17.x LTS

Creating administrator account and Mattermost team
After you start the Mattermost container, you can create an administrator account and a team in Mattermost, and invite your
colleagues to join the team.

1. Open http://YOUR_MATTERMOST_SERVER:8065/ in your browser.

2. Create an administrator account.

i. Specify your email address, username, and password.

ii. Click Create Account, and your administrator account is created.

3. Create a team.

i. Click Create a new team.

ii. Specify your Team name, for example, BnzDev. Click Next.

iii. Specify your Team URL, for example, bnzdev. Click Finish.

NOTE

Remember your Team URL, it will be used when you configure Mattermost.

4. Invite people to your team.

i. In the chat window, click the Main Menu icon, then click Invite People.

ii. If your team member does not have an account yet, click Copy invite link and send the invitation link to them so that they
can join by themselves. If your team members have their accounts, you can specify their account information in the Invite
members to BnzDev field, select their accounts, and click Invite to add them to the team.

5. Optional: If you want to enable TLS on Mattermost Server, you can refer to Configuring TLS on Mattermost Server for specific
steps.

Now you have your administrator account and team chat group. You can invite other people to join.

https://docs.mattermost.com/install/config-tls-mattermost.html

Version: v2.17.x LTS

Creating the bot account
Create a bot account in Mattermost.

1. Log in to Mattermost with your administrator account.

2. Click Main Menu icon and then click System Console.

3. Scroll down to INTEGRATIONS section and click Bot Accounts.

4. Select true for Enable Bot Account Creation, and click Save.

5. Click the Main Menu icon on the System Console, then click Switch to your team.

6. Click the Main Menu icon from the main screen of Mattermost, and click Integrations.

The following dialog opens.

7. Add a new bot account.

i. Click Bot Accounts > Add Bot Account.

ii. Specify bnz for Username and System Admin for Role.

iii. Click Create Bot Account. A successful notification dialog displays. On this dialog you can find a Token.

8. Copy this Token.

You will need this token for integration steps later. Save it well since you will not be able to retrieve it again.

For more information about Bot accounts, see Mattermost Integration Guide - Bot Accounts.

Next steps

Now you can invite the created bot to your Mattermost team.

https://docs.mattermost.com/developer/bot-accounts.html
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_invite_team

Version: v2.17.x LTS

Inviting the created bot to your Mattermost team
Invite your bot user to your team so that you can invite it to your Mattermost channel, and talk with it in the channel.

1. Click your username at the top of the navigation panel and click Invite People.

2. In the Invite members to BnzDev field, search your bot user and select it, then click Invite to invite the bot to this team.

3. Click Done.

Your bot user is added to your team successfully.

Next steps
Now you can add it to your channels.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_invite_team/chat_prerequisite_mattermost_invite_channel

Version: v2.17.x LTS

Inviting the created bot to your Mattermost channel
You can create your own private channel in Mattermost, invite your bot user to your channel by adding new members, and talk with it
in the channel.

1. Create a private channel.

i. Click the + button to create a new private channel.

ii. Make sure that you select Private as the channel type.

iii. Specify the Name of the channel, for example, DevOps.

Note: Remember URL under the name. You may use it later when you want to send incident to the channel.

iv. Click Create New Channel and your new private channel is created.

2. On the upper-left corner, click the Members icon and you can see the members that are in this channel. Click Manage Members.

3. Click Add New Members on the upper-right corner.

4. Enter the name of your bot account to add it to this channel, for example, bnz. You can see bnz in the list. Select it and click Add.

You add your bot account to your channel successfully.

Version: v2.17.x LTS

Enabling insecure outgoing connections for mouse
navigation

1. Log in to Mattermost with your administrator account.

2. Click the Main Menu icon and then click System Console.

3. Scroll down to the ENVIRONMENT section and click Web Server.

4. Select true for Enable Insecure Outgoing Connections, and click Save.

You enable insecure outgoing connections for mouse navigation successfully.

Version: v2.17.x LTS

Configuring Microsoft Teams
If you use Microsoft Teams as your chat platform, you need to create a bot app and a bot for Microsoft Teams and configure the
messaging endpoint. Take the following steps to configure your Microsoft Teams for Zowe Chat.

1. Creating Microsoft Teams bot app

Microsoft Teams provides Microsoft Developer Portal to create bot app in the current version. App Studio has been deprecated
according to the announcement made by Microsoft Teams.

2. Creating a bot for Microsoft Teams bot app

Microsoft provides two ways to create a bot, either using Microsoft Bot Framework or Microsoft Azure. You can choose either one
of them according to your own environment and requirements.

3. Configuring messaging endpoint for Microsoft Teams

You need to expose your Zowe Chat via a public HTTPS endpoint so that Microsoft Teams can push messages to it. The steps
differ depending on the way you create your bot.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_app_developer_portal
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_configure_endpoint

Version: v2.17.x LTS

Creating Microsoft Teams bot app with Developer Portal
To create a bot app for Microsoft™ Teams, you need to use the tool Developer Portal to create a new app, specify app details, enable
bot capabilities, and add it to your teams.

Developer Portal is a Teams app that makes it easy to create or integrate your own Microsoft Teams apps whether you develop custom
apps for your enterprise or SaaS applications for teams around the world. It streamlines the creation of the manifest and package for
your app and provides several useful tools like the Card Editor. You can find Developer Portal in the Teams store.

1. Find and add Developer Portal to your Microsoft Teams.

i. Launch and log in your Microsoft Teams client.

ii. Click the Apps icon at the bottom left of your Microsoft Teams window to open the Apps pane.

iii. Search for Developer Portal with the search bar.

iv. Select Developer Portal and click Add.

You can see the home page of Developer Portal.

2. Create a new app.

i. Click the Apps icon at the top of the home page of Developer Portal to open the Apps pane.

ii. Click the New app icon to create a new app.

iii. In the prompted dialog, specify a short name for your app that is used for configuration in Zowe Chat as the bot username,
and then click Add.

iv. Specify the required values for your app, and then click Save.

For Descriptions, specify a short description for your app.

Specify all the required information accordingly.

3. Configure your app.

i. Switch to Apps pane and select the app that you created.

ii. Click the App features icon under Configure, and select Bot in App features pane.

iii. Select the bot that you created in Identify your bot section.

Select Personal, Team and Group Chat for Scope so that you can add the bot app to your teams. Save your settings and
you can see your bot in the Bots panel.

Remember: You need to create a bot if you don't have one. You can either create a bot with Microsoft Bot Framework or
with Microsoft Azure. For specific steps, see Creating a bot with Microsoft Bot Framework or Creating a bot with Microsoft
Azure.

4. Publish your app.

i. Click the App package icon under Publish.

ii. Click Download app package to download your app package.

iii. Click the Apps icon at the bottom left of your Microsoft Teams window, and click Manage your apps.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_framework
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_azure

iv. Select Upload a custom app to add the app to a team. Upload the app package that you download in substep b.

v. Select Add to a team in the drill-down options.

vi. Type or select a team to set up your bot.

5. Optional: You can also choose to publish your app to your organization's app catalog so that people in your organization can
share it.

i. Click the Apps icon at the bottom left of your Microsoft Teams window, and click Manager your apps.

ii. Select Submit an app to your org to publish your app.

Your app will appear on your Apps homepage when the IT admin of your organization approves.

Now, people in your tenant can see this app and can use it.

You have successfully created a bot app for Microsoft Teams and can talk to it in your teams.

Version: v2.17.x LTS

Creating a bot for Microsoft Teams bot app
Microsoft™ provides two ways to create a bot, either using Microsoft Bot Framework or Microsoft Azure. You can choose either one of
them according to your own environment and requirements.

Creating a bot with Microsoft Bot Framework
You can use the tool Microsoft Developer Portal to create a bot with Microsoft Bot Framework and set it up for your bot app.

Creating a bot with Microsoft Azure
To create a bot with Microsoft Azure, you need to use Microsoft Azure portal to create a resource with the Bot Channels
Registration service, configure the resource, get the bot password, and configure channels.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_framework
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_azure

Version: v2.17.x LTS

Creating a bot with Microsoft Bot Framework
You can use the tool Microsoft™ Developer Portal to create a bot with Microsoft Bot Framework and set it up for your bot app.

1. Click the Tools icon at the top of the home page of Developer Portal to open the Tools pane.

2. Click Bot management to create your bot.

3. Click New bot to create a new bot.

4. In the prompted dialog, specify a short name for your bot and then click Add.

5. Click Client secrets at the left of the Developer Portal, and click Add a client secret for your bot to generate a client secret for
your bot.

6. Copy the new client secret.

Remember: Save the client secret for later use. You will need it when you configure your Microsoft Teams. The client secret
appears only once here.

Your Microsoft Bot Framework bot is successfully created.

You can continue with installing or publishing your bot app in your Microsoft Teams. For specific steps, refer to the step 4 and 5 in
Creating Microsoft Teams bot app with Developer Portal.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_app_developer_portal

Version: v2.17.x LTS

Creating a bot with Microsoft Azure
To create a bot with Microsoft™ Azure, you need to use Microsoft Azure portal to create a resource with the Bot Channels Registration
service, configure the resource, get the bot password, and configure channels.

1. Create a new resource.

i. Launch the Microsoft Azure portal at portal.azure.com.

ii. Click Create a resource under Azure services.

iii. Search for Bot Channels Registration with the search bar and select it.

http://portal.azure.com/

iv. Click Create to create a new resource.

v. Specify the required values, where

Bot handler is a unique identifier for your bot. You can set it to be your bot name.

Resource group is a container that holds related resources for an Azure solution. You can create a new one if you don't
have one.

Messaging endpoint needs to be configured later. You can leave it blank for now.

Microsoft App ID and password is required. Set it as Auto create App ID and password. Otherwise, you can create
one manually.

vi. Click Create.

It takes a while to complete the creating process. You can see a notice in the Notification at the upper right of the menu bar.

2. Configure the resource.

i. Click Go to resource when you see the notification. You can also check the resource from the portal home page. Click All
resources and you can see the one you just created. Select it to start configuration.

ii. Select Configuration in Settings.

iii. Specify the required values for your resource.

a. Check the Enable Streaming Endpoint box.

b. To specify the messaging endpoint, you need to do this step after you install Zowe Chat.

c. Click Apply to make the settings effective.

iv. To get the bot password, click Manage next to Microsoft App IDand open the Certificates & secrets pane.

a. Click New client secret under Client secrets and the Add a client secret displays.

b. Specify the description for your resource.

c. Set the Expires value for 24 months.

d. Click Add. You can see the resource information listed in the table with Description, Expires, Value, and ID. Value is
your bot password. Save it for later use when you configure Zowe Chat. It only appears once here.

Remember: The Microsoft App ID is the bot ID in the App Studio of Microsoft Teams. You will need it when you configure
your Microsoft Teams in later steps.

3. Configure the channels.

i. Go back to the resource page, click Channels under Settings. Now, only Web Chat is listed in the table.

ii. Click the MS Teams icon under Add a featured channel.

iii. Click Save to connect to MS Teams channels.

4. Set up the bot for your bot app in Microsoft Teams.

i. Open the App Studio tool in your Microsoft Teams client.

ii. Click your resource that is listed on the pane to open it.

iii. Click the Bots icon under Capabilities and click Edit.

iv. Select Connect to a different bot id and specify with the Microsoft App ID that you have for your Azure bot.

v. Select Team for Scope so that you can add the bot app to your teams.

vi. Save your settings.

Your Microsoft Azure bot is successfully created.

You can continue with installing or publishing your bot app in your Microsoft Teams.

Version: v2.17.x LTS

Configuring messaging endpoint for Microsoft Teams
You need to expose your Zowe Chat via a public HTTPS endpoint so that Microsoft™ Teams can push messages to it. The steps differ
depending on the way you create your bot.

If the IP address of your Zowe Chat server is public, you can use the Chatbot messaging-endpoint URL <messaging-

endpoint.protocol>://<messaging-endpoint.hostName>:<messaging-endpoint.port><messaging-endpoint.basePath> directly.
Otherwise, you must configure your own network firewall or use some proxy servers to make sure that your Microsoft Teams can
access the web hook of Zowe Chat server from Internet.

NOTE

You can find the values for protocol, hostName, port, and basePath messaging-endpoint section of the configuration file
<ZOWE_CHAT_HOME>/config/chatServer.yaml .

Version: v2.17.x LTS

Configuring messaging endpoint for the Microsoft Bot
Framework bot
If you create your bot with Microsoft™ Bot Framework, you need to specify the bot endpoint address in Developer Portal to configure
the messaging endpoint.

1. Launch and log in your Microsoft Teams client.

2. Click the Developer Portal icon and select Tools.

3. Click the Bot management. Choose the bot that you created and start editing your bot app.

4. Click Configure to configure the messaging endpoint.

5. Specify the Bot endpoint address input box under Endpoint address with the Zowe Chat web hook URL if it is publicly
accessible. Otherwise, you must fill in with your public proxy URL that transmits network payload to Zowe Chat web hook URL.

Your messaging endpoint for Microsoft Bot Framework bot is successfully configured.

Version: v2.17.x LTS

Configuring messaging endpoint for the Microsoft Azure
bot
If you create your bot with Microsoft™ Azure, you need to specify the messaging endpoint in Microsoft Azure portal to complete the
configuration.

1. Launch the Microsoft Azure portal at portal.azure.com.

2. Click All resources and select the bot that you created.

3. Select Configuration in Settings.

4. Specify the Messaging endpoint with the Zowe Chat web hook URL if it is publicly accessible. Otherwise, you must fill in with
your public proxy URL that transmits network payload to Zowe Chat web hook URL.

5. Verify that the Enable Streaming Endpoint box is enabled.

6. Click Apply to make the settings effective.

Your messaging endpoint for Microsoft Azure bot is successfully configured.

http://portal.azure.com/

Version: v2.17.x LTS

Configuring Slack
If you use Slack as your chat platform, you must create and install one Slack App.

1. Creating and installing Slack App

You must create one Slack App and install it before you can talk with your chat bot in Slack client.

2. Adding your bot user to your Slack channel

You can add the bot user that you created to your Slack channel in two ways: either mention your bot user directly in the message
field or click the link Add an app at the beginning of your channel.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_create_app
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_invite_app_to_channel

Version: v2.17.x LTS

Creating a new Slack App
To create a bot app for Slack, you need to use the Slack app dashboard to create a new app and specify app details.

1. Open Slack app dashboard at Slack API.

2. Click Create App button.

3. Choose From scratch.

4. In the prompted dialog, specify values for the following fields:

App Name: input your App name, for example, Zowe Chat.

Development Slack Workspace: input any one of your Slack Workspace.

https://www.ibm.com/links?url=https%3A%2F%2Fapi.slack.com%2Fapps

TIP

You can change the App name at any time.

NOTE

Your workspace may require apps to be approved by admins. You will need to request approval to install it to the workspace
or sign into a different workspace.

5. Click the Create App button.

Your Slack App is successfully created.

Version: v2.17.x LTS

Configuring the Slack App
There are two ways to connect to Slack, over HTTP or using Socket mode. We strongly recommend that you use Socket mode, as you
can receive events via a private WebSocket, instead of a direct HTTP subscription to events. If you want to receive events directly over
HTTP, you must configure your own network firewall or use some proxy servers to make sure that your Slack application of your Slack
workspace in public cloud can access the messaging endpoint of Zowe Chat server from internet. For more information, see
https://api.slack.com/apis/connections.

Connecting to Slack using Socket mode

You can use Socket mode to connect your app to Slack.

Connecting to Slack using public HTTP endpoint

Complete this task after your Zowe Chat server is configured and started.

https://api.slack.com/apis/connections
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_configure_app/chat_prerequisite_slack_socket_mode
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_configure_app/chat_prerequisite_slack_http_endpoint

Version: v2.17.x LTS

Connecting to Slack using Socket mode
You can use Socket mode to connect your app to Slack.

1. Open Slack app dashboard at Slack API.

2. Click the App name that you created.

3. In the left sidebar, click Features > App Manifest to configure your Slack App.

4. In the text field, fill in the following manifest:

NOTE

You should delete the default manifest, and then fill in the manifest above. This is an example manifest for the current
version of Slack. If Slack has new changes and this manifest is out of date, you can refer to
https://api.slack.com/reference/manifests#creating_manifests to fill out the manifest.

In the manifest, specify values for the following fields:

display_information.name : your app name, for example, Zowe Chat

display_information.description : your app description, for example, Zowe Chat

features.bot_user.display_name : your bot name, for example, zowe-chat

5. Click Save Changes button, and you will be prompted with a notification asking you to generate an app level token.

6. Click Click here to generate, and you will be prompted with a dialog Generate an app-level token to enable Socket Mode.
Specify values for the following fields:

Token Name: socket-mode

https://www.ibm.com/links?url=https%3A%2F%2Fapi.slack.com%2Fapps
https://api.slack.com/reference/manifests#creating_manifests

7. Click Generate button and you will be prompted with a dialog socket-mode. You will get the token in the dialog. Copy it for the
later use. You will need it to configure your Slack in later steps. See Configuring the chat tool - Slack.

8. Click Done button.

You have successfully configured your Slack app.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_slack

Version: v2.17.x LTS

Connecting to Slack using public HTTP endpoint
Complete this task after your Zowe Chat server is configured and started.

If you are using HTTP endpoint to receive Slack events, you must enable interactivity and configure the event request URL and the
interactivity request URL in your Slack App.

If the IP address of your Zowe Chat server is public, you can use the Chatbot messaging endpoint URL
<httpEndpoint.protocol>://<httpEndpoint.hostName>:<httpEndpoint.port><httpEndpoint.basePath> directly. Otherwise, you

must configure your own network firewall or use some proxy servers to make sure that your Slack App of your Slack workspace in
public cloud can access the messaging endpoint of Zowe Chat server from Internet.

NOTE

You can find the values for protocol , hostName , port , and basePath in the configuration file

<ZOWE_CHAT_HOME>/config/chatTools/slack.yaml .

1. Open Slack API in your browser.

2. Click your Slack App.

Remember that you must log in your Slack workspace before you can see your App in Slack.

3. Configure your Slack App.

i. In the left sidebar of Slack app dashboard, click Features > App Manifest to configure your Slack App.

ii. In the text field, fill in the following manifest:.

:::note:

You should delete the default manifest, and then fill in the manifest above.

:::

In the manifest, specify values for the following fields:

display_information.name : your app name, for example, Zowe Chat

display_information.description : your app description, for example, Zowe Chat

features.bot_user.display_name : your bot name, for example, zowe-chat

iii. Click Save Changes.

You will be prompted with a notification that the URL is not verified. You can ignore this notification, and configure the
request URL after your Zowe Chat server is configured and started.

https://www.ibm.com/links?url=https%3A%2F%2Fapi.slack.com%2Fapps

4. Configure the request URL for the interactivity for your created Slack App. You can do this after your Zowe Chat is configured and
started.

i. In the left sidebar of Slack app dashboard, click Features > Interactivity&Shortcuts.

ii. In the request URL input field, use the Zowe Chat messaging-endpoint URL directly if it is publicly accessible. Otherwise, you
must fill in with your public proxy URL that transmits network payload to Zowe Chat web hook URL.

iii. Click Save Changes.

5. Configure the request URL for events subscriptions for your created Slack App. You can do this after your Zowe Chat server is
configured and started.

i. In the left sidebar of Slack app dashboard, click Features > Event Subscriptions.

ii. In the request URL input field, use the Zowe Chat messaging-endpoint URL directly if it is publicly accessible. Otherwise, you
must fill in with your public proxy URL that transmits network payload to Zowe Chat web hook URL.

iii. Click Save Changes.

You have successfully configured your Slack app.

Version: v2.17.x LTS

Installing the Slack App
You must install the Slack App to your workspace before you can talk with your chat bot in Slack client.

1. Install the Slack App.

i. Request to install the App.

a. In the left sidebar, click Settings > Install App.

b. Click Request to Install and you will be prompted with a dialog asking you to add an optional note to the administrator
to request an approval. You can add an optional note to the administrator and then wait for the administrator of your
workspace to approve. You will receive an email notice as well as a notice from the Slackbot of your Workspace when the
approval is done.

NOTE

After you receive a notice, you can refresh your web page. Now you can install your app to your workspace.

ii. Install the App to Workspace.

a. Open Slack app dashboard at Slack API when you get the approval.

b. Click the App name that you created.

c. In the left sidebar, click Settings > Install APP.

d. Click Install to Workspace button and you will be switch to a new page.

e. Click Allow button.

Your Slack App is installed.

2. Get the bot user OAuth token.

i. In the left sidebar, click Settings > Install App.

ii. Find the Bot User OAuth Token and click Copy.

Save this token. You will need it to configure your Slack in later steps.s

3. Get the signing secret.

i. In the left sidebar, click Settings > Basic information.

ii. Find the Signing Secret in App Credentials section and click show.

https://api.slack.com/apps

iii. Copy this signing secret.

Save this signing secret. You will need it to configure your Slack in later steps.

Version: v2.17.x LTS

Adding your bot user to your Slack channel
You can add the bot user that you created to your Slack channel in two ways: either mention your bot user directly in the message
field or click the link Add an app at the beginning of your channel.

Mention your bot user directly
You can mention your bot user directly in the message field.

1. Select the channel where you want to invite your Slack App.

2. In the message field, type @ and select the bot name you created, for example, bnz. You can see a not in channel notice behind
it.

3. Send the message to the channel. You will receive a message from Slackbot to help you invite your bot user to this channel. Click
Invite Them.

Use the channel link

You can click the link Add an app at the beginning of your channel.

1. Select the channel where you want to invite your Slack App.

2. Click the drill-down box at the top of your channel. Select Integrations.

3. You can see the dialog as the image below shows. Click Add an app.

4. Search for your app with your app name. Click Add when you see it.

You have invited the Zowe Chat app to your Slack channel. You can talk to it now.

Version: v2.17.x LTS

Installing Zowe Chat
You can install Zowe Chat from a local package.

Prerequisites
Before installing Zowe Chat, ensure that your environment meets the system requirements.

Installing
1. Download the Zowe Chat package from Zowe.org. Navigate to Technical Preview > Zowe Chat section, and select the button to

download the Zowe Chat build. You'll get a tar.gz file.

2. Log on to your Linux server.

3. Navigate to the target directory that you want to transfer the Zowe Chat package into or create a new directory.

4. When you are in the directory you want to transfer the Zowe Chat package into, upload it to the directory.

5. Run the command to expand the downloaded package to the target directory.

This will expand to a file structure similar to the following one.

6. Run the following commands to update your environment variables.

Update the Zowe Chat home directory.

where, your-chat-package-directory is the diretory of the Zowe Chat installation package.

Update the Zowe Chat plug-in home directory.

Update your PATH environment variable with your Zowe Chat home directory path.

7. Update the plug-in configuration file $ZOWE_CHAT_PLUGIN_HOME/plugin.yaml if necessary.

8. Run the following commands to install local dependencies.

9. Update the following configuration files based on your need.

Zowe Chat: $ZOWE_CHAT_HOME/config/chatServer.yaml

z/OSMF server: $ZOWE_CHAT_HOME/config/zosmfServer.yaml

Chat tool: $ZOWE_CHAT_HOME/config/chatTools/<mattermost | msteams | slack>.yaml

Now you can start the Zowe Chat server.

TIP

https://docs.zowe.org/stable/user-guide/zowe-chat/systemrequirements-chat
https://www.zowe.org/download.html
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_start_stop#starting-zowe-chat

If you encounter any issue during the installation, you can check the Zowe Chat server log in the folder $ZOWE_CHAT_HOME/log/
for troubleshooting.

Version: v2.17.x LTS

Configuring Zowe Chat
To complete the configuration of Zowe Chat, you must complete the individual configuration steps listed below.

1. Configure Zowe Chat server

2. Configure z/OSMF endpoint information

3. Configure chat tool information

Zowe Chat server configuration

You can configure the Zowe Chat server by editing the chatServer.yaml configuration file.

1. Go to the Zowe Chat configuration directory by running the following command:

2. Edit the chatServer.yaml configuration file. Customize the default values based on your needs, for example, your chat tool.

Zowe Chat z/OSMF endpoint configuration
Zowe Chat is configured to run against a single z/OSMF server. You describe your z/OSMF server information by editing the
zosmfServer.yaml configuration file.

1. Go to the z/OSMF server configuration directory by running the following command:

2. Edit the zosmfServer.yaml configuration file. Customize the default values based on your system .

Chat tool configuration
Zowe Chat's chat tool configuration varies depending on your choice of chat tool.

Slack

Configuring Zowe Chat with Slack

Microsoft Teams

Configuring Zowe chat with Microsoft Teams

Mattermost

Configuring Zowe Chat with Mattermost

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_slack
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_teams
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_mattermost

Version: v2.17.x LTS

Configuring Zowe Chat with Mattermost
This step is for Mattermost users only. You configure your chat platform by editing the mattermost.yaml file.

Prerequisite

Make sure that you have configured your chat tool when configuring the Zowe Chat server. For details, see Configuring Zowe Chat
server.

Configuring Mattermost
1. Go to the Zowe Chat configuration directory.

2. If you enabled TLS on the Mattermost Server when you create an administrator account, you can download the SSL certificate of
Mattermost server.

i. Log in to Mattermost with your administrator account.

ii. Click Main Menu icon and then click System Console.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_mattermost_admin_account

iii. Scroll down to ENVIRONMENT section and click Web Server. Find your certificate according to the path configured in TLS
Certificate File.

iv. Copy the certificate to your Zowe Chat Server. You can place it in any directory that your Zowe Chat server can access.

3. Edit the mattermost.yaml file by cutomizing the following fields:

hostName : your Mattermost server hostname

tlsCertificate : the absolute file path of the TLS certificate (PEM) of your Mattermost server if HTTPS protocol is specified.

botAccessToken : the access token to connect to your bot

HTTP endpoint hostName : the host name or IP address of your HTTP endpoint

You can also specify other configurations such as the protocol, port number, team URL, bot user name, and HTTP endpoint of
your Mattermost server.

TIP

Team URL is what you got when you create your team. If you don't remember that, you can just select any channel in your
team and copy link. Paste the link into a text editor, and then you will find the team URL.

Version: v2.17.x LTS

Configuring Zowe Chat with Microsoft Teams
This step is for Microsoft Teams users only. You configure your chat platform by editing the msteams.yaml file.

Prerequisite

Make sure that you have configured your chat tool when configuring the Zowe Chat server. For details, see Configuring Zowe Chat
server.

Configuring Microsoft Teams
1. Go to the Zowe Chat configuration directory.

2. Edit the msteams.yaml file. Replace <Your Bot ID> , <Your bot password> and <Your host name> with values based on your
environment.

TIP

You should have saved your bot ID and bot password when you created your bot. For details, see Creating a bot with
Microsoft Bot Framework or Creating a bot with Microsoft Azure.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_framework
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_teams_create_bot_azure

Version: v2.17.x LTS

Configuring Zowe Chat with Slack
This step is for Slack users only. You configure your chat platform by editing the slack.yaml file.

Prerequisite

Make sure that you have configured your chat tool when configuring the Zowe Chat server. For details, see Configuring Zowe Chat
server.

Configuring Slack
1. Go to the Zowe Chat configuration directory.

2. Edit the slack.yaml file. Replace Your_signing_secret and Your_bot_user_OAuth_token. If you use socket mode, you also need to
provide your app level token. If you connect Slack over HTTP, you need to configure HTTP endpoint.

TIP

You should have saved the signing secret and bot user OAuth token when you installed the Slack App. For details, see
step 2 and 3 in Installing the Slack App.

If you use socket mode to connect to Slack, you need to set the socketMode enabled as true and the httpEndpoint

enabled as false and provide the app level token which you should have saved when you configured the Slack App.

For details, see step 7 in Connecting to Slack using Socket mode.

If you connect to Slack over HTTP endpoint, you need to set the socketMode enabled as false and the httpEndpoint

enabled as true . You need to configure the HTTP endpoint, protocol, host name, port number and the basePath that

you want to use.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_configure_server
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_install
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_prerequisite_slack_socket_mode

Version: v2.17.x LTS

Starting and stopping Zowe Chat
Start or stop Zowe Chat according to your requirement.

Starting Zowe Chat
To start the Zowe Chat server, perform the following steps.

1. On the server where you install Zowe Chat, run the following command:

chatsvr start

2. To verify that the Zowe Chat server is started, run the following command:

chatsvr status

Now you can launch your chat tool client and chat with your bot.

Stopping Zowe Chat

To stop the Zowe Chat server, perform the following steps.

1. On the server where you install Zowe Chat, run the following command:

chatsvr stop

2. To verify that the Zowe Chat server is stopped, run the following command:

chatsvr status

Version: v2.17.x LTS

Uninstalling Zowe Chat
You can uninstall Zowe Chat native installation package by running a command.

1. Stop the Zowe Chat server.

2. Remove the installed Zowe Chat core part by running the following command:

3. Remove all installed Zowe Chat plug-ins by running the following command:

4. Unset and update the following environment variables.

ZOWE_CHAT_HOME

ZOWE_CHAT_PLUGIN_HOME

PATH=$PATH:$ZOWE_CHAT_HOME/bin

5. Verify the uninstallation by launching your chat tool client and verifying that you cannot chat with the bot.

https://docs.zowe.org/stable/user-guide/zowe-chat/chat_start_stop#stopping-zowe-chat

Version: v2.17.x LTS

Zowe IntelliJ plug-in

Installing
You can install the plug-in in your Intellij-based IDE directly from the marketplace or download it from
https://plugins.jetbrains.com/plugin/18688-zowe-explorer

To install the plug-in from IntelliJ:

1. Go to File -> Settings... (Ctrl+ Alt+ S for short).

2. Select Plugins and then Marketplace on top of the window.

3. Type Zowe Explorer and click Install.

4. Wait until the plug-in is installed, then click OK.

Contact your RACF administrator so that your user is in the IZUUSER RACF group.

https://plugins.jetbrains.com/plugin/18688-zowe-explorer

Version: v2.17.x LTS

Configuring Zowe IntelliJ plug-in
After you install the Zowe Intellij plug-in, you must create a z/OSMF connection to your mainframe and some working sets.

NOTE

z/OS v2.1 or later is required z/OSMF configuration. The plug-in is in active development state.

Creating z/OSMF connection

There are two ways to create a z/OSMF connection:

using the in-built plug-in feature

using Zowe Config v2

Creating the connection using the plug-in feature

You can create a z/OSMF connection to your mainframe either by manually specifying all the needed information through the Settings
tab, or by clicking the "+" sign. The z/OSMF port should be specified at the end of the address.

To create the connection:

1. In Zowe Explorer click + button

2. Select Connection

3. Type in all the necessary information

4. Wait until the connection is tested

Creating the connection using Zowe Config v2

Prerequisite: Zowe CLI installed (click here for the guide)

To create the z/OSMF connection with Zowe Config v2:

1. In command line, issue: zowe config init

2. Enter all the required information

3. After that, Zowe config file detected notification should appear, click Add Zowe Connection

4. If the connection test is failed, click Add Anyway

5. In Zowe Config change all the wrong parameters to the correct ones

6. Click appeared Reload button in the editor

7. Wait until the connection is tested

https://docs.zowe.org/stable/user-guide/cli-installcli

After the configuration is made, you will be able to use all the features of the plug-in.

Version: v2.17.x LTS

Using Zowe
Learn how to start using Zowe components, applications, and plug-ins.

Zowe server-side components
Using Zowe Desktop

Using Zowe API Mediation Layer

Zowe cross memory server

Zowe client-side components
Using Zowe CLI

Using Zowe Explorer

Using Zowe SDKs

Explore available plug-ins

Zowe CLI plug-ins

Zowe Explorer extensions

Using Zowe IntelliJ Plug-in

Incubator components

Using Zowe Chat (incubator)

https://docs.zowe.org/stable/user-guide/mvd-using
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer
https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/cli-using-usingcli
https://docs.zowe.org/stable/user-guide/ze-usage
https://docs.zowe.org/stable/user-guide/sdks-using
https://docs.zowe.org/stable/user-guide/cli-extending
https://docs.zowe.org/stable/user-guide/ze-using-zowe-explorer-cics-ext
https://docs.zowe.org/stable/user-guide/intellij-using
https://docs.zowe.org/stable/user-guide/zowe-chat/chat_use_interact_methods

Version: v2.17.x LTS

Using Zowe Desktop
You can use the Zowe™ Application Framework to create application plugins for the Zowe Desktop. For more information, see
Extending the Zowe Application Framework.

Navigating the Zowe Desktop
From the Zowe Desktop, you can access Zowe applications.

Accessing the Zowe Desktop

From a supported browser, open the Zowe Desktop at https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ or

you can navigate to the direct Desktop URI at
https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html

Where:

zowe.externalDomains is the host on which you are running the Zowe Application Server, its the value that was assigned in the
zowe configuration file.

zowe.externalPort is the value of Gateway port that was assigned in the zowe configuration file.

Logging in and out of the Zowe Desktop

1. To log in, enter your TSO credentials in the Username and Password fields.

2. Press Enter. Upon authentication of your user name and password, the desktop opens.

To log out, click the User icon in the lower right corner and click Sign Out.

Changing user password

1. Open the Preferences panel by clicking on the Preferences icon in the bottom right of the desktop.

2. Click the Change Password icon.

3. Fill out the Old Password and New Password fields.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux

4. Upon successful password change, you will be taken to the desktop.

Updating an expired password

1. Upon logging in with an expired password, a screen will be displayed prompting you to change your password.

2. Enter and confirm your new password in the corresponding fields.

3. Upon successful password change, you will be taken to the desktop.

Pinning applications to the task bar

1. Click the Start menu in the bottom left corner of the home screen.

2. Locate the application you want to pin.

3. Right-click the application icon and select Pin to taskbar.

Open application in new tab

1. Click the Start menu in the bottom left corner of the home screen.

2. Locate the application you want to open in new tab.

3. Right-click the application icon and select Open In New Browser Tab.

While opening an application in new tab you can also do the following:

You can use url to send data to the application, for example you would specify
https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstrap/web/?

pluginId=org.zowe.editor:data:{"type":"openFile","name":"<path of file>"}

You can use url to open application directly on browser with and without credentials using showLogin in url.

a. If showLogin = true then you need to login with your credentials before using an application for example.

https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstrap/web

/?pluginId=org.zowe.terminal.tn3270&showLogin=true .

b. If showLogin = false then you can access application directly without login.

Keyboard shortcuts

The following keyboard shortcuts can be used in the Desktop to navigate or perform actions with only the keyboard.

Keyboard Shortcut Command

CTRL+ALT+M
Open the Zowe launchbar menu. Use the UP/DOWN arrow keys to select an app, RIGHT arrow key to
spawn context menu, ENTER to launch app, and ESC to close menu

CTRL+ALT+UP Maximize active app. Press again to restore

CTRL+ALT+DOWN Minimize active app. Press again to restore

CTRL+ALT+LEFT (or "<" Switch to next recently active app

Keyboard Shortcut Command

key)

CTRL+ALT+RIGHT (or
">" key)

Switch to least recently active app

CTRL+ALT+W Close active app

Changing application elements size

There are 3 supported ways of changing size within the Desktop.

1. Use your browser's zoom feature (keyboard shortcuts: Ctrl +, Ctrl - for various supported browsers) to change all elements' size.
Recommended: 67%

Note: Zoom is highly variable and depends on your display size, resolution, and many other variables so the recommended zoom may
not be ideal for you

2. View the Preferences panel (see below section) to change the scale of the Desktop UI: elements like window title bar, app icons,
bottom-left start menu, app tool bar etc. and excluding main app content

3. Change an individual application's size via its window handles or minimize/maximize buttons. You can also start an application in
full screen mode by right clicking on an application's icon in the taskbar and select "Open in New Browser Tab"

Tip: Did you know you can use the whole Desktop in full screen mode by using your browser's full screen feature (keyboard shortcuts:
F11 for various supported browsers)?

Personalizing the Desktop

1. Click the Preferences icon to open the Preferences panel.

2. Click the Personalization icon to open the menu.

3. Drag an image into the wallpaper grid, or press the upload button, to upload a new Desktop wallpaper.

4. To set a new theme color, select a color from the palette or hue.

5. Use the lightness swatch bar to adjust the lightness of the color.

Adjusting the lightness will also change the lightness of secondary text.

6. Select a size (small, medium, or large) to adjust the scale of the Desktop UI.

Changing the desktop language

Use the Languages setting in the Preferences panel to change the desktop language. After you change the language and restart Zowe,
desktop menus and text display in the specified language. Applications that support the specified desktop language also display in
that language.

1. Click the Preferences icon in the lower right corner.

2. Click Languages.

3. In the Languages dialog, click a language, and then click Apply.

4. When you are prompted, restart Zowe.

Zowe Desktop application plugins

Application plugins are applications that you can use to access the mainframe and to perform various tasks. Zowe's official server
download contains some built-in plugins as described below.

Additional plugins can be added to the Desktop, and are packaged and installed as Extensions to Zowe. See here for how to install
extensions.

Developers can create application plug-ins to put into extensions, and developers should read the extending guide for more
information.

VT Terminal

The VT Terminal plugin provides a user interface that emulates the basic functions of DEC VT family terminals. On the "back end," the
plugin and the Zowe Application Server connect to VT compatible hosts, such as z/OS UNIX System Services (USS), using SSH or
Telnet.

This terminal display emulator operates as a "Three-Tier" program. Due to web browsers being unable to supply TCP networking that
terminals require, this terminal display emulator does not connect directly to your SSH or Telnet server. Instead, the Zowe Application
Server acts as a bridge, and uses websockets between it and the browser for terminal communication. As a result, terminal
connections only work when the stack of network programs supports websockets and the TN3270 server destination is visible to the
Zowe Application Server.

The terminal connection can be customized per-user and saved for future sessions using the connection toolbar of the application.
The preferences are stored within the configuration dataservice storage, which can also be used to set instance-wide defaults for
multiple users.

API Catalog

The API Catalog plugin lets you view API services that have been discovered by the API Mediation Layer. For more information about
the API Mediation Layer, Discovery Service, and API Catalog, see API Mediation Layer Overview.

Editor

https://docs.zowe.org/stable/user-guide/mvd-using/install-configure-zos-extensions
https://docs.zowe.org/stable/user-guide/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/stable/user-guide/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/stable/getting-started/overview

With the Zowe Editor you can create, edit, and manage files, folders, and datasets. With files and folders, you can also modify
properties such as ownership and tagging. The Editor uses Monaco, a technology shared with the popular Microsoft Visual Studio
Code program. As a result, you can benefit from advanced syntax highlighting and a modern editing experience. The editor has more
features and customization that you can read about on the Editor user guide.

JES Explorer

Use this application to query JES jobs with filters, and view the related steps, files, and status. You can also purge jobs from this view.

IP Explorer

With the IP Explorer you can monitor the TCP/IP stacks, view active connections and reserved ports.

MVS Explorer

Most features of the MVS explorer are now incorporated into the "Editor" plug-in listed above, and the community focuses on future
enhancements there, but you can still find the MVS Explorer in a Zowe install and use the features found below.

Use this application to browse the MVS™ file system by using a high-level qualifier filter. With the MVS Explorer, you can complete the
following tasks:

List the members of partitioned data sets.

Create new data sets using attributes or the attributes of an existing data set ("Allocate Like").

Submit data sets that contain JCL to Job Entry Subsystem (JES).

Edit sequential data sets and partitioned data set members with basic syntax highlighting and content assist for JCL and REXX.

Conduct basic validation of record length when editing JCL.

Delete data sets and members.

Open data sets in full screen editor mode, which gives you a fully qualified link to that file. The link is then reusable for example in
help tickets.

USS Explorer

Most features of the USS explorer are now incorporated into the "Editor" plug-in listed above, and the community focuses on future
enhancements there, but you can still find the MVS Explorer in a Zowe install and use the features found below.

Use this application to browse the USS files by using a path. With the USS Explorer, you can complete the following tasks:

List files and folders.

Create new files and folders.

Edit files with basic syntax highlighting and content assist for JCL and REXX.

Delete files and folders.

https://docs.zowe.org/stable/user-guide/mvd-editor

Version: v2.17.x LTS

Using the Editor
With the Zowe Editor, you can create and edit the many types of files.

Specifying a highlighting language
1. Click Language on the editor menu bar. A dropdown menu will be displayed.

2. From the dropdown, select the desired language. Plain Text will be chosen by default if the automatic language detection is not
able to determine the language.

Open a dataset
To open a dataset, follow these steps:

1. From the File menu, select Open Datasets. You can also use (ALT+K).

2. In the Dataset field, specify the name of the dataset you want to open.

3. Click Open

Deleting a file or folder
1. In the file tree, right-click on a file or folder you want to delete.

2. From the right-click menu, click Delete. A warning dialogue will appear.

3. Click Delete

Opening a directory
1. From the File menu, select Open Directory. You can also use (ALT+O).

2. In the Directory field, specify the name of the directory you want to open. For example: /u/zs1234

3. Click Open

The File Explorer on the left side of the window lists the folders and files in the specified directory. Clicking on a folder expands the
tree. Clicking on a file opens a tab that displays the file contents. Double-clicking on a folder will make the active directory the newly
specified folder.

Creating a new directory
1. Right-click on a location in the directory tree where you want to create a new directory.

2. From the right-click menu, click Create a directory....

3. Specify a directory name in the Directory Name field.

4. The Path will be set to the location that you initially right-clicked to open the dialogue. You can specify a different location in the
Path field.

5. Click Create

Creating a new file

To create a new file, complete these steps:

1. From the File menu, select New File. You can also use (ALT+N).

2. From the File menu, select Save to save the newly created file. You can also use (Ctrl+S)

3. In the File Name field, specify the file name for the newly created file.

4. Choose an encoding option from the Encoding dropdown menu. The directory will be prefilled if you are creating the new file in
an existing folder.

5. Click Save

6. To close a file, click the X icon in its tab, double-click on the tab, or use (Alt+W).

Keyboard shortcuts

The following keyboard shortcuts can be used in the editor to navigate or perform actions with only the keyboard.

TAB/Shift + TAB: Cycle through the menu bar, browsing type, search bar, file tree, and editor component.
Individual options within the menu bar and individual nodes within the file tree can be navigated with the arrow keys and
ENTER (to select).

Keyboard Shortcut Command

ALT+K Open a dataset

ALT+O Open a directory

ALT+N Create a new file

ALT+W Close tab

ALT+W+Shift Close all tabs

CTRL+S Save file

ALT+M Navigate Menu bar (use arrow keys)

ALT+P Search Bar focus

ALT+1 Primary editing component focus

ALT+R+Shift Refresh active tab

ALT+PgUp(or <) Switch to left tab

Keyboard Shortcut Command

ALT+PgDown(or >) Switch to right tab

ALT+B Show/hide left-hand side file tree

Version: v2.17.x LTS

Using API Mediation Layer
There are numerous ways you can use the API Mediation Layer. Review this topic and its child pages to learn more about the various
ways to use the API Mediation Layer.
For information about the API versioning, see API Catalog and Versioning.

Tip: For testing purposes, it is not necessary to set up certificates when configuring the API Mediation Layer. You can configure Zowe
without certificate setup and run Zowe with verify_certificates: DISABLED .

For production environments, certificates are required. Ensure that certificates for each of the following services are issued by the
Certificate Authority (CA) and that all keyrings contain the public part of the certificate for the relevant CA.

z/OSMF

Zowe

The service that is onboarding to Zowe

API Mediation Layer Use Cases
There are two primary use cases for using the API ML:

To access APIs which have already been onboarded to the Mediation Layer via the API Catalog, and leverage their associated
Swagger documentation and code snippets.

To onboard a REST API service to the API ML to contribute to the Zowe community.

See the following topics for detailed information about how to use the API Mediation Layer:

Using Single Sign On (SSO)

Three authentication methods can be used with single sign on:

Authenticating with a JWT token

Authenticating with client certificates

Authenticating with a Personal Access Token

Using multi-factor authentication

User identity verification can be performed by using multi-factor authentication. For more information, see Using multi-factor
authentication (MFA).

API Routing

Various routing options can be used for APIs when using API Mediation Layer:

Routing requests to REST APIs

Routing with WebSickets

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-versioning
https://docs.zowe.org/stable/user-guide/api-mediation/authenticating-with-jwt-token
https://docs.zowe.org/stable/user-guide/api-mediation/authenticating-with-client-certificates
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer/authenticating-with-personal-access-token
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer/using-multi-factor-authentication
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer/routing-requests-to-rest-apis
https://docs.zowe.org/stable/user-guide/api-mediation/routing-with-websockets

Using GraphQL APIs

MultiTenancy Configuration

Learning more about APIs

API Mediation Layer makes it possible to view API information is a variety of ways:

Obtaining information about API Services

Using Swagger "Try it out" in the API Catalog

Using Swagger Code Snippets in the API Catalog

Administrating APIs

Using Static API services refresh in the API Catalog

Onboarding a REST API service with the YAML Wizard

Using the Caching Service

As an API developer, you can use the Caching Service as a storage solution to enable resource sharing between service instances,
thereby ensuring High Availability of services. For details, see Using the Caching service.

Using API Catalog

There are various options for using the API Catalog:

Viewing Service Information abd API Documentation in the API Catalog

Changing an expired password via API Catalog

Additional use case when usig API Mediation Layer

Using Metrics Service (Technical Preview)

SMF records

https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer/use-graphql-api
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer/api-mediation-multi-tenancy
https://docs.zowe.org/stable/user-guide/api-mediation/obtaining-information-about-api-services
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-swagger-try-it-out
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-swagger-code-snippets
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-static-api-refresh
https://docs.zowe.org/stable/user-guide/api-mediation/onboard-wizard
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer/api-mediation-caching-service
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-view-service-information-and-api-doc
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-change-password-via-catalog
https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-metrics-service
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer/api-mediation-smf

Version: v2.17.x LTS

Information roadmap for Zowe API Mediation Layer
This roadmap outlines information resources that are applicable to the various user roles who are interested in Zowe API Mediation
Layer. These resources provide information about various subject areas, such as learning basic skills, installation, developing, and
troubleshooting for Zowe API Mediation Layer.

The following definition of skill levels about Zowe assist you with gathering the most relevant resources for you.

Beginner: You're starting out and want to learn the fundamentals.

Intermediate: You have some experience but want to learn more in-depth skills.

Advanced: You have lots of experience and are looking to learn about specialized topics.

Fundamentals
Zowe skill level: Beginner

Zowe API Mediation Layer overview

New to API Mediation Layer? This overview topic introduces the key features, main components, benefits, and architecture of the
API Mediation Layer.

Architecture

Review the Zowe architecture to understand how the API Mediation Layer works in the Zowe framework.

Installing
Zowe skill level: Beginner

System requirements

Review this topic to ensure that your system meets the requirements for installing the API Mediation Layer. The API Mediation
Layer is one of the server-side components.

Planning

This article includes details about planning for installation, the Zowe z/OS launch process, and information about the Zowe
runtime directory, instance directory, and keystore directory.

Installing API Mediation Layer

This article provides an overview of the essential steps involved in installing the API Mediation Layer.

Configuring and updating
Zowe skill level: Intermediate

https://docs.zowe.org/stable/getting-started/overview#api-mediation-layer
https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://docs.zowe.org/stable/user-guide/systemrequirements-zos
https://docs.zowe.org/stable/user-guide/installandconfig#planning-the-installation-of-zowe-server-components
https://docs.zowe.org/stable/user-guide/install-zos#z-os-installation-roadmap

Configuring API Mediation Layer

Configuring the Zowe APIs

This article explains how to configure security for the Zowe API Mediation Layer.

Advanced Gateway features configuration

This article is for system programmers who want to configure advanced Gateway features of the API Mediation Layer, such as
the Gateway retry policy, connection limits, Gateway timeouts, and other advanced Gateway features.

Using Zowe API Mediation Layer
Zowe skill level: Intermediate

Using API Mediation Layer

Learn how to use the API Catalog to view what services are running in the API Mediation Layer. Through the API Catalog, you can
also view associated API documentation corresponding to a service, descriptive information about the service, and the current
state of the service.

Blog: Introducing “Try it out” functionality in the Zowe API Mediation Layer

This blog describes one key functionality of the Zowe API Mediation Layer to validate that services are returning the expected
responses.

Docs: Zowe API reference guide

Discover and learn about Zowe APIs that you can use.

Onboarding APIs
Zowe skill level: Advanced

Extend Zowe API Mediation Layer

Learn how you can extend the Zowe API Mediation Layer. Extenders make it possible to build and onboard additional API services
to the API ML microservices ecosystem. REST APIs can register to the API Mediation Layer, which makes them available in the API
Catalog, and for routing through the API Gateway.

Onboarding overview

This article provides details about onboarding a REST API service to the Zowe API Mediation Layer.

Zowe API ML repository

To start working with the code immediately, check out this code repository.

Security

https://docs.zowe.org/stable/user-guide/configure-data-sets-jobs-api
https://docs.zowe.org/stable/user-guide/advanced-apiml-configuration
https://docs.zowe.org/stable/user-guide/api-mediation/using-api-mediation-layer
https://medium.com/zowe/introducing-try-it-out-functionality-in-the-zowe-api-mediation-layer-930aa9e947bd
https://docs.zowe.org/stable/appendix/zowe-api-reference
https://docs.zowe.org/stable/extend/extend-zowe-overview#extend-zowe-api-mediation-layer
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#prerequisites
https://github.com/zowe/api-layer

Zowe skill level: Advanced

API Mediation Layer Security

This article describes how API ML uses Transport Layer Security (TLS). Use this guide to familiarize yourself with the API ML
security concepts.

Zowe API Mediation Layer Single Sign On Overview

This article provides an overview of the API ML single-sign-on feature, the principle participants in the SSO process, and links to
detailed Zowe SSO documentation.

Blog: The ZAAS Client: a library for the API Mediation Layer

This blog introduces you to Zowe Authentication and Authorization Service (ZAAS) Client — a library that contains methods for
retrieval of JWT tokens, PassTickets, as well as verifying JTW token information.

Blog: Single-Sign-On to z/OS REST APIs with Zowe

This blog takes a deeper dive into the SSO feature of API ML.

Blog: Zowe client certificate authentication

Contributing to Zowe API Mediation Layer
Zowe skill level: Advanced

Contributing guidelines

This document is a summary of conventions and best practices for development within Zowe API Mediation Layer.

Conformance Program

This topic introduces the Zowe Conformance Program. Conformance provides Independent Software Vendors (ISVs), System
Integrators (SIs), and end users greater confidence that their software will behave as expected. As vendors, you are invited to
submit conformance testing results for review and approval by the Open Mainframe Project. If your company provides software
based on Zowe CLI, you are encouraged to get certified today.

Blog: Zowe Conformance Program Explained

This blog describes the Conformance Program in more details.

Troubleshooting and support
Troubleshooting API ML

Learn about the tools and techniques that are available to help you troubleshoot and resolve problems. You can also find a list of
common issues about Zowe API ML.

Error Message Codes

https://docs.zowe.org/stable/extend/extend-apiml/zowe-api-mediation-layer-security-overview
https://docs.zowe.org/stable/getting-started/user-guide/api-mediation-sso
https://medium.com/zowe/the-zaas-client-a-library-for-the-api-mediation-layer-822ea2994388
https://medium.com/zowe/single-sign-on-to-z-os-rest-apis-with-zowe-6e35fd022a95
https://medium.com/zowe/zowe-client-certificate-authentication-5f1c7d4d579
https://github.com/zowe/api-layer/blob/master/CONTRIBUTING.md
https://docs.zowe.org/stable/extend/zowe-conformance-program
https://medium.com/zowe/zowe-conformance-program-7f1574ade8ea
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml-error-codes

Use the message code references and the corresponding reasons and actions to help troubleshoot issues.

Sumit an issue

If you have an issue that is specific to Zowe API Mediation Layer, you can submit an issue against the api-layer repo.

Community resources
Slack channel

Join the #zowe-api Slack channel to ask questions about Zowe API ML, propose new ideas, and interact with the Zowe
community.

Zowe API ML squad meetings

You can join one of the Zowe API ML squad meetings to get involved.

Zowe Blogs on Medium

Read a series of blogs about Zowe on Medium to explore use cases, best practices, and more.

Community Forums

Look for discussion on Zowe topics on the Open Mainframe Project Community Forums.

https://github.com/zowe/api-layer/issues
https://openmainframeproject.slack.com/
https://lists.openmainframeproject.org/g/zowe-dev/calendar
https://medium.com/zowe
https://community.openmainframeproject.org/c/zowe

Version: v2.17.x LTS

Zowe API Mediation Layer Single Sign On Overview
You can extend Zowe and utilize Zowe Single Sign On (SSO) provided by Zowe API Mediation Layer (API ML) to enhance system
security and improve the user experience.

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

This article provides an overview of the API ML single sign on feature, the principle participants in the SSO process, and links to
detailed Zowe SSO documentation. Zowe Single Sign On is based on single-user authentication which produces an access token that
represents the user in communication with z/OS services accessible through the API Mediation Layer. The access token is issued by the
Zowe Authentication and Authorization Service (ZAAS), which is part of API ML. ZAAS issues an access token based on valid z/OS
credentials. This token can be validated by any component participating in SSO.

NOTE

Currently, API ML can provide SSO only in a single security domain.

Zowe API ML client

API service accessed via Zowe API ML

Existing services that cannot be modified

The following diagram describes the interactions between the general participants in the single sign on process.

There are two main types of components that participate in Zowe SSO through API ML:

Zowe API ML client

This type of component is user-facing and can obtain user credentials through a user interface (web, CLI, desktop).

A Zowe API ML client calls API services through the API ML.

An example of such clients are Zowe CLI or Zowe Desktop.

API service accessed via Zowe API ML

A service that is registered to API ML and is accessed through the API ML Gateway.

Services are protected by an access token or PassTicket.

The access token or PassTicket can be validated by the called API service.

The following sections describe what is necessary to utilize SSO for both types of components.

Zowe API ML client

The Zowe API ML client needs to obtain an access token via the /login endpoint of ZAAS by providing z/OS credentials.

A client can call the ZAAS /query endpoint to validate the token and get information from the token. This is useful when the API

client has the token but does not store the associated data such as the user ID.

The API client needs to provide the access token to API services in the form of a Secure HttpOnly cookie with the name
apimlAuthenticationToken , or in the Authorization: Bearer HTTP header as described in Authenticated Request.

API service accessed via Zowe API ML

This section describes the requirements that an API service needs to satisfy to adopt a Zowe SSO access token.

The token received by the API ML Gateway is first validated and then may be passed directly to the service. Alternatively, the API
ML Gateway can exchange the token for a PassTicket if the API service is configured to expect a PassTicket.

The API service should validate the token. It can use ZAAS Client or directly call the query endpoint.

The API service can extract information about the user ID by calling the ZAAS /query endpoint.

The alternative is to validate the signature of the JWT token using the public key of the token issuer (e.g. the API ML Gateway).
The API service needs to have the API ML Gateway certificate along with the full CA certification chain in the API service truststore.

NOTE

The REST API of ZAAS can easily be called from a Java application using the ZAAS Client.

Existing services that cannot be modified

If you have a service that cannot be changed to adopt the Zowe authentication token, the service can utilize Zowe SSO if the API
service is able to handle PassTickets.

For more information, see Enabling single sign on for extending services via PassTicket configuration.

Further resources
User guide for SSO in Zowe CLI

System requirements for using web tokens for SSO in Zlux and ZSS

https://github.com/zowe/sample-spring-boot-api-service/blob/master/zowe-rest-api-sample-spring/docs/api-client-authentication.md#authenticated-request
https://docs.zowe.org/stable/user-guide/extend/extend-apiml/zaas-client
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets
https://docs.zowe.org/stable/user-guide/api-mediation-sso/cli-using-integrating-apiml/#accessing-multiple-services-with-sso
https://docs.zowe.org/stable/user-guide/api-mediation-sso/systemrequirements

Version: v2.17.x LTS

Authenticating with a JWT token

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

One user authentication method available in Zowe is via JWT tokens, whereby a token can be provided by a specialized service, which
can then be used to provide authentication information.

When a client authenticates with API Mediation Layer, the client receives the JWT token which can then be used for further
authentication. If z/OSMF is configured as the authentication provider and the client already received a JWT token produced by
z/OSMF, it is possible to reuse this token within API ML for authentication.

This article describes how services in the Zowe API ecosystem are expected to accept and use JWT tokens so that API clients have a
stadardized experience.

TIP

For more information about authenticating with JWT tokens, see the Medium blog post Single-Sign-On to z/OS REST APIs with
Zowe.

By default, JWT tokens are produced by z/OSMF and the API Mediation Layer only serves as a proxy. For information about how to
change who and how tokens are produced, see Authentication Providers within Enable Single Sign On for Clients.

JWT Token-based Login Flow and Request/Response Format

The following sequence describes how authentication through JWT tokens works:

First, The API client obtains a JWT token by using the POST method on the /auth/login endpoint of the API service that requires a

valid user ID and password.

Secondly, the API client stores the JWT token or cookie and sends the token with every request as a cookie with the name
apimlAuthenticationToken .

Obtaining a JWT token
To obtain a JWT token, call the endpoint with the credentials for either basic authentication or the client certificate.

The full path for API ML is: /gateway/auth/login

The full URL is the base URL of the API service plus /auth/login . If the application has the base URL with /api/v1 , the full URL

could have the format: https://hostname:port/api/v1/auth/login .

Credentials are provided in the JSON request:

Successful login returns RC 204 , and an empty body with the token in the apimlAuthenticationToken cookie.

https://medium.com/zowe/single-sign-on-to-z-os-rest-apis-with-zowe-6e35fd022a95
https://docs.zowe.org/stable/user-guide/authenticating-with-jwt-token/api-mediation/configuration-jwt/#using-saf-as-an-authentication-provider

Failed authentication returns RC 401 without WWW-Authenticate .

Example:

The following output describes the status of the JWT token:

Making an authenticated request
You can send a JWT token with a request in two ways:

Allow the API client to pass the JWT token as a cookie header.

Pass the JWT token in the Authorization: Bearer header.

TIP

The first option (using a cookie header) is recommended for web browsers with the attributes Secure and HttpOnly . Browsers

store and send cookies automatically. Cookies are present on all requests, including those coming from DOM elements, and are
compatible with web mechanisms such as CORS, SSE, or WebSockets.

Cookies are more diffcult to support in non-web applications. Headers, such as Authorization: Bearer , can be used in non-

web applications. Such headers, however, are difficult to use and secure in a web browser. The web application needs to store
these headers and attach these headers to all requests where headers are required.

Allow the API client to pass the JWT token as a cookie header

One option to send a JWT token with the request is for the API client to pass the JWT token as a cookie header with the name
apimlAuthenticationToken :

Example:

Pass the JWT token in the Authorization: Bearer header

A second option to send a JWT with the request is to pass the JWT token in the Authorization: Bearer header.

Example:

Validating JWT tokens
The API client does not need to validate tokens. API services must perform token validation themselves. If the API client receives a
token from another source and needs to validate the JWT token, or needs to check details in the token, such as user ID expiration,
then the client can use the /auth/query endpoint provided by the service.

The JSON response contains the following fields:

creation

expiration

userId

These fields correspond to iss , exp , and sub JWT token claims. The timestamps are in ISO 8601 format.

Execute the following curl command to validate the existing JWT token, and to retrieve the contents of the token:

The following output describes the status of the JWT token:

Refreshing the JWT token
API Clients can refresh the existing token to prolong the validity period.

Use the auth/refresh endpoint to prolong the validity period of the token.

The auth/refresh endpoint generates a new token for the user based on the valid JWT token. The full path of the auth/refresh
endpoint appears as the following URL:

The new token overwrites the old cookie with a Set-Cookie header. As part of the process, the old token becomes invalidated and is
no longer usable.

NOTES:

The endpoint is disabled by default. For more information, see Enable JWT token endpoint.

The endpoint is protected by a client certificate.

The refresh request requires the token in one of the following formats:
Cookie named apimlAuthenticationToken .

Bearer authentication

For more information, see the OpenAPI documentation of the API Mediation Layer in the API Catalog.

The following request receives a valid JWT token and returns the new valid JWT token. As such, the expiration time is reset.

The following output describes the status of the JWT token:

Token format
The JWT must contain the unencrypted claims sub , iat , exp , iss , and jti . Specifically, the sub is the z/OS user ID, and iss is the

name of the service that issued the JWT token.

NOTE

For more information about JWT token formatting, see the paragraph 4.1 Registered Claim Names in the Internet Engineering
Task Force (IETF) memo that describes JSON Web Tokens.

The JWT must use the RS256 signature algorithm. The secret used to sign the JWT is an asymmetric key generated during installation.

Example:

https://docs.zowe.org/stable/user-guide/authenticating-with-jwt-token/api-mediation/configuration-jwt/#enabling-a-jwt-token-refresh-endpoint
https://tools.ietf.org/html/rfc7519#section-4.1

Version: v2.17.x LTS

Authenticating with client certificates

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

Authentication for integration with API Mediation Layer (API ML) can also be performed by the client when the service endpoint is
called through the API ML Gateway with client certificates. Client certification must be enabled and configured. For details about this
configuration, see Enabling single sign on for clients via client certificate configuration.

NOTES:

When calling the login endpoint with basic authentication credentials, as well as with client certificate, the basic
authentication credentials take precedence and the client certificate is ignored.

If you are calling a specific endpoint on one of the onboarded services, API Mediation Layer ignores Basic authentication. In
this case, the Basic authentication is not part of the authenticated request.

How the Gateway resolves authentication
When sending a request to a service with a client certificate, the Gateway performs the following process to resolve authentication:

1. The client calls the service endpoint through the API ML Gateway with the client certificate.

2. The client certificate is verified as a valid TLS client certificate against the trusted certificate authorities (CAs) of the Gateway.

3. The public key of the provided client certificate is verified against SAF. SAF subsequently returns a user ID that owns this
certificate. As of Zowe version 2.14, the API for API ML can be provided by the internal API ML mapper if the mapper is enabled.
Alternatively, you can use Z Secure Services (ZSS) to provide this API for API ML, although we recommend using the internal API
ML mapper.

4. The Gateway then performs the login of the mapped user and provides valid authentication to the downstream service.

NOTES:

Currently, ZSS is the default API that provides this mapping between the public part of the client certificate and SAF user ID.
However, the recommended method is to use the internal API ML mapper. For information about the enabling the internal
API ML mapper, see Configure Internal API ML Mapper in the article Enabling single sign on for clients via client certificate
configuration.

For information about ZSS, see the section Zowe runtime in the Zowe server-side installation overview.

When sending a request to the login endpoint with a client certificate, the Gateway performs the following process to exchange the
client certificate for an authentication token:

1. The client calls the API ML Gateway login endpoint with the client certificate.

2. The client certificate is verified to ensure this is a valid TLS client certificate against the trusted CAs of the Gateway.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-client-certificates#configure-internal-api-ml-mapper
https://docs.zowe.org/stable/user-guide/install-zos

3. The public part of the provided client certificate is verified against SAF. SAF subsequently returns a user ID that owns this
certificate. As of Zowe release 2.14, the internal API ML mapper can provide this API for API ML if enabled in the zowe.yaml file.
Alternatively, ZSS can provide this API for API ML, with the noted exception when using ACF2.

4. The Gateway then performs the login of the mapped user and returns a valid JWT token.

NOTE

ZSS is currently the default API that provides this mapping between the public part of the client certificate and SAF user ID. Using
the internal API ML mapper is, however, the recommended method.

The following diagram shows how routing works with ZSS.

TIP

For more information, see the Medium blog post Zowe client certificate authentication.

Configure your z/OS system to support client certificate authentication for a
specific user
Register the client certificate with the user ID in your ESM. The following commands apply to both the internal API ML mapper and
ZSS.

Example command in RACF:

RACDCERT ADD(<dataset>) ID(<userid>) WITHLABEL('<label>') TRUST

Example command in ACF2:

INSERT <userid>.<certname> DSNAME('<dataset>') LABEL(<label>) TRUST

https://medium.com/zowe/zowe-client-certificate-authentication-5f1c7d4d579

Example command in Top Secret:

TSS ADDTO(<userid>) DIGICERT(<certname>) LABLCERT('<label>') DCDSN('<dataset>') TRUST

Additional details are likely described in your security system documentation.

NOTES

Ensure that you have the Issuer certificate imported in the truststore or in the SAF keyring. Alternatively, you can generate
these certificates in SAF.

Ensure that the client certificate has the following Extended Key Usage metadata:

OID: 1.3.6.1.5.5.7.3.2

This metadata can be used for TLS client authentication.

Validate the client certificate functionality
To validate that the client certificate functionality works properly, call the login endpoint with the certificate that was set up using the
steps in Configure your z/OS system to support client certificate authentication described previously in this article.

Validate using CURL, a command line utility that runs on Linux based systems:

Example:

Your Zowe instance is configured to accept x.509 client certificates authentication.

Version: v2.17.x LTS

Authenticating with a Personal Access Token

REQUIRED ROLES: SYSTEM PROGRAMMER, SECURITY ADMINISTRATOR

You can use API Mediation Layer to generate, validate, and invalidate a Personal Access Token (PAT) that can enable access to tools
such as VCS without having to use credentials of a specific person. The use of PAT does not require storing mainframe credentials as
part of the automation configuration on a server during application development on z/OS. Additionally, using a PAT makes it possible
to limit access to specific services and users by means of token revocation when using a token.

Gateway APIs are available to both users as well as security administrators. APIs for users can accomplish the following functions:

User APIs

Generate a token

Validate a token

Invalidate a specific token

Invalidate all tokens

APIs for security administrators are protected by SAF resource checking and can accomplish the following functions:

Security Administrator APIs

Invalidate all tokens for a user

Invalidate all tokens for a service

Evict non-relevant tokens and rules

NOTES

An SMF record can be issued when a Personal Access Token is generated. For more information, see SMF records issued by
API ML.

To enable Personal Access Token support when using the Caching Service, Infinispan is the required storage solution.
Infinispan is part of Zowe installation. No additional software or installation is required when using this storage solution.

For detailed information about using the Personal Access Token as part of single sign on, see the section Using the Personal Access
Token to authenticate later in this article.

TIP

For additional information, see the Medium blog post Personal Access Tokens for the Zowe API Mediation Layer.

User APIs

Generate a token

https://docs.zowe.org/stable/user-guide/api-mediation/api-mediation-smf
https://medium.com/zowe/personal-access-tokens-for-the-zowe-api-mediation-layer-53e383ff1e61

A user can create the Personal Access Token by calling the following REST API endpoint through the Gateway:

POST /auth/access-token/generate

The full path of the /auth/access-token/generate endpoint appears as:

https://{gatewayUrl}:{gatewayPort}/gateway/api/v1/auth/access-token/generate .

The request requires the body in the following format:

validity
Specifies the expiration time of the token. The maximum threshold is 90 days.

scopes
Specifies the access limits on a service level. This parameter introduces a higher level of security in some aspects. Users are
required to provide a scope. If no service is specified, it is not possible to authenticate using the token.

When creation is successful, the response to the request is a body containing the PAT with a status code of 200 . When creation fails,

the user receives a status code of 401 .

Validate a token

The user can validate the Personal Access Token by calling the following REST API endpoint through the Gateway:

POST /auth/access-token/validate

The full path of the /auth/access-token/validate endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/validate .

The request requires the body in the following format:

NOTE

The user has the option of calling this API to validate the token, however, validation is also automatically performed by the API
ML.

When validation is successful, the response to the request is an empty body with a status code of 204 . When validation fails, the user

receives a status code of 401 .

Invalidate a specific token

The user can invalidate the Personal Access Token by calling the following REST API endpoint through the Gateway:

DELETE /auth/access-token/revoke

The full path of the /auth/access-token/revoke endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/revoke .

The request requires the body in the following format:

When the /auth/access-token/revoke endpoint is called, the provided hash of the PAT is stored in the cache by the Caching Service

under the invalidTokens key. As such, the token is invalidated. Access to these entries is protected by the API ML client certificate.

When invalidation is successful, the response to the request is an empty body with a status code of 204 . When invalidation fails, the
user receives a status code of 401 .

Invalidate all tokens

The user can invalidate all Personal Access Tokens by calling the following REST API endpoint through the Gateway:

DELETE /auth/access-token/revoke/tokens

The full path of the /auth/access-token/revoke/tokens endpoint appears as https://{gatewayUrl}:
{gatewayPort}/gateway/api/v1/auth/access-token/revoke/tokens .

The body can optionally provide a timestamp as part of the request. Use the following format for the body:

If the body is not provided, the timestamp value defaults to the current date.

When the /auth/access-token/revoke/tokens endpoint is called, the provided user rule is stored in the cache by the Caching

Service under the invalidUsers key. As such, all of the tokens of the user are invalidated. Access to these entries is protected by the

client certificate of the API ML.

When invalidation is successful, the response to the request is an empty body with a status code of 204 . When invalidation fails, the

user receives a status code of 401 .

Security Administrator APIs

Invalidate all tokens for a user

If a security breech is suspected, the security administrator can invalidate all the tokens based on criteria as established by rules. Such
criteria define the level of access control and can restrict access in advance. Rule based access restriction can be applied by either user
ID or service scopes.

NOTE

Rules are entries used to revoke the tokens either by users or by services. Such rule entries for services appear in the following
format:

Rule entries for users appear in the following format:

The Security Administrator with specific access to SAF resources can invalidate all tokens bound to a specific user by calling the
following REST API endpoint through the Gateway:

DELETE /auth/access-token/revoke/tokens/users

The full path of the /auth/access-token/revoke/tokens/users endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/revoke/tokens/users .

The request requires the body in the following format:

userId
Specifies the user the revocation is applied to.

timestamp
Specifies the date of revocation (the default value is the current time) in milliseconds. The timestamp is used to specify that
tokens created before the date specified in the timestamp are invalidated. As such, any subsequent tokens created after that date
are not affected by the user rule.

By calling this endpoint, the user rule is stored in the cache by the Caching Service under the invalidUsers key.

When invalidation is successful, the response to the request is an empty body with a status code of 204 . When invalidation fails, the
user receives a status code of 401 .

Invalidate all tokens for a service

A security administrator who has specific access to SAF resources can invalidate all tokens bound to a specific service by calling the
following REST API endpoint through the Gateway:

DELETE /auth/access-token/revoke/tokens/scope

The full path of the /auth/access-token/revoke/tokens/scope endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/access-token/revoke/tokens/scope .

The request requires the body in the following format:

Invalidation of all tokens is possible by using rules based on service scopes.

serviceId
Specifies the service to which the revocation should be applied (e.g. APPL IDs).

timestamp
Specifies the date of revocation (the default value is the current time) in milliseconds. A timestamp is used to state that tokens
created before the date specified in the timestamp are invalidated. As such, any subsequent tokens created after that date are not
affected by the service rule.

Calling this endpoint stores the service rule in the cache by the Caching Service under the invalidScopes key.

When invalidation is successful, the response to the request is an empty body with a status code of 204 . When invalidation fails, the
user receives a status code of 401 .

Evict non-relevant tokens and rules

The Security Administrator with specific access to SAF resources can evict non-relevant invalidated tokens and rules from the cache by
calling the following REST API endpoint through the Gateway:

DELETE /auth/access-token/evict

The full path of the /auth/access-token/evict endpoint appears as https://{gatewayUrl}:
{gatewayPort}/gateway/api/v1/auth/access-token/evict .

The /auth/access-token/evict endpoint evicts all invalidated tokens which were expired and all the rules related to the expired
tokens.

The main purpose of the eviction API is to ensure that the size of the cache does not grow unbounded. The token verification process
requires processing of all rules, including those which may no longer be applicable. As such, verification processing may result in
needless associated costs if there are stored rules which are no longer relevant.

When eviction is successful, the response to the request is an empty body with a status code of 204 . When eviction fails due to lack of

permissions, the administrator receives a status code of 403 .

Using the Personal Access Token to authenticate
There are four ways the API client can use the Personal Access Token to authenticate as part of the Single Sign On in which a service is
specified in the scopes at the time when the token is issued:

Using the Authorization: Bearer request header.

Example:

Using a Secure HttpOnly cookie with the name apimlAuthenticationToken .

Example:

Using a Secure HttpOnly cookie with the name personalAccessToken .

Example:

Using a request header with the name PRIVATE-TOKEN .

Example:

In these examples, the API client is authenticated.

If the API client tries to authenticate with a service that is not defined in the token scopes, the X-Zowe-Auth-Failure error header is

set and passed to the southbound service. The error message contains a message that the provided authentication is not valid.

Version: v2.17.x LTS

Authenticating with OIDC

REQUIRED ROLES: SYSTEM ADMINISTRATOR, SECURITY ADMINISTRATOR

The OpenID/Connect (OIDC) protocol adds an authentication layer on top of the OAuth2 Authorization protocol.

OIDC authentication, together with the z/OS Identity Propagation mechanism, is the foundation of the API ML Identity Federation. In
this article, OIDC is often referred to as the provider, while the token-related functionality is actually provided by the OAuth2
component of the OIDC implementation.

You can configure Zowe API ML to authenticate users by accepting Access Tokens issued by an external OIDC/OAuth2 provider. This
configuration is useful in advanced deployments of Zowe where client applications need to access mainframe as well as
enterprise/distributed systems while simultaneously offering single sign-on (SSO) across system boundaries.

This article details the API ML OIDC authentication functionality, and how to configure the OIDC Authentication feature.

NOTE

The OIDC feature is currently unavailable on ACF2 systems.

Usage

Authentication flow

Prerequisites
OIDC provider

ESM configuration

API ML configuration

Troubleshooting

Usage
The OIDC protocol is used by API ML client applications to verify the identity of a user with a distributed OIDC provider trusted by the
mainframe security manager. After successful user login, the OIDC provider grants the client application a JWT Access Token along
with an (JWT) Identity Token. The client application can pass this Access Token with subsequent requests to mainframe services routed
through the API ML Gateway. The API ML Gateway then validates the OIDC Access Token. If the token is valid, the user identity from
that token is mapped to the mainframe identity of the user. The API ML Gateway can then create mainframe user credentials (JWT or a
PassTicket) according to the service's authentication schema configuration. The request is routed to the target API services with
correct mainframe user credentials.

Authentication Flow
The following diagram illustrates the interactions between the participants of the OIDC/OAuth2 based API ML authentication process.

https://openid.net/specs/openid-connect-core-1_0.html
https://www.rfc-editor.org/rfc/rfc6749
https://www.redbooks.ibm.com/redbooks/pdfs/sg247850.pdf

When a user wants to access mainframe resources or services using the client application without valid authentication or an
access token, the client redirects the user agent to the login end-point of the distributed OIDC provider.

The user is asked to provide valid credentials (authentication factors).

After successful validation of all authentication factors, the OIDC provider grants the client an Access Token.

The client can then request from API ML Gateway the needed mainframe resources presenting the access token in the request.

The Gateway validates the access token by comparing the key id of the token against the key ids obtained from the authorization
server's JWK keys endpoint.

The URL to the specific authorization server's JWK keys endpoint should be set using the property jwks_uri . If the access token

is validated, the outcome is cached for a short time (20 sec by default).

The JWK Keys obtained from the authorization server's endpoint are cached for a while to prevent repeated calls to the endpoint.
The interval can be set using the property jwks.refreshInternalHours (The default value is one hour).

In subsequent calls with the same token, the Gateway reuses the cached validation outcome. As such, round trips to the OIDC
authorization server for JWK keys and JWT Token validation are not required between short intervals when the client needs to
access multiple resources in a row to complete a unit of work.

The caching interval is configurable with a default value of 20 seconds, which is typically a sufficient amount of time to allow most
client operations requiring multiple API requests to complete, while also providing adequate protection against unauthorized
access.

The API ML Gateway fetches the distributed user identity from the distributed access token and maps this user identity to the user
mainframe identity using SAF.

The API ML Gateway calls the requested mainframe service/s with mainframe user credentials (Zowe, SAF JWT, or PassTicket)
which are expected by the target mainframe service.

Prerequisites
Ensure that the following prerequisites are met:

Users who require access to mainframe resources using OIDC authentication have a mainframe identity managed by SAF/ESM.

Client application users have their distributed identity managed by the OIDC provider. For details, see the section OIDC provider
in this topic.

SAF/ESM is configured with mapping between the mainframe and distributed user identities. For details, see the section ESM
configuration in this topic.

If you are using Zowe release 2.14 or a later release, ensure that the API ML Gateway is configured to use the internal mapper
functionality. For information about enabling the API ML mapper, see Enabling the internal API ML mapper. Alternatively, enable
ZSS in the Zowe installation, however using the internal mapper is the recommended method. ZSS is enabled by default.

OIDC provider prerequisites

Client Application configuration in the OIDC provider

Depending on the OIDC provider and client application capabilities, configuration of the OIDC provider varies. For example, web
applications with a secure server side component can use code grant authorization flow and can be granted a Refresh

Token, whereas a Single Page Application running entirely in the User Agent (browser) is more limited regarding its security
capabilities.

TIP

Consult your OIDC provider documentation for options and requirements available for your type of client application.

Users have been assigned to the Client Application

To access mainframe resources, users with a distributed authentication must either be directly assigned by the OIDC provider to
the client application, or must be part of group which is allowed to work with the client application.

ESM configuration prerequisites

The user identity mapping is defined as a distributed user identity mapping filter, which is maintained by the System Authorization
Facility (SAF) / External Security Manager (ESM). A distributed identity consists of two parts:

A distributed identity name

A trusted registry which governs that identity

Administrators can use the installed ESM functionality to create, delete, list, and query a distributed identity mapping filter or filters:

Use the commands specific to your ESM to create a distributed identity mapping filter.

https://docs.zowe.org/stable/user-guide/authenticating-with-client-certificates#enabling-the-internal-api-ml-mapper

NOTE

User specified parameters are presented in the section Parameters in the ESM commands.

For RACF:

For more details about the RACMAP command, see RACMAP command.

For Top Secret:

For more details about mapping a distributed identity username and a distributed registry name to a Top Secret ACID, see IDMAP
Keyword - Implement z/OS Identity Propagation Mapping.

For ACF2:

For more details about mapping a distributed user to a logonid, see IDMAP User Profile Data Records.

Parameters in the ESM commands

userid

Specifies the ESM user id

distributed-identity-user-name

Specifies the user id for distributed-identity-registry

distributed-identity-registry-name

Specifies the URL value of the distributed-identity-registry where user is defined

label-name

Specifies the name for the distributed-identity mapping filter

Example for RACF:

Alternatively, API ML provides a Zowe CLI plug-in to help administrators generate a JCL for creating the mapping filter specific for the
ESM installed on the target mainframe system. These JCLs can be submitted on the corresponding ESM to create a distributed identity
mapping filter.

For details about how to use the plug-in tool to set up mapping in the ESM of your z/OS system, see the Identity Federation cli plug-
in documentation.

API ML OIDC configuration

Use the following procedure to enable the feature to use an OIDC Access Token as the method of authentication for the API
Mediation Layer Gateway.

TIP

You can leverage the Zowe CLI Identity Federation (IDF) Plug-in for Zowe CLI to extend Zowe CLI to make it easier to map
mainframe users with an identity provided by an external identity provider. This plug-in is designed to work with the ESMs: IBM
RACF, Broadcom ACF2, and Broadcom Top Secret.

https://www.ibm.com/docs/en/zos/2.3.0?topic=rcs-racmap-create-delete-list-query-distributed-identity-filter
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/issuing-commands-to-communicate-administrative-requirements/keywords/idmap-keyword-implement-z-os-identity-propagation-mapping.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/administrating/administer-records/user-profile-records/idmap-user-profile-records.html
https://docs.zowe.org/stable/user-guide/cli-idfplugin

For more information about the Zowe CLI Identity Federation Plug-in, see the README file in the api-layer repo.

In the zowe.yaml file, configure the following properties:

components.gateway.apiml.security.oidc.enabled

Specifies the global feature toggle. Set the value to true to enable OIDC authentication functionality.

components.gateway.apiml.security.oidc.registry

Specifies the SAF registry used to group the identities recognized as having a OIDC identity mapping. The registry name is the
string used during the creation of the mapping between the dustributed and mainframe user identities. For more information, see
the ESM configuration.

components.gateway.apiml.security.oidc.jwks.uri

Specifies the URI obtained from the authorization server's metadata where the Gateway will query for the JWK used to sign and
verify the access tokens.

components.gateway.apiml.security.oidc.jwks.refreshInternalHours

Specifies the frequency in hours to refresh the JWK keys from the OIDC provider. Defaults to one hour.

components.gateway.apiml.security.oidc.identityMapperUser

(Optional) If the userId is different from the default Zowe runtime userId (ZWESVUSR), specify the identityMapperUser userId to

configure API ML access to the external user identity mapper.

Note: User authorization is required to use the IRR.RUSERMAP resource within the FACILITY class. The default value is

ZWESVUSR . Permissions are set up during installation with the ZWESECUR JCL or workflow. To authenticate to the mapping API, a

JWT is sent with the request. The token represents the user that is configured with this property.

apiml.security.oidc.identityMapperUrl

Defines the URL where the Gateway can query the mapping of the distributed user ID to the mainframe user ID. This property
informs the Gateway about the location of this API. ZSS is the default API provider in Zowe, but if you are using Zowe release 2.14
or a later version, we recommend you use the API ML internal mapper. You can provide your own API to perform the mapping. In
this case, it is necessary to customize this value.

The following URL is the default value for Zowe and ZSS:

Troubleshooting

API ML fails to validate the OIDC access token with the Distributed Identity Provider

Symptom
The Gateway log contains the following ERROR message:
Failed to validate the OIDC access token. Unexpected response: XXX.

XXX
is the HTTP status code returned by the Identity Provider.

Explanation
The HTTP code is one of the 40X variants that provides the reason for the failure.

https://github.com/zowe/api-layer/edit/v3.x.x/zowe-cli-id-federation-plugin/README.md
https://docs.zowe.org/stable/user-guide/authenticating-with-client-certificates#enabling-the-internal-api-ml-mapper

Solution

Correct the Gateway configuration according to the code returned by the OIDC Identity Provider.

The access token validation fails with HTTP error

Symptom

The OIDC provider returns an HTTP 40x error code.

Explanation

The client application is not properly configured in the API ML Gateway.

Solution
Check that the URL jwks_uri contains the key for OIDC token validation.

TIP

API ML Gateway exposes a validate token operation which is suitable during the OIDC setup. The call to the endpoint
/gateway/api/v1/auth/oidc-token/validate verifies if the OIDC token is trusted by API ML. Note that the Gateway service

does not perform the mapping request to the ESM when the /gateway/api/v1/auth/oidc-token/validate endpoint is called.

Use the following curl command to make a REST request with the OIDC token to the validate token endpoint:

An HTTP 200 code is returned if the validation passes. Failure to validate returns an HTTP 40x error.

AZURE ENTRA ID OIDC NOTES:

API ML uses the sub claim of the ID Token to identify the user, and to map to the mainframe account. Note that the structure of

the sub claim varies between the Azure token and the OKTA ID token:

The Azure token sub is an alphanumeric value.
For more information, see the topic Use claims to reliably identify a user in the Microsoft Learn documentation.

The OKTA ID token has an email in the sub claim.

For more information about Entra ID token format see ID token claims reference in the Microsoft documentation.

Version: v2.17.x LTS

Using multi-factor authentication (MFA)
Zowe offers the option to use multi-factor authentication (MFA) systems, which require users to provide multiple authentication
factors during logon to verify the user's identity. When using multi-factor authentication, it is necessary that each authentication factor
be from a separate category of credential types. While multi-factor authentication is supported by Zowe, there are limitations for this
feature to function properly. This topic explains the limitations of using MFA in Zowe and recommendations to address these
limitations.

The Zowe API Mediation Layer, Zowe App Framework, and all apps present in the SMP/E or convenience builds support out-of-band
MFA. Users are required to enter an MFA assigned token or passcode into the password field of the Desktop login screen or
authentication to the API Catalog.

Alternatively, a user can access one of the authentication endpoints such as /gateway/auth/login within the API Mediation Layer or

via App-servers /auth REST API endpoint.

When using MFA with Zowe CLI or the API ML Catalog, users are required to log in with their mainframe user name and MFA token.

Prerequisite

If you use z/OSMF as your authentication provider, ensure that you meet the following prerequisite to use MFA with Zowe CLI or API
ML Catalog:

z/OSMF APAR for MFA must be installed on the system. For more information, see this APAR in IBM Support.

Known Limitations and Recommendations

Unintentional Reuse of MFA Token

When z/OSMF is used as a security provider, it is possible to reuse MFA tokens, whereby it is possible to receive a JWT token based on
previously used MFA token. This presents a security risk.

This issue can be resolved by configuring z/OSMF to work properly with API ML. Update the z/OSMF configuration with the following
parameter: allowBasicAuthLookup="false"

After applying this change, each authentication call results in generating a new JWT. For more information, see Configuring z/OSMF to
properly work with API ML, and Multi-factor authentication configuration in Configuring Zowe Application Framework.

No Notification when Additional Input is Required

Neither Zowe CLI nor API Catalog issue a notification when a user is required to provide additional input. This can occur in cases such
as when a user signon attempt triggers the requirements of a New Pin or Next Token. The user must resolve this situation outside of
Zowe. Depending on the current authentication factor enabled (RSA SecurID or RADIUS), the user can use TSO console or MFA Self-
service facilities.

https://www.ibm.com/support/pages/apar/PH39582
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://docs.zowe.org/stable/user-guide/mvd-configuration#multi-factor-authentication-configuration

We recommend you first try to access self-service facilities and resolve the issue there. If you are unable to access your self-service
facilities, contact your system administrator.

TIPS:

For more information about how to manage multi-factor authentication credentials in AAM, see Manage Multi-Factor
Authentication Credentials (IBM RACF) in the Advanced Authentication Mainframe 2.0 Broadcom documentation.

For more information about how to manage multi-factor authentication credentials in IBM Z MFA, see IBM Z Multi-Factor
Authentication.

Additionally, Zowe API ML can be configured to accept OIDC/OAuth2 user authentication tokens. In this particular case, MFA
support is built into the OIDC provider system. This support alternative does not rely on the mainframe MFA technology, but
is equally secure.

For more information about how to resolve the RADIUS Access Challenge, see the sub-topic RADIUS Access Challenge
Considerations in the article Manage Multi-Factor Authentication Credentials (IBM RACF).

Token Expiration when Stored in the Authorization Dialog in "Try it out"

When using the API Catalog, you have the option to use the "Try it out" functionality to test a protected endpoint. In this case, you are
given the option to provide and store MFA credentials in the Authorization dialog. As the MFA token has a short lifetime, we do not
recommend storing your MFA token when using this feature.

You can, however, continue to use your credentials in the Authorization dialog when you set a fixed password, rather than using an
MFA token. Alternatively, you can store your credentials in the Authorization dialog if your account is configured to bypass MFA mode.
In this case, authentication is performed through the mainframe credentials of the user.

https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0/using-with-ibm-racf/manage-multi-factor-authentication-credentials-ibm-racf.html
https://www.ibm.com/products/ibm-multifactor-authentication-for-zos
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-advanced-authentication-mainframe/2-0/using-with-ibm-racf/manage-multi-factor-authentication-credentials-ibm-racf.html

Version: v2.17.x LTS

Routing requests to REST APIs
API consumers can access any services onboarded to the API Mediation Layer through a single port. In this context, 'service' refers to
one or more instances that share the same API and are onboarded under the same service Id. Some services provide versioned APIs,
while other services provide an unversioned API. From the consumer side, the API Mediation Layer takes care of situations in which
one instance is down and/or ditributing the load between different instances of a service.

Types of services include both versioned and nonversioned services:

Versioned services
Routing with service ID and version

Nonversioned services
Using only the service ID

Under certain conditions it is possible to route to a specific instance of service.

Terminology
Service

A service provides one or more APIs, and is identified by a service ID. Note that sometimes the term "service name" is used to
mean the service ID.

The default service ID is provided by the service developer in the service configuration file.

A system administrator can replace the service ID with a deployment environment specific name using additional
configuration that is external to the service deployment unit. Most often, configuration is performed in a JAR or WAR file.

Services are deployed using one or more service instances, which share the same service ID and implementation.

URI (Uniform Resource Identifier)

The URI is a string of characters used to identify a resource. Each URI must point to a single corresponding resource that does not
require any additional information, such as HTTP headers.

Basic Routing
The basic method of routing is based on the service ID. For services that have multiple versions of an API, the secondary parameter is
the version of the API that the user wants to reach.

API ML Routing to the Versioned service

The URI identifies the resource, but does not identify the instance of the service as unique when multiple instances of the same service
are provided, such as when a service is running in high-availability (HA) mode. To get to a specific instance, it is necessary to access
the instance with a specific API ML configuration and header X-Instance-Id.

In addition to the basic Zuul routing, the Zowe API Gateway supports versioning in which the user can specify a major version. The
Gateway routes a request only to an instance that provides the specified major version of the API.

The /api/ prefix is used for REST APIs.

The prefix /ui/ applies to web UIs

The prefix /ws/ applies to WebSockets

The prefix /graphql/ applies to the GraphQL API

The URL expected by the API Gateway has the following format:

https://{gatewayHost}:{port}/{serviceId}/api/v{majorVersion}/{resource}

Example:

The following address shows the original URL of a resource exposed by a service:

The following address shows the API Gateway URL of the resource:

The following diagram illustrates how basic routing works:

Implementation details for routing

Zowe architecture with high availability enablement on Sysplex
The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into a Sysplex with high
availability enabled as opposed to running all components on a single z/OS system.

Zowe has a high availability feature built-in. To enable this feature, you can define the haInstances section in your YAML
configuration file.

The preceding diagram shows that ZWESLSTC started two Zowe instances running on two separate LPARs. These LPARs can be on the

same or different sysplexes.

Sysplex distributor port sharing enables the API Gateway 7554 ports to be shared, which makes it possible for incoming requests
to be routed to either the Gateway on LPAR A or LPAR B.

The discovery servers on each LPAR communicate with each other and share their registered instances, which allows the API
Gateway on LPAR A to dispatch APIs to components either on its own LPAR, or alternatively to components on LPAR B. As
indicated in the diagram, each component has two input lines: one from the API Gateway on its own LPAR, and one from the
Gateway on the other LPAR. When one of the LPARs goes down, the other LPAR remains operating within the sysplex, thereby
providing high availability to clients that connect through the shared port irrespective of which Zowe instance is serving the API
requests.

The zowe.yaml file can be configured to start Zowe instances on more than two LPARS, and also to start more than one Zowe

instance on a single LPAR, thereby providing a grid cluster of Zowe components that can meet availability and scalability
requirements.

The configuration entries of each LPAR in the zowe.yaml file control which components are started. This configuration mechanism

makes it possible to start just the desktop and API Mediation Layer on the first LPAR, and start all of the Zowe components on the
second LPAR. Because the desktop on the first LPAR is available to the gateway of the second LPAR, all desktop traffic is routed to the
second LPAR.

The caching services for each Zowe instance, whether on the same LPAR, or distributed across the sysplex, are connected to each
other by the same shared VSAM data set. This arrangement allows state sharing so that each instance behaves similarly to the user

irrespective of where their request is routed.

For simplification of the preceding diagram, the Jobs and Files API servers are not shown as being started. If the user defines Jobs and
Files API servers to be started in the zowe.yaml configuration file, these servers behave the same as the servers that are illustrated. In

other words, these services register to their API discovery server which then communicates with other discovery servers on other Zowe
instances on either the same or other LPARs. The API traffic received by any API Gateway on any Zowe instance is routed to any of the
Jobs or Files API components that are available.

To learn more about Zowe with high availability enablement, see Configuring Sysplex for high availability.

API Versioning

Service instances provide one or more different API versions. One important assumption is that one service instance does not provide
two versions with the same major version. No assumptions are made regarding which versions are provided and how. As such, an
instance can provide only one version and that another version is provided by a different instance, and other services can have
instances that provide multiple versions.

The API user specifies only the major version in the URI. The API Catalog needs to differentiate between different full versions
internally and be able to return a specific full version or return documentation for the highest version of the specified major version
that is supported by all running services.

Guidelines

The version of the API is not dependent on the product release.

Two last versions are supported.

Major version
This version is specified by the user of the API in the URI, and increased only when a backward incompatible change is introduced.
This circumstance is rare because the REST APIs should be designed to allow extensibility.

Minor version
This version is not specified in the URI but the user should know what is it. It is important to display the correct level of
documentation. The minor version is increased when the API is extended with a new feature (if you use a new resource available
in v1.2, the request fails on v1.1). If there are multiple instances of the services that have different minor versions, the service
together will state that the lowest minor version is available.

Example:

Instance A provide v1.3 and v2.2. Instance B was not yet upgraded and provides v1.2 and v2.1. Subsequently, the service provides v1.2
and v2.1.

Patch version
The Patch version is not specified in the URI and does not indicate a difference in the API. A patch version is used only when the
API documentation is patched or a bug was fixed with no change in the API.

https://docs.zowe.org/stable/user-guide/api-mediation/configure-sysplex

Version: v2.17.x LTS

Routing with WebSockets
In WebSocket routing, the API ML Gateway acts as both a WebSocket server for the client requesting this connection, and as a
WebSocket client.

The following schema describes the interactions between client-side and server-side components where the Gateway has a double
role as both client and server.

TIP

We recommend that clients implement a ping-like mechanism to maintain the opened WebSocket sessions and not rely on the
web browser to perform this action.

Security and Authentication

Subprotocols

High availability

Idle Timeout

Diagnostics

Limitations

Security and Authentication
The API Gateway usually uses TLS with the wss protocol. Services that use TLS enable the API Gateway to use wss to access these

services. Services that do not use TLS require the API Gateway to use the ws protocol without TLS. The API Gateway also supports

basic authentication via WebSocket.

Subprotocols
In addition to plain WebSocket support, API Mediation Layer also supports WebSocket subprotocols. Currently, only STOMP v1.2 and
STOMP v1.1 are supported and tested.

NOTE

It is possible to update the list of currently supported WebSocket subprotocols. Update the API Gateway configuration using the
environment variable SERVER_WEBSOCKET_SUPPORTEDPROTOCOLS with the value of comma-separated subprotocol names.

Support for additional subprotocols is not guaranteed as these subprotocols are not being tested.

Example:

High availability
In the high availability scenario, a WebSocket session is established between client and a selected Gateway. This session is then tied to
this instance for its entire duration.

Idle Timeout
The WebSocket client on the API ML Gateway has a default Idle timeout of one hour. If a WebSocket session between the Gateway
WebSocket Client and the Service's WebSocket Server is inactive for the entire period, the connection is closed.

To customize this setting, set the following property in zowe.yaml:

NOTE

This setting is global for the API ML Gateway.

Diagnostics

The list of active routed WebSocket sessions is available at the Actuator endpoint websockets . On localhost , it is available at
https://localhost:10010/application/websockets.

The actuator endpoint is enabled with debugging enabled in the API ML Gateway.

Limitations
Different HTTP status code errors may result. The WebSocket session starts before the session starts between the Gateway and the
service. When a failure occurs when connecting to a service, the WebSocket session terminates with the WebSocket close code and a
description of the failure that occurred between the Gateway and the Service rather than an HTTP error code.

https://localhost:10010/application/websockets

Version: v2.17.x LTS

Using GraphQL APIs
GraphQL is a query language for APIs that provides descriptions of the data in your APIs, and allows for specific queries to facilitate
API development. Routing for such APIs is possible within the Zowe ecosystem, however at the present time, Zowe itself does not
provide any GraphQL APIs.

For more information about configuring routing to API ML, see the following articles:

Implementing routing to the Gateway

Routing Requests to REST API

TIP

For information about how to use GraphQL, see GraphQL Best Practices in the GraphQL product documentation.

For information about how to use HTTP to deliver the GraphQL interface, see Serving over HTTP in the GraphQL product
documentation.

Difference between GraphQL APIs and traditional REST APIs
REST APIs operate on the principle of resource-based endpoints. Each endpoint in a REST API corresponds to a specific resource (like a
user or product), and the type of request (GET , POST , PUT , DELETE) dictates the operation performed on that resource. This approach
leads to a straightforward and uniform interface but often results in the over-fetching or under-fetching of data. Over-fetching occurs
when the fixed data structure of an endpoint returns more information than the client needs, while under-fetching happens when the
client must make additional requests to gather all the necessary data. Additionally, REST APIs rely heavily on HTTP status codes for
error handling and utilize standard HTTP methods for caching and statelessness.

By contrast, GraphQL offers a more flexible and efficient way of working with data. Unlike REST, which uses multiple endpoints,
GraphQL uses a single endpoint through which clients can make versatile queries. These queries are tailored to retrieve exactly the
data required, eliminating over-fetching and under-fetching issues inherent in REST. GraphQL's strongly typed system, defined by a
schema, ensures that the data conforms to a specific structure, providing a contract between the server and client. This approach
simplifies data retrieval for complex, nested data and allows for more precise error handling within the responses. However, GraphQL's
flexibility can lead to more complex queries and demands careful consideration regarding performance, especially in designing how
queries are resolved on the server side.

Routing to GraphQL example
The following routing example applies only to services extending API ML that provide GraphQL APIs.

Use the following format to map to a GraphQL API:

Example:

routes:

https://docs.zowe.org/stable/user-guide/extend/extend-apiml/implementing-routing-to-the-api-gateway
https://docs.zowe.org/stable/user-guide/api-mediation/use-graphql-api/routing-requests-to-rest-apis
https://graphql.org/learn/best-practices/
https://graphql.org/learn/serving-over-http/

gatewayUrl: "api/v1/graphql" serviceUrl: "/graphql"

In this example, the service has a service ID of helloworldservice that exposes the following endpoints:

GraphQL https://gateway/helloworldservice/api/v1/graphql routed to https://hwServiceHost:port/graphql/

where:

The gatewayUrl is matched against the prefix of the URL path used at the Gateway https://gateway/urlPath

urlPath is serviceId/prefix/resourcePath .

The service ID is used to find the service host and port.

The serviceUrl is used to prefix the resourcePath at the service host.

NOTE

The service ID is not included in the routing metadata. Instead, the service ID is in the basic Eureka metadata.

How GraphQL Works
GraphQL operates through the type system you define for your data and uses the following structure:

Schema Definition
Define a 'schema' or a model of the data that can be queried through the API. This schema acts as a contract between the client
and the server.

Query
Clients send queries to your GraphQL server. These queries specify what data the client needs.

Resolving Queries
The server processes these queries according to the schema and returns the appropriate results.

Key Concepts of GraphQL

Queries and Mutations
In GraphQL, queries are used for reading data, while mutations are used for writing data. This clear separation makes
understanding and maintaining the API simpler.

Real-time Data with Subscriptions
GraphQL supports subscriptions, which allow clients to subscribe to real-time updates, essential for dynamic content applications.

Strongly Typed
GraphQL APIs are strongly typed so that every operation is checked and validated against the schema, leading to more reliable
and predictable APIs.

Limitations for the API Mediation Layer
The documentation for the GraphQL is not provided via the standard OpenAPI protocol, but rather, for the most part are living as a
sandbox environment within the GraphQL applications.

TIP

The API Catalog currently does not support visualization of GraphQL APIs. As such, we recommend that extenders provide a link
to the GraphQL endpoint via the Open API for the API Catalog.

Version: v2.17.x LTS

Multitenancy Configuration
Zowe supports management of multiple tenants, whereby different tenants can serve different purposes or different customers. The
use case for multi-tenant support is when a service provider manages sysplexes/monoplexes for multiple customers. This
configuration makes it possible to have a single access point for all customers, and properly route and authenticate across different
domains.

Overview of Central and Domain API MLs

Multitenancy component enablement settings

Onboarding Domain Gateways to the central Cloud Gateway
Dynamic Onboarding (recommended) for Domain Gateways

Static Onboarding for Domain Gateways (deprecated)

Onboarding a Domain Cloud-Gateway service to Central Discovery service
Dynamic Configurations to the Central Discovery Service

Dynamic configuration: YML

Dynamic configuration: Environment variables

Validating successful configuration

Establishing a trust relationship between Domain API ML and Central API ML
Commands to establish trust between Domain and Central API MLs

Using the /registry endpoint in Cloud Gateway

Configuration for /registry

Authentication for /registry

Authorization for /registry

Requests with /registry

Response with /registry

Validating successful configuration with /registry

Gateway static definition example

Troubleshooting multitenancy configuration
ZWESG100W

No debug messages similar to apiml1 completed with onComplete are produced

Overview of Central and Domain API MLs
The following diagram illustrates communication between the "central" API Mediation Layer and Zowe in multiple domains. Note that
some API MLs may be running in a sysplex (HA), while others may be in a monoplex (non-HA).

Domain-Central is where the "central" API ML is running, and may be on z/OS, or off z/OS, for example in Kubernetes. This API ML is
referred to as the Central API ML. The Central API ML serves as a single point of access to all API Mediation Layers registered in it, and
by extension, to all services registered in those secondary API MLs.

Domain-1 to Domain-N are z/OS systems with the standard Zowe API ML running either in HA (sysplex) or non-HA (monoplex). These
API MLs are referred to as Domain API MLs.

Multitenancy component enablement settings
In the multitenancy environment, certain Zowe components may be enabled, while others may be disabled. The multitenancy
environment expects one Central API ML that handles the discovery and registration as well as routing to the API ML installed in
specific domains. As such, different setups are required for the V2 version of the API ML on the central domain and on the specific
customer environments.

When using a multitenancy environment, ensure that the following Zowe components are either enabled or disabled:

Domain API ML

Gateway and Discovery Service: enabled

Cloud Gateway: disabled

Central API ML

Cloud Gateway and Discovery Service: enabled

Gateway: disabled

Onboarding Domain Gateways to the Central Cloud Gateway

The Central Cloud Gateway must onboard all Domain Gateways. This can be done dynamically or by static definition. We strongly
recommend using dynamic onboarding as this onboarding method adapts better to the potentially changing environments of the
customer. Static onboarding does not provide the functionality to actively monitor the health of specific services (e.g. domain
gateways).

Dynamic Onboarding (recommended) for Domain Gateways

To dynamically onboard to the Discovery service in the central cluster, set the following property for all Domain Gateways:

components.gateway.apiml.service.additionalRegistration

Use the following example as a template for how to set the value for this property in zowe.yml.

Example:

NOTE

It is not necessary for the Gateway service to provide different routing patterns for the Central Discovery service. These metadata
can be the same for every cluster.

Static Onboarding for Domain Gateways (deprecated)

Alternatively, you can statically onboard all Domain Gateways on the Central Discovery service. Note that dynamic onboarding is the
preferred method.

For static onboarding, make sure that the following parameters are correctly specified in the static definition file:

services.serviceId
Specify this parameter to GATEWAY

services.instanceBaseUrls
Specifies the URL of the Domain Gateway

services.customMetadata.apiml.service.apimlId
Specifies the id of the API ML environment

For static onboarding, use the Gateway static definition example (deprecated) presented later in this article.

Onboarding a Domain Cloud Gateway service to the Central Discovery
service

The Central Cloud Gateway can onboard Cloud Gateways of all domains. This service onboarding can be achieved similar to additional
registrations of the Gateway. This section describes the dynamic configuration of the yaml file and environment variables, and how to
validate successful configuration.

Dynamic configuration via zowe.yaml

Dynamic configuration via Environment variables

Dynamic Configurations to the Central Discovery service

Dynamic configuration: YML

Users must set the following property for the Domain Cloud Gateway to dynamically onboard to the Central Discovery service.

components.cloud-gateway.apiml.service.additionalRegistration

Use the following example as a template for how to set the value of this property in zowe.yml.

Example:

Dynamic configuration: Environment variables

The list of additional registrations is extracted from environment variables. You can define a list of objects by following YML ->
Environment translation rules.

The previous example can be substituted with the following variables:

This Zowe configuration transforms the zowe.yaml configuration file into the environment variables described previously.

Validating successful configuration

The corresponding Cloud Gateway service should appear in the Eureka console of the Central Discovery service.

To see details of all instances of the ‘CLOUD-GATEWAY’ application, perform a GET call on the following endpoint of the Central
Discovery service:

Establishing a trust relationship between Domain API ML and Central API
ML
For routing to work in a multitenancy configuration, the Central API Mediation Layer must trust the Domain API Mediation Layers for a
successful registration into the Discovery Service component. The Domain API Mediation Layers must trust the Central API Mediation
Layer Gateway to accept routed requests. It is necessary that the root and, if applicable, intermediate public certificates be shared
between the Central API Mediation Layer and Domain API Mediation Layers.

The following diagram is a visual description of the relationship between the Central API ML and Domain API MLs.

As shown in this example diagram, the Central API ML is installed on system X. Domain API MLs are installed on systems Y and Z.

To establish secure communications, "Domain APIML 1" and "Domain APIML 2" are using different private keys signed with different
public keys. These API MLs do not trust each other.

In order for all Domain API MLs to register with the Central API ML, it is necessary that the Central API ML have all public keys from
the certificate chains of all Domain API MLs:

DigiCert Root CA

DigiCert Root CA1

DigiCert CA

These public keys are required for the Central API ML to establish trust with "Domain APIML 1" and "Domain APIML 2".

The Central API ML uses a private key which is signed by the Local CA public key for secure communication.

"Domain APIML 1" and "Domain APIML 2" require a Local CA public key in order to accept the routing requests from the Central API
ML, otherwise the Central API ML requests will not be trusted by the Domain API MLs. The diagram indicates all of the added
certificates inside the red dashed lines.

Commands to establish trust between Domain and Central API MLs

The following commands are examples of establishing a trust relationship between a Domain API ML and the Central API ML for both
PKCS12 certificates and when using keyrings.

1. Import the root and, if applicable, the intermediate public key certificate of Domain API MLs running on systems Y and Z into the
truststore of the Central API ML running on system X.

PKCS12

For PKCS12 certificates, use the following example of keytool commands:

keytool -import -file sysy/keystore/local_ca/local_ca.cer -alias gateway_sysy -keystore

sysx/keystore/localhost/localhost.truststore.p12

keytool -import -file sysz/keystore/local_ca/local_ca.cer -alias gateway_sysz -keystore

sysx/keystore/localhost/localhost.truststore.p12

Keyring

For keyrings, use the following examples of commands specific to your ESM to add certificates from the dataset and connect
these certificates to the keyring used by the Central API ML:

For RACF:

Verify:

For ACF2:

Verify:

For TopSecret:

Verify:

2. Import root and, if applicable, intermediate public key certificates of the Central API ML running on system X into the truststore of
the Domain API MLs running on systems Y and Z.

PKCS12

For PKCS12 certificates, use the following example of the keytool commands:

keytool -import -file x/keystore/local_ca/local_ca.cer -alias gateway_x -keystore

y/keystore/localhost/localhost.truststore.p12

keytool -import -file x/keystore/local_ca/local_ca.cer -alias gateway_x -keystore

z/keystore/localhost/localhost.truststore.p12

Keyring

For keyring certificates, use the following examples of commands specific to your ESM to add certificates from the dataset, and
connect these certificates to the keyrings used by Domain API MLs:

For RACF:

Verify:

For ACF2:

Verify:

For TopSecret:

Verify:

You completed certificates setup for multitenancy configuration, whereby Domain API MLs can trust the Central API ML and vice versa.

Using the /registry endpoint in the Central Cloud Gateway

The /registry endpoint provides information about services onboarded to all Domain Gateways and the Central Cloud Gateway.

This section describes the configuration, authentication, authorization, example of requests, and responses when using the /registry

endpoint.

Configuration for /registry

The /registry endpoint is disabled by default. Use the following environment variable to enable this feature:

APIML_CLOUDGATEWAY_REGISTRY_ENABLED=TRUE

Authentication for /registry

The /registry endpoint is authenticated by the client certificate. The Central Cloud Gateway accepts certificates that are trusted. The

username is obtained from the common name of the client certificate.

Unsuccessful authentication returns a 401 error code.

Authorization with /registry

Only users configured by the following environment variable are allowed to use the /registry endpoint.

APIML_SECURITY_X509_REGISTRY_ALLOWEDUSERS=USER1,user2,User3

This parameter makes it possible to set multiple users as a comma-separated list.

Unsuccessful authorization returns a 403 error code.

Requests with /registry

There are two endpoints that provide information about services registered to the API ML. One endpoint is for all domains, and the
other endpoint is for the specific domain. Choose from the following GET calls:

GET /cloud-gateway/api/v1/registry

This request lists services in all domains.

GET /cloud-gateway/api/v1/registry/{apimlId}

This request lists services in the apimlId domain.

GET /cloud-gateway/api/v1/registry/{apimlId}?apiId={apiId}&serviceId={serviceId}

This request gets the specific service in the specific apimlId domain.

Response with /registry

Example:

Response with /registry{apimlId}

Should contain information about all services in a specific domain

Example:

GET /cloud-gateway/api/v1/registry/apiml2

Response with GET /cloud-gateway/api/v1/registry/{apimlId}?apiId={apiId}&serviceId=
{serviceId}

Should contain information about a specific service in a specific domain

Example:

GET /cloud-gateway/api/v1/registry/apiml2?apiId=zowe.apiml.gateway&serviceId=catalog

Validating successful configuration with /registry

Use the /registry endpoint to validate successful configuration. The response should contain all Domain API MLs represented by

apimlId , and information about onboarded services.

Gateway static definition example (deprecated)
The Gateway static definition file should be stored together with other statically onboarded services. The default location is
/zowe/runtime/instance/workspace/api-mediation/api-defs/ . There is no naming restriction of the filename, but the file

extension must be yml .

Example:

Troubleshooting multitenancy configuration

ZWESG100W

Cannot receive information about services on API Gateway with apimlId 'apiml1' because: Received fatal alert: certificate_unknown;
nested exception is javax.net.ssl.SSLHandshakeException: Received fatal alert: certificate_unknown

Reason
The trust between the domain and the Cloud Gateway was not established.

Action
Review your certificate configuration.

No debug messages similar to apiml1 completed with onComplete are produced

Reason
Domain Gateway is not correctly onboarded to Discovery Service in Central API ML.

Action
Review Gateway static definition. Check the Central Discovery Service dashboard if the domain Gateway is displayed.

Version: v2.17.x LTS

Obtaining Information about API Services
As an API Mediation Layer user, information about API services can be obtained for various purposes. The following list presents some
of the use cases for using the API Mediation Layer:

To display available services based on a particular criterion (API ID, hostname, or custom metadata)

To locate a specific API service based on one or more specific criteria (for example the API ID)

To obtain information that permits routing through the API Gateway such as baseUrl or basePath

To obtain information about an API service, the service APIs, or instances of the service

This article provides further detail about each of these use cases.

Using API ID in API ML to locate APIs in different instances

Protecting Service Information

Using API Endpoints
Obtaining Information about a Specific Service

Obtaining Information about All Services

Obtaining Information about All Services with a Specific API ID

Using API ID in API ML to locate APIs in different instances
The API ID uniquely identifies the API in the API ML. The API ID can be used to locate the same APIs that are provided by different
service instances. The API developer defines this ID.

For more information about baseUrl or basePath, see Components of a URL.

Protecting Service Information
Information about API services is considered sensitive as it contains partial information about the internal topology of the mainframe
system. As such, this information should be made accessible only by authorized users and services.

Access to this information requires authentication using mainframe credentials, as well as verification of access to resources through
SAF. The resource class and resource is defined in the ZWESECUR job. Dor more information about ZWESECUR job, see Addresing z/OS

requrements for Zowe.

The security administrator needs to permit READ access to the APIML.SERVICES resource in the ZOWE resource class to access the

information about API services.

In IBM RACF, access to service information is specified in the following parameter:

In Top Secret:

In ACF2:

https://docs.zowe.org/stable/user-guide/extend/extend-apiml/api-mediation-components-of-URL
https://docs.zowe.org/stable/user-guide/obtaining-information-about-api-services/configure-zos-system

The API Gateway can be configured to check for SAF resource authorization in several ways. For more information, see SAF Resource
Checking.

Using API Endpoints

Obtaining Information about a Specific Service

Use the following method to get information about a specific service:

GET /gateway/api/v1/services/{serviceId}

where:

{serviceId} is the service ID of the API service (Example: apicatalog)

This method returns a JSON response that describes the service. For more information, see Response Format.

Obtaining Information about All Services

Use the following method to get information about all services:

GET /gateway/api/v1/services

This method returns a JSON response with a list of all services. For more information, see Response Format.

Obtaining Information about All Services with a Specific API ID

Use the following method to get information about all services with a specific API ID:

GET /gateway/api/v1/services?apiId={apiId}

where:

{apiId} is the API ID that represents required API (e.g. zowe.apiml.apicatalog)

This method returns a JSON response with a list of services provided by a specified API ID. For more information, see Response
Format.

Response Format

This section provides basic information about the structure of the response. The full reference on the field in the response is presented
in the API Catalog.

The apiml section provides information about the following points:

The service in the service subsection is displayed.

The APIs that are provided by the service in the apiInfo section. This section presents each major API version that is provided by

at least one instance. For each major version, the lowest minor version is displayed.

The authentication methods that are supported by all instances are displayed.

https://docs.zowe.org/stable/user-guide/obtaining-information-about-api-services/api-mediation/configuration-saf-resource-checking

API clients can use this information to locate the API based on API ID. baseUrl or basePath are used to access the API through the

API Gateway.

The instances section contains more details about the instances of the service. An API service can provide more application specific

details in customMetadata that can be used by API clients. Do not use information in this section for use cases that API Gateway

supports, such as routing or load balancing.

Example:

Version: v2.17.x LTS

Using Swagger "Try it out" in the API Catalog
The API Catalog makes it possible for users to call service APIs through the Try it out functionality. There are 2 types of endpoints:

Public endpoints

Endpoints that are accessible without entering user credentials.

Protected endpoints

Endpoints that are only accessible by entering user credentials. These endpoints are marked with a lock icon.

Example:

Before making requests to protected endpoints, authorize your session by clicking the lock icon and complete the required
information in the Authorization modal:

Example:

To demonstrate Try it out, we use the example of the Swagger Petstore.

Example:

Make a request
Follow this procedure to make a request.

1. Expand the POST Pet endpoint.

2. Click Try it out.

Example:

After you click Try it out, the example value in the Request Body field becomes editable.

3. In the Example Value field, change the first id value to a random value. Change the second name value to a value of your
choice, such as the name of a pet.

4. Click Execute.

Example:

The API Catalog Swagger UI submits the request and shows the curl that was submitted. The Responses section shows the
response.

Example:

Version: v2.17.x LTS

Using Swagger Code Snippets in the API Catalog
As part of the Try it out functionality, the API Catalog provides Code Snippets in different languages for each service API operation.
The following languages are supported:

C

C#

Go

Java

JavaScript

Node.js

PHP

Python

cURL

Each of these languages supports a specific HTTP Snippet library (i.e. Java Unirest, Java okhttp etc.).

The basic code snippets provide REST API call samples. To show to the user the real usage of the SDKs, the service onboarder can
specify a customized snippet as part of the service configuration:

Example:

Example:

Generate the code snippets
Use the following procedure to generate code snippets:

Click Try it out and execute the request, as described in the previous section.

The API Catalog generates the basic code snippets, shown under the code snippet tab. If the service onboarder has also provided
customized code snippets, these snippets are displayed in the snippet bar under a title prefixed with Customized .

Example:

Version: v2.17.x LTS

Using Static API services refresh in the API Catalog
The API Catalog enables users to manually refresh static service APIs. Use the Refresh Static APIs option if you change a static service
API and want these changes to be visible in the API Catalog without restarting the Discovery Service.

Example:

To refresh the status of a static service, click the Refresh option located in the upper right-hand side of the API Catalog UI. Successful
requests return a pop-up notification that displays the message, The refresh of static APIs was successful! .

Example:

If the request fails, a dialog appears with an error message that describes the cause of the fail.

Example:

NOTE

The manual Refresh Static APIs option applies only to static service APIs. Changes to the status of services that are onboarded
to allow for dynamic discovery require a restart of the specific services where changes are applied. It is not necessary to restart
the API Catalog or the Discovery Service.

Version: v2.17.x LTS

Onboarding a REST API service with the YAML Wizard
As an API developer, you can use the Yaml Onboarding Wizard to simplify the process of onboarding new REST API services to the
Zowe API Mediation Layer. The wizard offers a walkthrough of the required steps to create a correct configuration file which is used to
set the application properties and Eureka metadata.

Onboarding your REST service with the Wizard
Use the following procedure to onboard your REST service with the Wizard.

1. In the dashboard of the API Catalog, click the Onboard New API dropdown located in the navbar.

2. Choose the type of onboarding according to your preference (static or via enablers).

3. (Optional) To prefill the fields, click Choose File to upload a complete or partial YAML file. The YAML file is validated and the form
fields are populated.

4. Fill in the input fields according to your service specifications.

5. Address each of the categories in the dialog dropdown.

6. Click Save to apply your changes.

7. Validate successful onboarding with the following step according to your onboarding method.

For static onboarding, the following validation message appears after successful onboarding:

For onboarding using an enabler, click Copy to save the generated yaml file to your clipboard. Then paste this yaml file in
your project's service-configuration.yml file.

If you see your service in the list of API Catalog available services, you have onboarded your service successfully.

Version: v2.17.x LTS

Using the Caching Service
As an API developer, you can use the Caching Service as a storage solution to enable resource sharing between service instances,
thereby ensuring High Availability of services. The Caching Service makes it possible to store, retrieve, and delete data associated with
keys. The Caching Service is designed to make resource sharing possible for services that cannot be made stateless in two ways:

Using VSAM to store key/value pairs for production

Using InMemory

NOTE

In the current implementation of the Caching Service, VSAM is required for the storage of key/value pairs for production, as
VSAM is a native z/OS solution for storing key/value pairs.

The Caching Service is available only for internal Zowe applications, and is not exposed to the internet. The Caching service supports a
hot-reload scenario in which a client service requests all available service data.

Architecture

Storage methods
Infinispan

VSAM

Redis

InMemory

How to start the service

Methods to use the Caching service API

Configuration properties

Authentication

Architecture

A precondition to provide for High Availability of all components within Zowe is the requirement that these components be either
stateless, or for the resources of the service, to be offloaded to a location accessible by all instances of the service. This condition also
applies to recently started instances. Some services, however, are not and cannot be stateless. The Caching Service is designed for
these types of services.

REST APIs make it possible to create, delete, and update key-value pairs in the cache. Other APIs read a specific key-value pair or all
key-value pairs in the cache.

Information from cached APIs is stored as a JSON in the following format:

Storage methods

The Caching Service supports the following storage solutions, which provide the option to add custom implementation.

For information about configuring your storage method for the Caching Service for high availability, see Configuring the Caching
Service for high availability.

Infinispan (recommended)

Infinispan is a storage solution that can also run on the z/OS platform. It can store data structures in key-value pairs, has high-
availability support, and is highly performant.

For more information about the Infinispan storage access method, see Using Infinispan as a storage solution through the Caching
service.

VSAM

VSAM can be used to organize records into four types of data sets: key-sequenced, entry-sequenced, linear, or relative record. Use
VSAM as the storage solution for production. VSAM is used primarily for applications and is not used for source programs, JCL, or
executable modules. ISPF cannot be used to display or edit VSAM files.

For more information about the VSAM storage access method, see Using VSAM as a storage solution through the Caching Service

Redis

Redis is a common storage solution that runs outside of the z/OS platform. It can store data structures in key-value pairs, has high-
availability support, and is highly performant.

For more information about the Redis storage access method, see Using Redis as a storage solution through the Caching Service.

InMemory

The InMemory storage method is a method suitable for testing and integration verification. Be sure not to use InMemory storage in
production. The key/value pairs are stored only in the memory of a single instance of the service. As such, the key/value pairs do not
persist.

How to start the Service
By default, the Caching Service starts along with the other Zowe components. To prevent the Caching Service from starting, set
components.caching-service.enabled to false in zowe.yaml .

Methods to use the Caching Service API
To apply a method to the Caching Service, use the following API path:

/cachingservice/api/v1/cache/${path-params-as-needed}

Use the following methods with the Caching Service API:

POST /cache

Creates a new key in the Cache

https://docs.zowe.org/stable/user-guide/configure-caching-service-ha
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-infinispan
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-vsam
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis

GET /cache

Returns all key/value pairs for specific service

PUT /cache/{key}

Updates the existing value for the given key

GET /cache/{key}

Returns the existing value for the given key

DELETE /cache/{key}

Deletes a key/value pair

Configuration properties
The Caching Service uses the standard application.yml structure for configuration. The service is built on top of the Spring enabler.

As such, it dynamically registers to the API Mediation Layer. The service appears in the API Catalog under the tile, "Zowe Applications".

caching.storage.size

This property limits the size of the Caching Service. In the VSAM and InMemory implementations, this property represents the
number of records stored before the eviction strategy is initiated. The default value is 100 .

Note: Different implementations may implement this property differently.

caching.storage.evictionStrategy

This parameter specifies service behavior when the limit of records is reached. The default value is Reject .

where:

reject
rejects the new item with the HTTP status code 507 when the service reaches the configured maximum number

removeOldest
removes the oldest item in the cache when the service reaches the configured maximum number

NOTE

For more information about how to configure the Caching Service in the application.yml , see Add API Onboarding

Configuration.

When using VSAM, ensure that you set the additional configuration parameters. For more information about setting these
parameters, see Using VSAM as a storage solution through the Caching Service.

Authentication

Direct calls

The Caching Service requires TLS mutual authentication. This verifies authenticity of the client. Calls without a valid client certificate
generate a 403 response code: Forbidden . This requirement is disabled when VERIFY_CERTIFICATES=false in zowe-

https://docs.zowe.org/stable/user-guide/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/user-guide/extend/extend-apiml/api-mediation-vsam

certificates.env configuration file.

The call must have a header X-Certificate-DistinguishedName containing information about the certificate's distinguished name.

This header is added by the API Gateway. For a direct call, this header needs to be added manually. Calls without this header produce
a 401 response code: Unauthorized .

Routed calls through API Gateway

Caching service registers with the following authentication scheme to Discovery service:

The result is that the Gateway attempts mutual authentication with the Client. If authentication is succesful, the Client's certificate
information is propogated to X-Certificate- headers. With this scheme, the Gateway uses its server/client certificate for the routed

call to the Caching Service.

Version: v2.17.x LTS

Viewing Service Information and API Documentation in
the API Catalog
Use the API Catalog to view services, API documentation, descriptive information about the service, the current state of the service,
service endpoints, and detailed descriptions of these endpoints.

NOTE

Verify that your service is running. At least one started and registered instance with the Discovery Service is needed for your
service to be visible in the API Catalog.

Follow these steps:

1. Use the search bar to find the service that you are looking for. Services that belong to the same product family are displayed on
the same tile.

Example: Sample Applications, Endevor, SDK Application

2. Click the tile to view header information, the registered services under that family ID, and API documentation for that service.

NOTES:

The state of the service is indicated in the service tile on the dashboard page. If no instances of the service are currently
running, the tile displays a message that no services are running.

At least one instance of a service must be started and registered with the Discovery Service for it to be visible in the API
Catalog. If the service that you are onboarding is running, and the corresponding API documentation is displayed, this
API documentation is cached and remains visible even when the service and all service instances stop.

Descriptive information about the service and a link to the home page of the service are displayed.

Example:

3. Select the version (v1, v2) to view the documentation of a specific API version.

Example:

4. Expand the endpoint panel to see a detailed summary with responses and parameters of each endpoint, the endpoint description,
and the full structure of the endpoint.

Example:

NOTES:

If a lock icon is visible on the right side of the endpoint panel, the endpoint requires authentication.

The structure of the endpoint is displayed relative to the base URL.

The URL path of the abbreviated endpoint relative to the base URL is displayed in the following format:

Example:

/{yourServiceId}/api/v1/{endpointName}

The path of the full URL that includes the base URL is also displayed in the following format:

https://hostName:basePort/{yourServiceId}/api/v1/{endpointName}

Both links target the same endpoint location.

Version: v2.17.x LTS

Changing an expired password via API Catalog
In case of expiration of a mainframe password, the API Catalog offers the possibility to set a new password. When your password
expires, you are prompted with a form and a warning message:

You can now insert a new password. In order to submit the request for password change, you need to repeat the new password to
prevent the risk of a typo. It is possible that your mainframe installation has specific rules for passwords, such as length, and special
characters. When the submitted password does not meet these requirements, an error messag is issued with the chance to insert
another new password.

After you repeat the new password, you are able to request the change again. The number of retries depends on the security manager
setup of your zOS.

Once you successfully change the password, you are informed with a green pop-up message indicating Your mainframe password

was successfully changed . You can now use the new password for authentication.

Version: v2.17.x LTS

Updating user password
You can use the API ML to update a mainframe password. The Mainframe password change is possible through Gateway REST APIs
and is supported by two authentication providers:

Change password with SAF provider

Change password with z/OSMF provider

NOTE

This feature is also available in the API Catalog. For more information about how to update the mainframe password via API
Catalog, see Change expired password via API Catalog.

Changing password with SAF provider
Update the user password using the SAF Authentication provider. To use this functionality, add the parameter newPassword on the

login endpoint /gateway/api/v1/auth/login in a POST call to this endpoint.

The Gateway service returns a valid JWT with the response code 204 as a result of successful password change. The user is then

authenticated and can consume APIs through the Gateway. A response code of 401 is thrown if it is not possible to change the
password for any reason.

Use the following request body format in the POST REST call against the URL /gateway/api/v1/auth/login :

NOTE

It is a common practice to set a limit to the number of password changes permissible in the ESM. This value is set by the
parameter MINCHANGE for PASSWORD . The password can be changed once. Subsequently, it is necessary to wait the specified

time period before the password can be changed again.

Example:

MINCHANGE=120

120

Specifies the number of days before the password can be reset

Changing password with z/OSMF provider
Update the user password using the z/OSMF Authentication provider. To use this functionality, add the parameter newPassword on

the login endpoint /gateway/api/v1/auth/login in a POST call to this endpoint.

The Gateway service returns a valid JWT with the response code 204 as a result of successful password change. The user is then

authenticated and can consume APIs through the Gateway. A response code of 401 is thrown if it is not possible to change the

https://docs.zowe.org/stable/user-guide/api-mediation-change-password-via-catalog

password.

Use the following request body format in the POST REST call against the URL /gateway/api/v1/auth/login :

NOTE

In order to use the password change functionality via z/OSMF, it is necessary to install the PTF for APAR PH34912.

Version: v2.17.x LTS

Using Metrics Service (Technical Preview)
As a system administrator, use the Metrics Service to view information about the acitivty of services running in the API Mediation
Layer. Currently, only HTTP metrics are displayed for core API Mediation Layer services.

In order for the Metrics Service to run, you must set components.metrics-service.enabled in zowe.yaml to true . Additionally, for

each APIML service you want to have metrics collected for, you must set components.<service>.apiml.metrics.enabled set to

true in zowe.yaml , or configs.apiml.metrics.enabled set to true in the service's manifest. When metrics are enabled for the

API Gateway, the Gateway homepage displays a link to the Metrics Service dashboard. The dashboard is available at
https://{gateway_host}:{gateway_port}/metrics-service/ui/v1 .`

API Mediation Layer Metrics Service Demo Video
Watch this video to see a demo of the Metrics Service.

Zowe APIML Metrics Service Preview DemoZowe APIML Metrics Service Preview Demo

View HTTP Metrics in the Metrics Service Dashboard
Use the Metrics Service to view HTTP metrics such as number of requests, response times, and error rates. The below image describes
the information provided in the Metrics Service dashboard.

https://youtu.be/KkuE6xADxPk
https://www.youtube.com/watch?v=KkuE6xADxPk

To view the HTTP metrics for a service, select the corresponding tab in the Metrics Service dashboard. Metrics are displayed for each
endpoint of a service, aggregated from all service instances.

Example:

Metrics are provided on a near real-time basis, so the display shows the current activity of the selected service. At this time there is no
persistence for this information.

Service instances expose their HTTP metrics at https://<service_host>:<service_port>/application/hystrix.stream using the

Server-Sent-Events protocol. The Metrics Service collects these streams and aggregates them across service instances before
displaying.

Note: At this time, the /application/hystrix.stream endpoint for a service does not require authentication if metrics are enabled

for that service. If metrics for that service are not enabled, /application/hystrix.stream is protected by authentication.

Version: v2.17.x LTS

SMF records
API Mediation Layer can issue SMF type 83, 230, or 231 security-related audit records. You can use SMF records to assist with auditing
events when a Personal Access Token is created.

To enable this functionality on your Zowe instance, see the configuration procedure.

It is possible to customize some predefined values in the SMF record. For more information, see the full list of configurable
parameters.

Note: Record type 83 is a RACF processing record. This record type can be replaced by other SMF types depending on the ESM:

ACF2 - SMF type 230

TSS - SMF type 231

Configure the main Zowe server to issue SMF records
This security configuration is necessary for API ML to be able to issue SMF records. A user running the API Gateway must have read
access to the RACF general resource IRR.RAUDITX in the FACILITY class. To set up this security configuration, submit the ZWESECUR
JCL member. For users upgrading from version 1.18 and lower, use the configuration steps that correspond to the ESM.

To check whether you already have the auditing profile defined, issue the following command and review the output to confirm that
the profile exists and that the user ZWESVUSR who runs the ZWESLSTC started task has READ access to this profile.

If you use RACF, issue the following command:

If you use Top Secret, issue the following command:

If you use ACF2, issue the following commands:

If the user ZWESVUSR who runs the ZWESLSTC started task does not have READ access to this profile, follow the procedure that

corresponds to your ESM:

If you use RACF, update permission in the FACILITY class.

Follow these steps:

i. Add user ZWESVUSR permission to READ .

ii. Activate changes.

If you use Top Secret, add user ZWESVUSR permission to READ . Issue the following command:

If you use ACF2, add user ZWESVUSR permission to READ . Issue the following commands:

SMF record configurable parameters

The following list of parameters can be used to modify the default SMF record values. Default values for these parameters can be
overwritten in zowe.yaml . For more information, see how to configure rauditx parameters.

Parameter Description Type
Default
value

rauditx.fmid FMID of the product or component issuing the SMF record string AZWE001

rauditx.component Name of the product or component issuing the SMF record string ZOWE

rauditx.subtype
SMF type 83 record subtype assigned to the component. For more
information, see description of subtypes

integer 2

rauditx.event Event code. For more information, see description of event codes integer 2

rauditx.qualifier.success Event Code Qualifier for success. The value can be between 0 and 255 integer 0

rauditx.qualifier.failed Event Code Qualifier for failure. The value can be between 0 and 255 integer 1

Configure rauditx parameters

Use the following procedure to change the rauditx.fmid parameter. This procedure can be applied to any SMF record configurable

parameters.

Follow these steps:

1. Open the zowe.yaml configuration file.

2. Find or add the property zowe.environments.RAUDITX_FMID and set your desired value.

3. Restart Zowe.

https://www.ibm.com/docs/en/zos/2.5.0?topic=records-record-type-83-security-events
https://www.ibm.com/docs/en/zos/2.5.0?topic=descriptions-event-codes-event-code-qualifiers

Version: v2.17.x LTS

Using Zowe CLI
In this section, learn about how to use Zowe CLI, including connecting to the mainframe, managing profiles, integrating with API
Mediation Layer, and more.

You can use the CLI interactively from a command window on any computer on which it is installed, or run it in a container or
automation environment.

TIP

Text colors could be difficult to read in some terminals. If this is the case, we suggest either adjusting the terminal settings, or
setting the FORCE_COLOR environment variable to 0 . For other accessibility options, check the accessibility settings for your
operating system or terminal.

Supported CPU architectures, operating systems, and package/resource
managers
Zowe CLI supports the following CPU architectures:

x64

Apple Silicon (M1+) with Rosetta
The IBM Db2 Database Plug-in for Zowe CLI has limited support on Apple Silicon. To use the Db2 plug-in, a complete re-
install of Zowe CLI and CLI plug-ins is required. See M1 processor installation for information.

Operating systems

MacOS 10.15+

Unix-like:

CentOS 8+

Debian 11+

RHEL 8+

Ubuntu 20.04+

Windows 10+

Package/resource managers

NodeJS

npm 6+

PnPM

Yarn

https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-other-environment-variables
https://docs.zowe.org/stable/user-guide/user-guide/cli-db2plugin
https://docs.zowe.org/stable/user-guide/user-guide/cli-db2-install-m1
https://www.centos.org/
https://www.debian.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://ubuntu.com/
https://nodejs.org/en
https://www.npmjs.com/
https://pnpm.io/
https://yarnpkg.com/

Using Zowe CLI on z/OS Unix Systems Services is not supported at this time. If you would like to use it on USS in the future, show your interest by voting for the
enhancement in the Zowe CLI GitHub repository.

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-zos-unix-system-services
https://github.com/zowe/zowe-cli/issues/1680

Version: v2.17.x LTS

Displaying help
Zowe CLI has a command-line help system that details the commands, actions, and options available in the product.

Top-level help
To view top-level help, open a command-line and issue the following command:

Alternatively, issue the following command to display a full list of all available commands:

Tip: All Zowe CLI commands begin with zowe.

Group, action, and object help
Append the global --help option to learn about a specific command group, action, or object.

For example, issue the following command to learn about the create action in the zos-files group:

Launch local web help
Launch an interactive form of help in a web browser. When you issue the following command, web help is custom-generated to
include commands for all of your currently installed plug-ins:

Tip: Append --help-web to a specific command or action to launch directly into the appropriate web help page.

Viewing web help
We provide you with several methods to view Zowe CLI web help. You can browse Zowe CLI web help online, download the web help
in a ZIP file that contains the HTML, or download the web help in a PDF file.

Browse Online

Download (ZIP)

Download (PDF)

https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf

Version: v2.17.x LTS

How command precedence works
You can provide your mainframe connection details (username, password, etc.) to Zowe CLI in several ways. Zowe CLI abides by a
command option order of precedence that provides flexibility when issuing commands and writing scripts.

When you issue a command, the CLI searches for your command arguments in the following order:

1. Options that you specify on individual commands.

2. Environment variables that you define in the computer's operating system.

For more information, see Using environment variables.

3. Service profiles that you create (i.e. z/OSMF profile or another mainframe service).

4. Base profiles that you create.

These can contain credentials for use with multiple services and/or an API ML login token.

5. Default option value.

Command precedence in action
If you omit an option from the command line, Zowe CLI searches for an environment variable that contains a value for the option. If
no environment variable exists, the CLI checks your service profiles for the value. If necessary, the CLI then searches base profiles,
which provide values to service profiles to avoid specifying the same options (such as a username and password) in multiple service
profiles.

NOTE

If you do not provide a value using one of these methods, the default value is used. If a required option value is not located, a
syntax error message such as Missing Positional Argument or Missing Option displays.

https://docs.zowe.org/stable/user-guide/user-guide/cli-using-using-environment-variables

Version: v2.17.x LTS

Understanding core command groups
Zowe CLI contains command groups that focus on specific business processes. For example, the zos-files command group lets you
interact with mainframe data sets. This article provides a brief synopsis of the tasks that you can perform with each group. For more
information, see Displaying help.

The commands available in the product are organized in a hierarchical structure. Command groups (for example, zos-files) contain
actions (for example, create) that let you perform actions on specific objects (for example, a specific type of data set). For each action

that you perform on an object, you can specify options that affect the operation of the command. Zowe CLI contains the following
command groups:

auth

The auth command group lets you connect to Zowe API Mediation Layer authentication service and obtain a token, or disconnect
from the authentication service and revoke the token.

Note: For more information about auth syntax, actions, and options, open Zowe CLI and issue the following command:

config
The config command group lets you manage JSON projects, global configuration, and convert profiles (service profiles and base
profiles) to team profiles.

Note: For more information about config syntax, actions, and options, open Zowe CLI and issue the following command:

daemon
The daemon command groups let you perform operations that control the daemon-mode functionality of the Zowe CLI. Daemon-
mode runs the CLI command processor as a daemon to improve performance.

Note: For more information about daemon syntax, actions, and options, open Zowe CLI and issue the following command:

Important! Using daemon mode contains various limitations and configuration requirements, depending on the operating system
where the daemon is running. For more information, see Preparing for installation in Using daemon mode.

plugins
The plugins command group lets you install and manage third-party plug-ins for the product. Plug-ins extend the functionality of
Zowe CLI in the form of new commands. With the plugins command group, you can perform the following tasks:

Install or uninstall third-party plug-ins.

Display a list of installed plug-ins.

Validate that a plug-in integrates with the base product properly.

https://docs.zowe.org/stable/user-guide/cli-using-displaying-help
https://docs.zowe.org/stable/user-guide/cli-using-using-daemon-mode

Note: For more information about plugins syntax, actions, and options, open Zowe CLI and issue the following command:

profiles
The profiles command group lets you create and manage profiles for use with other Zowe CLI command groups. Profiles allow you to
issue commands to different mainframe systems quickly, without specifying your connection details with every command. With the
profiles command group, you can perform the following tasks:

Create, update, and delete profiles for any Zowe CLI command group that supports profiles.

Set the default profile to be used within any command group.

List profile names and details for any command group, including the default active profile.

Note: For more information about profiles syntax, actions, and options, open Zowe CLI, and issue the following command:

provisioning
The provisioning command group lets you perform IBM z/OSMF provisioning tasks with templates and provisioned instances from
Zowe CLI.

With the provisioning command group, you can perform the following tasks:

Provision cloud instances using z/OSMF Software Services templates.

List information about the available z/OSMF Service Catalog published templates and the templates that you used to publish
cloud instances.

List summary information about the templates that you used to provision cloud instances. You can filter the information by
application (for example, DB2 and CICS) and by the external name of the provisioned instances.

List detail information about the variables used (and their corresponding values) on named, published cloud instances.

Note: For more information about provisioning syntax, actions, and options, open Zowe CLI and issue the following command:

zos-console
The zos-console command group lets you issue commands to the z/OS console by establishing an extended Multiple Console Support
(MCS) console.

With the zos-console command group, you can perform the following tasks:

Important! Before you issue z/OS console commands with Zowe CLI, security administrators should ensure that they provide access
to commands that are appropriate for your organization.

Issue commands to the z/OS console.

Collect command responses and continue to collect solicited command responses on-demand.

Note: For more information about zos-console syntax, actions, and options, open Zowe CLI and issue the following command:

zos-files
The zos-files command group lets you interact with data sets on z/OS systems.

With the zos-files command group, you can perform the following tasks:

Create partitioned data sets (PDS) with members, physical sequential data sets (PS), and other types of data sets from templates.
You can specify options to customize the data sets you create.

Download mainframe data sets and edit them locally in your preferred Integrated Development Environment (IDE).

Upload local files to mainframe data sets.

List available mainframe data sets.

Interact with VSAM data sets directly, or invoke Access Methods Services (IDCAMS) to work with VSAM data sets.

Note: For more information about zos-files syntax, actions, and options, open Zowe CLI and issue the following command:

zos-jobs
The zos-jobs command group lets you submit jobs and interact with jobs on z/OS systems.

With the zos-jobs command group, you can perform the following tasks:

Submit jobs from JCL that resides on the mainframe or a local file.

List jobs and spool files for a job.

View the status of a job or view a spool file from a job.

Note: For more information about zos-jobs syntax, actions, and options, open Zowe CLI and issue the following command:

zos-ssh
The zos-ssh command group lets you issue Unix System Services shell commands by establishing an SSH connection to an SSH server.
The zos-ssh command group was previously named zos-uss .

With the zos-uss command group, you can perform the following task:

Important! Before you issue z/OS UNIX System Services commands with Zowe CLI, security administrators must provide access for
your user ID to login via SSH.

Issue z/OS UNIX System Services shell commands over an SSH connection and stream back the response.

Note: For more information about zos-ssh syntax, actions, and options, open Zowe CLI and issue the following command:

zos-workflows
The zos-workflows command group lets you create and manage z/OSMF workflows on a z/OS system.

With the zos-workflows command group, you can perform the following tasks:

Create or register a z/OSMF workflow based on the properties on a z/OS system

Start a z/OSMF workflow on a z/OS system.

Delete or remove a z/OSMF workflow from a z/OS system.

List the z/OSMF workflows for a system or sysplex.

Note: For more information about zos-workflows syntax, actions, and options, open Zowe CLI and issue the following command:

zos-tso
The zos-tso command group lets you issue TSO commands and interact with TSO address spaces on z/OS systems.

With the zos-tso command group, you can perform the following tasks:

Execute REXX scripts

Create a TSO address space and issue TSO commands to the address space.

Review TSO command response data in Zowe CLI.

Note: For more information about zos-tso syntax, actions, and options, open Zowe CLI and issue the following command:

zosmf
The zosmf command group lets you work with Zowe CLI profiles and get general information about z/OSMF.

With the zosmf command group, you can perform the following tasks:

Create and manage your Zowe CLI zosmf profiles. Profiles let you store configuration information for use on multiple commands.
You can create a profile that contains your username, password, and connection details for a particular mainframe system, then
reuse that profile to avoid typing it again on every command. You can switch between profiles to quickly target different
mainframe subsystems. For more information, see Team configurations.

Verify that your profiles are set up correctly to communicate with z/OSMF on your system. For more information, see Test
Connections to z/OSMF.

Get information about the current z/OSMF version, host, port, and plug-ins installed on your system.

Note: For more information about zosmf syntax, actions, and options, open Zowe CLI and issue the following command:

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/user-guide/user-guide/cli-using-test-zosmf-connection

Version: v2.17.x LTS

Issuing your first command
You can provide all connection options directly on commands to access a service. For example, issue the following command to list all
data sets under the name ibmuser on the specified system:

If you omit username, password, host, or port (and a value cannot be found in your configuration), the CLI prompts you to enter a
value.

Version: v2.17.x LTS

Team configurations
Zowe CLI V2 introduces the concept of team profiles, which add team configurations to the user configurations already in use by
Zowe CLI V1.

Types of configuration files
Both team and user configurations can be applied either globally or per project, as described in the following definitions:

A team configuration file stores team profiles and is used by a group of people who need the same properties to run
commands.

The most frequently used configuration type due to its versatility and efficient maintenance.

A user configuration file stores user profiles and is used for one person who needs their own unique properties to run
commands.

The necessity for user configuration is rare, and setting up a user configuration should not be a priority unless there is a
specific need for one.

A project configuration file resides in a directory of your choice. It contains project team profiles and project user profiles.

Zowe CLI commands executed within that directory use the profiles from the project configuration. Similarly, when the
directory is opened as a Visual Studio Code workspace, Zowe Explorer uses the project config for profiles.

A global configuration file resides in the ZOWE_CLI_HOME directory (YourUserHomeDirectory/.zowe, by default). It contains

global team profiles and global user profiles.

Global config profiles are used for any Zowe CLI command regardless of the directory in which the command is run. The
profiles are always available in Zowe Explorer regardless of the location of the current Visual Studio Code workspace.

Zowe CLI profile types
Configuration files are made up of multiple profiles that can be used by Zowe CLI. These profiles contain credentials and/or settings
that are applied by the commands run in the CLI.

The following profile types were introduced in Zowe V1 and continue to be used in Zowe V2:

Service profiles let you store connection information for specific mainframe service, such as IBM z/OSMF. Plug-ins can introduce
other service profile types, such as the cics profile to connect to IBM CICS.

Base profiles let you store connection information for use with one or more services. Typically, there is only one base profile in a
configuration file. Service profiles can pull information from a base profile as needed, so that you can specify a common
username and password once. A base profile can optionally store tokens to connect to the Zowe API Mediation Layer, which
improves security by enabling Multi-Factor Authentication (MFA) and Single Sign-on (SSO).

Parent profiles let you nest service profiles that share some of the same properties and values into groups. There can be multiple
parent profiles within a configuration file. This makes it possible to define shared properties (for example, hostname or
credentials) only once in your configuration file, rather than duplicating values for each service profile. Parent profiles and nested
service profiles are useful when your configuration uses multiple kinds of authentication or if your configuration is used to
connect to multiple hosts.

Updating secure credentials
To change an existing username or password in a team config profile, use the zowe config secure command for a quick update:

1. Open the Zowe CLI command prompt.

2. To update values for secure fields in a project team configuration file:

To update values for secure fields in a global team configuration file:

Prompts request new values for all secure fields defined in the configuration file. In most cases, these properties include a
username or password, but some users may include other fields, such as a token value or connection properties.

3. Respond to prompts as needed. Press Enter to leave the value unchanged.

New values are saved in the secure credential store. After the last secure value is submitted, the user returns to the system
command prompt.

For more ways to secure credentials in config profiles, see Managing credential security.

Benefits of team profiles

Using team profiles in configuration files helps to improve the initial setup of Zowe CLI by making service connection details easier to
share and easier to store within projects.

Consider the following benefits of using team profiles:

As an application developer or team member, you can manage your connection details efficiently in one location.

As a Dev-Ops advocate, or team leader, you can share global configurations with your team members so that they can easily
access mainframe services. You can add the file directly to your project in a software change management (SCM) application.

As a Dev-Ops advocate, you can quickly onboard new application developers by sharing the configuration file that your team
uses with the new team member.

As an application developer in a small shop where your role is that of an application developer and a Dev-Ops advocate, you can
create whatever configuration type is most suitable for your needs!

Important information about team profiles
With the introduction of team profiles, the Secure Credential Store (SCS) Plug-in is deprecated. Secure credential encryption is now
handled by the the secure array in the zowe.config.json file.

https://docs.zowe.org/stable/user-guide/appendix/zowe-glossary#secure-credential-store
https://docs.zowe.org/stable/user-guide/user-guide/cli-using-team-managing-credential-security

You can convert all of your Zowe CLI and Zowe CLI plug-ins V1 profiles to team profiles by issuing the following command:

CAUTION

You can continue using Zowe CLI V1 profiles with Zowe CLI V2. However, we highly recommend that you implement V2 profiles
with Zowe CLI V2.

If plain text credentials exist in the original V1 profiles and are converted, the resulting V2 team configuration file,
zowe.config.json , will also contain plain text credentials.

Commands in the zowe config command group now let you manage security for any option value.

Zowe CLI V2 prompts you to enter the username and password securely by default.

https://docs.zowe.org/stable/user-guide/user-guide/cli-using-understanding-core-command-groups#config

Version: v2.17.x LTS

Initializing team configuration
Team configurations can be applied globally and per project, depending on the development project. See Team configurations for
more information.

Use one of the following methods to initialize global team configuration. These instructions show how to create a configuration file
that you can later open in a text editor or IDE (such as Visual Studio Code) to add or modify profiles.

Note: If API Mediation Layer is running on your site, Connecting profiles to API Mediation Layer is the recommended method to use
to initialize team configuration.

Creating a global team configuration file
1. Issue the following command:

2. Respond to subsequent prompts with a username and password for a mainframe service such as z/OSMF.

The zowe config init command ensures that your credentials are stored securely on your computer by default.

When the credentials are received, the zowe.config.json team configuration file is added to the local .zowe directory. Use a
text editor or IDE to add or modify connection details for your mainframe services.

Note: Run the zowe config init --global-config command again after installing a new plug-in to add the plug-in profile to
the global configuration file. See Creating team plug-in profiles for information.

3. (Optional) Issue a Zowe CLI command to test access to z/OSMF.

For example, list all data sets under your user ID by entering your information in the following example command:

A list of data sets is returned, indicating Zowe CLI is successfully configured to access a z/OSMF instance.

If the CLI returns an error message, verify that you have access to the target system. Examine the configuration files in a text
editor to check that the entered information is correct.

Important: After the configuration file is in place (by using either the zowe config init command or a file provided by a system

administrator), the zowe profiles commands used in Zowe v1 no longer function. Zowe CLI returns errors when deprecated profile

commands are issued.

Creating team plug-in profiles
After the zowe.config.json team configuration file is created and new plug-ins are installed, run the zowe config init (or zowe

config auto-init , if using the API ML) command again to add the plug-in profiles to the configuration file.

1. Install a new plug-in.

For example, run the following command to install the IBM CICS Plug-in:

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/stable/user-guide/cli-cicsplugin

Note: If the zowe.config.json file has not yet been created in the .zowe directory, see Creating a global team configuration

file.

2. Run the zowe config init --global-config or zowe config auto-init --global-config command.

This adds a plug-in profile to the configuration file in the .zowe home directory.

3. Open the zowe.config.json file and confirm the plug-in profile is included.

In the example from Step 1, the profile information displays similarly to the example below:

The plug-in profile has been successfully added to the zowe.config.json file in the .zowe home directory.

Note: To add plug-in profiles to a configuration file in the current working directory, enter the base command without the --
global-config option: zowe config init .

Connecting profiles to API Mediation Layer
If you are using the API Mediation Layer, set up the zowe.config.json file to automatically access the services that are registered to

the API ML and support Single Sign-On.

1. Run the following command:

2. Respond to subsequent CLI prompts with the following information:

The host name and port to your API ML instance.

Your username and password.

A default profile is added to the configuration file in the .zowe home directory.

Note: To add a profile to a configuration file in the current working directory, enter the base command without the --global-config
option: zowe config init .

Using Certificates:

If using certificates to authenticate, specify the details for the certificates by modifying the following example command:

Version: v2.17.x LTS

Testing connections to z/OSMF
Optionally, issue a command at any time to receive diagnostic information from the server and confirm that Zowe CLI can
communicate with z/OSMF or other mainframe APIs.

Refer to the following sections for instructions on how to connect to z/OSMF with different types of profiles.

Important! By default, the server certificate is verified against a list of Certificate Authorities (CAs) trusted by Mozilla. This handshake
ensures that the CLI can trust the server. You can append the flag --ru false to the following commands to bypass the certificate

verification against CAs. If you use the --ru false flag, ensure that you understand the potential security risks of bypassing the

certificate requirement at your site. For the most secure environment, system administrators configure a server keyring with a server
certificate signed by a Certificate Authority (CA). For more information, see Working with certificates.

Without a profile

Verify that your CLI instance can communicate with z/OSMF:

<host>

Specifies the host.

<port>

Specifies the port.

<username>

Specifies the username.

<password>

Specifies the password.

Default profile

After you create a profile in a configuration (such as a global team configuration file), verify that you can use your default profile to
communicate with z/OSMF:

Specific profile

After you create a specific profile in a configuration (such as a global team configuration file), verify that you can use a specific profile
to communicate with z/OSMF:

<profile name>

Specifies the name of the profile.

https://docs.zowe.org/stable/user-guide/cli-using-working-certificates
https://docs.zowe.org/stable/user-guide/user-guide/cli-using-initializing-team-configuration/
https://docs.zowe.org/stable/user-guide/user-guide/cli-using-initializing-team-configuration/

The commands return a success or failure message and display information about your z/OSMF server, such as the z/OSMF version
number. Report failures to your systems administrator and use the information for diagnostic purposes.

Version: v2.17.x LTS

Team configuration for application developers
As an application developer or Zowe CLI user, you want to manage your connection details efficiently and in one location.

That could mean relying on a team configuration file, or creating your own user configuration file.

To create your own user configuration, start with a global team configuration file that you have created or was provided to you. In this
way, a single global configuration can become the basis for multiple user-specific configurations that are created with modifications
tailored to particular requirements.

Initializing user configuration

As an application developer, you can optionally generate a user configuration file that overrides the values defined in the global
zowe.config.json file. (See How Zowe CLI uses configurations for more information.)

Follow these steps:

1. To generate a team configuration file (zowe.config.json) that you can use globally, issue the following command:

2. To generate the global user profile configuration file zowe.config.user.json , issue the following command:

In your user file (zowe.config.user.json), observe that the profiles do not have properties and the "defaults" object is empty, as

illustrated in the following example. Use a text editor or IDE (such as Visual Studio Code) to add your connection details as
properties here to override properties in zowe.config.json , or to add new connections.

Editing team configurations
After creating a team configuration file, you can define additional mainframe services, and other profiles, to the configuration.

Follow these steps:

1. Open the ~/.zowe/zowe.config.json file in a text editor or an IDE (such as Visual Studio Code) on your computer.

2. Edit the file by adding or modifying the profiles stored there.

The profiles object contains connection and other frequently needed information for accessing various services, as in the
following example:

https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs

Version: v2.17.x LTS

Team configuration for team leaders
As a Dev-Ops advocate or team leader, you can share team profiles with your team members so that they can easily access mainframe
services.

Sharing team configuration files
As a DevOps advocate or team leader, you might want to share a team configuration globally in the following scenarios:

You want to share profiles with application developers so that they can work with a defined set of mainframe services. The
recipient of the file places it in their local ~/.zowe folder manually before issuing CLI commands.

You want to add the profiles to your project directory in a software change management (SCM) tool, such as GitHub. When you
store the profiles in an SCM, application developers can pull the project to their local computer and use the defined
configuration. Zowe CLI commands that you issue from within the project directory use the configuration scheme for the project
automatically.

You want to enable test automation in a CI/CD pipeline, which lets your pipelines make use of the project configuration.

For information about how to share team configuration files, see Sharing team configuration files.

Profile scenarios
The following topics describe various profile scenarios that DevOps advocates (team leaders) can share with their teams, and
application developers that function as DevOps advocates can create.

Access to one or more LPARs that contain services that share the same credentials

The following example illustrates that the settings are using nested profiles to access multiple services directly on one or more LPARs
that share the same username and password.

Access to one or more LPARs contain services that do not share the same credentials

The following example illustrates that the settings are using nested profiles to access multiple services directly on one or more LPARs
that do not share (different) user names and passwords.

Access to LPARs that access services through one API Mediation Layer

The following example illustrates that the settings access multiple services using the API ML where multi-factor authentication (MFA)
or single sign-on (SSO) is achievable using token-based authorization.

Access to LPARs that access services through one API Mediation Layer using certificate
authentication

Access LPARs containing multiple services through API Mediation Layer with certificate authentication

https://docs.zowe.org/stable/user-guide/cli-using-sharing-team-config-files

Version: v2.17.x LTS

Sharing team configuration files
Team leaders can share team configuration files using several methods:

Shared network drive

Project repository (for example, GitHub)

Web server

The following topics describe how to share the team configuration files.

Network drive
1. Store the configuration files on a shared network drive.

2. Issue the following command:

<DriveLetter>

The drive letter of the shared network drive

<FolderPath>

The directory path on the drive

Note: You can specify any path that file management applications, such as Windows Explorer and Finder, can access. For example,
a UNC network path (\\<HostName>\SharedZoweConfig\zowe.config.json) or local file path (C:\Users\
<UserName>\Downloads\zowe.config.json).

Project repository and web server
Team leaders can import configuration files from a web URL that is in raw json format. The following steps describe how to import the
configuration file from a GitHub repository and a web server.

1. Store the configuration files in a project repository or on a web server.

2. Issue the following command:

Project (GitHub) repository

<user>

Specifies the user ID

<password>

Specifies the password for the user ID

<githubUrl>

Specifies the URL to the GitHub repository

<repoName>

Specifies the name of the repository

<branch>

Specifies the name of the branch that contains the configuration file

<folderPath>

Specifies the path to the configuration file

Web server

<user>

Specifies the user ID

<password>

Specifies the password for the user ID

<hostname>

Specifies the host name of the system

<folderPath>

Specifies the path to the team configuration file

Note: You can host team configuration files on private and public web servers. The user name and password are required
for only private URLs. However, to maintain the highest level of security, you should not store team configuration files on
public URLs.

Tip: To import the schema automatically from shared drives and from web servers, store the schema in the same directory as the
zowe.config.json file. In the configuration file, reference the schema as a relative path at the top of the configuration file.

Example:

Version: v2.17.x LTS

How Zowe CLI uses configurations
When you run a command, Zowe CLI needs specific information, or properties, in order to perform the command action.

There are two common ways that properties and their values can be provided to Zowe CLI. One method is to manually include this
information with each command when it is issued, as in the example command below:

Including properties with every command can be tedious, because a lot of information can be required. This can lead to typos and
mistakes.

Another way of specifying these properties — using configuration files — can make things easier. A configuration file contains profiles
with properties that Zowe CLI can use when you run a command.

If configuration files were used in the example above, the user would have needed to issue only the command:

zowe zos-files list data-set "SYS1.PARMLIB*"

Learning the terminology
Zowe version 2.0 introduces the use of team profiles in configuration files.

Both user and team profiles are stored in configuration files, and these configuration files can either be project configuration files or
global configuration files. It is helpful to understand how these differ.

A user configuration file stores user profiles and is used for one person who needs their own unique properties to run
commands.

A team configuration file stores team profiles and is used by a group of people who need the same properties to run
commands.

A global configuration file resides in the ZOWE_CLI_HOME directory (YourUserHomeDirectory/.zowe, by default). It contains

global user profiles and global team profiles.

A project configuration file resides in a directory of your choice. It contains project user profiles and project team profiles.

All configuration files are saved in .json format.

How configuration files and profiles work together

There may be instances where a user has all four types of files in their system, and all four configurations are referred to
simultaneously by Zowe CLI for a particular command.

This can mean working with files that have conflicting configurations. One file can specify that a certain profile property has a value of
ABC , while another file uses XYZ as a value.

When the same properties have different values across multiple configuration files, Zowe CLI follows a two-step check to determine
which configurations apply:

1. Does the configuration file have a more narrow or a more broad scope?

2. Is the configuration file more specific or less specific?

Zowe CLI considers a user configuration file to have a more specific use than a team configuration file, and a project configuration file
have a narrower scope than a global configuration file, which has a broader scope.

When checking all possible configuration file types, Zowe CLI categorizes files in the manner below:

This order is applied no matter the directory in which you issue a Zowe CLI command. As a user, it can be easy to trace this logic when
configuration files are all either in your ZOWE_CLI_HOME directory (i.e., broad scope) or your project directory (i.e., narrow scope).

But when there are configuration files across directories (meaning, in a project directory and a home directory), tracking how these
files work together can seem more complicated.

Read on to go over some examples.

Using a profile found in multiple configuration files
Consider a user that has all configuration file types as in the following scenario:

specificity type file type profile property value

narrow scope/more specific project user config file One ABC red

narrow scope/less specific project team config file Two XYZ yellow

broad scope/more specific global user config file Three MNO green

broad scope/less specific global team config file Two XYZ blue

In the case above, if Zowe CLI needs the MNO property to carry out a command, it refers to the global user configuration file to apply

the green value because it is the only configuration file that has this particular property. No need to compare the specificity of files

here.

On the other hand, if a Zowe CLI command needs the information in the Two profile, it can seem like there are two possible values,

yellow and blue . In this case Zowe CLI knows to use yellow by following the rules of specificity: The project team file has a
narrower scope than the global team file.

Zowe CLI takes the following steps:

1. Finds the XYZ property in both Two profiles.

2. Ignores the blue value for the XYZ property because the global configuration file has a broad scope.

3. Uses the yellow value for the XYZ property because the project configuration file has a narrow scope.

Using multiple properties found in multiple profiles
Consider a more layered scenario. Again, assume you have all four configuration file types, but the following conditions apply:

There are multiple profiles across all four configuration file types.

Some profiles appear in multiple configurations. Other profiles show up in only one file.

There are multiple properties shared across several profiles.

Some properties are found in only one profile.

In this scenario, the following profiles, properties, and values exist, displayed in the format profile: property: value:

Project User
Configuration File

Project Team
Configuration File

Global User
Configuration File

Global Team
Configuration File

abc: direction: north abc: direction: east abc: direction: south
abc: direction: west
abc: numbers: 123

def: shape: triangle def: shape: square def: shape: circle

ghi: texture: bumpy

jkl: temperature: cold

mno: fruit: banana

pqr: distance: near

The table below shows how Zowe CLI determines which profiles, properties, and values to use in a command.

Configuration files in use

Specificity rules
Profiles, properties
and values used

- global user profile
- global team profile

- When the same property exists within the same profile in both config
files, the property value from the global user config is used.
- When the same profile exists in both config files, but a property of that
profile exists in only one file, that property is used.

abc: direction: south
abc: numbers: 123
def: shape: circle
ghi: texture: bumpy
pqr: distance: near

Configuration files in use

Specificity rules
Profiles, properties
and values used

- If a profile exists in only one config file, that profile is used in its
entirety.

- project team profile
- global user profile
- global team profile

- When a profile exists in all three config files, the project team profile is

used.*

- If a profile exists in only one config file, that profile is used in its
entirety.

abc: direction: east
def: shape: square
ghi: texture: bumpy
mno: fruit: banana
pqr: distance: near

- project user profile
- project team profile
- global user profile
- global team profile

- When the same profile with the same properties exists in all four config
files, the property values from the project user config is used.
- When the same profile exists in all four config files, the project files
override the global files. If a property of the profile exists in only one of

the two project configurations, that property is used.*

- If a profile exists in only one config file, that profile is used in its
entirety.

abc: direction: north
def: shape: triangle
ghi: texture: bumpy
jkl: temperature: cold
mno: fruit: banana
pqr: distance: near

* If the same profile exists in both a global configuration file and a project configuration file, the project configuration profile
completely replaces the global profile. This is true even when the project profile has fewer properties in the same profile found in the
global file.

The rules above apply when profiles have the same name. To maintain the same set of properties in two different profiles, give each
profile a different name so that Zowe CLI uses a specific profile, if needed.

For more information on how configuration files work together, see How Zowe CLI team configuration files are merged together.

https://github.com/zowe/zowe-cli/blob/master/docs/How_config_files_are_merged.md

Version: v2.17.x LTS

Managing credential security

Secure credential storage
With the introduction of team profiles in Zowe CLI V2, the Secure Credential Store (SCS) Plug-in is deprecated. The zowe scs

command group is obsolete.

Secure credential encryption is now included with the Zowe CLI core application. When a command using a profile with missing user

and password information is issued, Zowe CLI V2 prompts you to enter the username and password. Both are then stored securely by

default.

For other ways to store credentials securely, use the zowe config command group. See the following instructions.

Configuring secure properties

Create a configuration file and set its secure properties (such as usernames and passwords):

1. Open the Zowe CLI command prompt.

2. To initialize a project team configuration file in the current working directory:

To initialize a project user configuration file in the current working directory:

To initialize a global team configuration file in the ZOWE_CLI_HOME directory:

To initialize a global user configuration file in the ZOWE_CLI_HOME directory:

A configuration file is created, if one does not already exist.

Additionally, the profiles.base.properties.user and profiles.base.properties.password fields are added to the base

profile secure array for that configuration file. Zowe CLI stores the username and password in the secure credential store.

3. If needed, add other fields to the secure array.

Use a text editor or an IDE (such as Visual Studio Code) to edit the configuration file.

Issue the zowe config set --secure <property-path> command to secure a specific property in a specific profile.

For example, zowe config set profiles.base.properties.password pw123 --secure adds the password property to
the base profile's secure array and saves the password pw123 in the secure credential store.

If you issue the command for a property that is already secured, the CLI prompts you to enter a new property value.

The values for these properties are saved in the secure credential store.

https://docs.zowe.org/stable/user-guide/appendix/zowe-glossary#secure-credential-store

Updating secure properties
Update secure credentials in an existing config profile:

1. Open the Zowe CLI command prompt.

2. To update values for secure fields in a project team configuration file:

To update values for secure fields in a project user configuration file:

To update values for secure fields in a global team configuration file:

To update values for secure fields in a global user configuration file:

Prompts request new values for all secure fields defined in the configuration file. In most cases, these properties include a
username or password, but some users may include other fields, such as a token value or connection properties.

3. Respond to prompts as needed. Press Enter to leave the value unchanged.

New values are saved in the secure credential store. After the last secure value is submitted, the user returns to the system
command prompt.

Setting secure properties programmatically
When configuring secure properties with scripts or workflow pipelines, use the zowe config set command. See Step 3 in

Configuring secure properties for instructions on how to use the command.

Version: v2.17.x LTS

Storing properties automatically
When you issue a command that is missing a required option value for a property (for example, host or password) the CLI prompts
you to enter the option value. In the V1-LTS version of Zowe CLI, the value that was specified was not stored for future commands to
use. As a result, you either responded to a prompt on every command issued or issued a profile update command to store the missing
value.

The autoStore property in the zowe.config.json file lets you store the option values for properties automatically. When you

specify the autoStore property in zowe.config.json to true , the value that you enter when prompted is stored for future

commands to use. The values for secure fields are stored securely in the credential vault, and the other values are written to
zowe.config.json on disk.

The default value of the autoStore property is true. However, if this behavior is undesirable (you do not want to store properties
automatically), set the value of autoStore to false. A value of false uses the V1-LTS behavior, which prompts for missing values on all

commands that you issue.

Version: v2.17.x LTS

Using daemon mode
Daemon mode significantly improves the performance of Zowe CLI commands by running Zowe CLI as a persistent background
process (daemon). Running Zowe CLI as daemon lets Zowe absorb the one-time startup of Node.js modules, which results in
significantly faster responses to Zowe commands.

When you run Zowe in daemon mode, you run all Zowe commands as you normally run them. The first time you run a command, it
starts the daemon in the background automatically and runs your desired Zowe command. Since the first Zowe command starts the
daemon, the first command usually runs slower than a traditional Zowe command. However, subsequent Zowe commands run
significantly faster. The daemon continues to run in the background until you close your terminal window.

Important: We do not recommend using daemon mode in an environment where multiple users use the same system. For example, a
shared Linux server.

Preparing for installation
Review the following installation notes before you configure Zowe CLI to run in daemon mode:

Daemon mode does not function on z/OS UNIX System Services (USS) systems.

When you want to run Zowe CLI to run in daemon mode on z/Linux operating systems, you must build the daemon mode binary
on the z/Linux systems. For information about how to build the binary, see Configure Secure Credential Store on headless Linux
operating systems. The sections Enable daemon mode and Disable daemon mode (in this article) do not apply to running Zowe
CLI in daemon mode on z/Linux operating systems.

We do not recommend using daemon mode in an environment where multiple users use the same system. For example, a shared
Linux server.

When you are running Zowe on a Windows operating system in a virtual environment (for example, Windows Sandbox), you
might receive an error message that indicates that a library named VCRUNTIME140.dll is missing. To correct the error, install
Visual C++ Redistributable for Visual Studio 2015. For more information, see Download Visual C++ Redistributable for Visual
Studio 2015.

Enable daemon mode
The following steps describe how to enable daemon mode and how to configure Zowe to run Zowe CLI constantly in daemon mode.

1. Open a terminal window and issue the following command:

The command copies the Zowe executables for your operating system into the $ZOWE_CLI_HOME/bin (.zowe/bin) directory. The

next command that you issue starts the daemon.

2. Add the path to the Zowe executable to your PATH environment variable. For example:

Important! Ensure that you position the path to your Zowe executables before the path into which NPM installed the Node.js
script. For example, C:\Program Files\nodejs\zowe.cmd . For information about configuring environment variables, see the

documentation for your computer's operating system.

https://docs.zowe.org/stable/user-guide/cli-configure-scs-on-headless-linux-os
https://www.microsoft.com/en-us/download/details.aspx?id=48145

Alternative configuration: By default, the daemon binary creates or reuses a file in the user's home directory each time a Zowe
CLI command runs. In some cases, this behavior might be undesirable. To change the location that the daemon uses, see Setting
CLI daemon mode properties.

Note: Complete the environment variable configuration step (Step 2) only once.

The following example illustrates running Zowe CLI commands with daemon mode enabled:

Note: When you are running Zowe CLI in daemon mode using a Git Bash terminal on a Windows operating system, special characters
might display using the wrong code page. For example, the default code page 437 renders a form-feed character (\f) as an emoji (♀️).
To correct the problem, issue the command chcp.com 65001 to change the code page to UTF-8. If you want the change to be
persistent, add the command to your .bashrc file.

Restart daemon mode
Daemon mode is a long-running background process (waits for work) that significantly improves Zowe CLI performance. When you
make changes to your work environment, daemon mode does not capture the changes. Restarting daemon mode lets the daemon
capture the changes. Issue the following command to stop the currently running daemon and start a new daemon:

You must restart daemon mode under the following scenarios:

You changed the value of any of the following Zowe CLI environment variables:

ZOWE_CLI_HOME

ZOWE_APP_LOG_LEVEL

ZOWE_IMPERATIVE_LOG_LEVEL

You installed, updated, or uninstalled a plug-in.

You installed a newer version of Zowe CLI and daemon mode was running while you installed the newer version of Zowe CLI.

Note: When you install another version of Zowe CLI, you should always run the zowe daemon enable command again.

You issued a Zowe command and the following message appeared:

You created or updated the .zowe.env.json file in your home directory or the path set in the ZOWE_CLI_HOME environment

variable. See Configuring an environment variables file for more information.

Disable daemon mode
You can disable Zowe from running in daemon mode at any time. For example, daemon mode lacks functionality that you desire, such
as viewing colored-coded commands.

1. Open a terminal window and issue the following command:

The disable command stops daemon mode, removes the Zowe executables from your .zowe/bin directory, and disables daemon
mode.

https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-cli-daemon-mode-properties
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/user-guide/cli-configuringcli-evfile

Version: v2.17.x LTS

Configure daemon mode on z/Linux operating systems
Currently, Zowe does not offer a prebuilt daemon that can run on z/Linux operating systems. However, developers can build the
daemon binary from source.

The following steps describe how to install and build the daemon binary on z/Linux systems and the technical limitations.

1. Ensure that the z/Linux system can communicate using the Internet.

2. Install Zowe CLI on the z/Linux system.

3. Install the following Linux packages on the z/Linux system:

make

gcc-c++ (or g++)

git

Rust

For information about how to install Rust, see the Rust documentation.

4. Shallow clone the Zowe CLI Git repository for the version of CLI that you installed. Issue the following command:

5. Change to the following directory:

6. Build the daemon binary. Issue the following command from the zowe-cli/zowex directory:

After the command completes successfully, the Zowe daemon binary is a file named zowe that can be found in the

target/release directory.

7. Copy the binary to another location on the system and add it to your PATH.

8. (Optional) Modify the file permissions to allow others to use the same binary:

Example: The following example illustrates the command to allow all users to run the Zowe binary. However, only the user that
created the binary can overwrite the binary.

Note: You can delete the .zowe-cli folder that was created in Step 4 after the binary builds successfully. The Zowe daemon

commands will not function, and the daemon will need to be rebuilt for all new versions of Zowe CLI.

https://forge.rust-lang.org/infra/other-installation-methods.html

Version: v2.17.x LTS

Using V1 profiles
As a system programmer, profiles let you store configuration details for reuse, and for logging in to authentication servers such as API
Mediation layer. Create a profile that contains your username, password, and connection details for a mainframe service, then use that
profile to avoid typing the information on every command. Switch between profiles to quickly target different mainframe subsystems.

See Team configurations for information on team profiles introduced in Zowe CLI v2.

Zowe CLI v1 profile types
Zowe CLI v1 contains the following types of profiles:

Service profiles: let you store connection information for specific mainframe service, such as IBM z/OSMF. Plug-ins can introduce
other service profile types, such as the cics profile to connect to IBM CICS.

Base profiles: let you store connection information for use with one or more services. Your service profiles can pull information
from- base profiles as needed, so that you can specify a common username and password once. The base profile can optionally
store tokens to connect to Zowe API Mediation Layer, which improves security by enabling Multi-Factor Authentication (MFA) and
Single Sign-on (SSO).

Tips for using Zowe CLI v1 profiles

You can have multiple service profiles and multiple base profiles.

Profiles are not required. You can choose to specify all connection details for every command.

Profile values are stored on your computer in plaintext in C:\Users\<yourUsername>\.zowe\profiles (Windows) or in

~/.zowe/profiles (Mac/Linux).

Displaying profile help

Use help to learn about options for creating profiles. For example, for a zosmf profile, issue the following command:

Service profiles

Create profiles that target a specific mainframe service, then use profiles to issue commands. For example, issue the following
command (substituting your connection details) to create a zosmf service profile named myprofile123 :

Use the profile. For example, issue the following command to list all data sets under the name ibmuser on the system that you
specified in your profile:

Note: If you do not specify a profile, your default profile is used. The first profile that your create is your default. You can set a service
profile as your default with the zowe profiles set-default <profileType> <profileName> command.

Base profiles

https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles

Base profiles store your connection details and provide them to service profiles and commands as needed. The base profile can also
contain a token to connect to services through API ML.

For example, if you use the same username and password across multiple services, you can create a base profile with your username
and password. After the base profile is created, you can omit the --username and --password options when you issue commands or

use service profiles such as zosmf and tso . Commands will use the values provided by the base profile. For example, create the base

profile:

The first profile that you create for a service is set as your default profile. When you create subsequent profiles, you can select one as
the default with the zowe profiles set-default <profileType> <profileName> command.

Use the default profile to issue a command:

Note: If you choose to log in to Zowe API Mediation Layer, a base profile is created for you to store a web token, host, and port.

Tips for using base profiles

Use the base profile to share option values between services. You might share option values between services in the following
situations:

You have multiple services that share the same username, password, or other value.

You want to store a web token to access all services through Zowe API Mediation Layer.

You want to trust a known self-signed certificate or your site does not have server certificates configured. You can define reject-
unauthorized in the base profile with a value of false to apply to all services. Understand the security implications of accepting

self-signed certificates at your site before you use this method. If you have multiple LPARs and want to share option values only
between services that run on the same LPAR, you can use nested profiles to achieve this (see Example 1 below).

Profile best practices
According to order of precedence, base profiles are used as a fallback for service profiles. This means that after you create a base
profile, you might need to update your service profiles to remove username, password, host, and port. Otherwise, commands will use
the information stored in your service profile and will ignore your base profile definition.

Testing connections to z/OSMF
Optionally, issue a command at any time to receive diagnostic information from the server and confirm that Zowe CLI can
communicate with z/OSMF or other mainframe APIs.

Important! By default, the server certificate is verified against a list of Certificate Authorities (CAs) trusted by Mozilla. This handshake
ensures that the CLI can trust the server. You can append the flag --ru false to the following commands to bypass the certificate

verification against CAs. If you use the --ru false flag, ensure that you understand the potential security risks of bypassing the

certificate requirement at your site. For the most secure environment, system administrators configure a server keyring with a server
certificate signed by a Certificate Authority (CA). For more information, see Working with certificates.

Without a profile

Verify that your CLI instance can communicate with z/OSMF:

https://docs.zowe.org/stable/user-guide/cli-using-command-precedence

Default profile

After you create a profile, verify that you can use your default profile to communicate with z/OSMF:

Specific profile

After you create a profile, verify that you can use a specific profile to communicate with z/OSMF:

The commands return a success or failure message and display information about your z/OSMF server, such as the z/OSMF version
number. Report failures to your systems administrator and use the information for diagnostic purposes.

https://docs.zowe.org/stable/user-guide/cli-using-using-profiles-v1
https://docs.zowe.org/stable/user-guide/cli-using-using-profiles-v1

Version: v2.17.x LTS

Integrating with API Mediation Layer
Zowe API Mediation Layer (ML) provides a secure single point of access to a defined set of mainframe services. The layer provides API
management features such as high-availability, consistent security, and a single sign-on (SSO) and multi-factor authentication (MFA)
experience.

You can use tokens or client certificates to integrate with API ML.

Tokens allow you to access services through API ML without reauthenticating every time you issue a command. Tokens allow for
secure interaction between the client and server. When you issue commands to API ML, the layer routes requests to an appropriate
API instance based on system load and available API instances.

Some users prefer to use certificates to access API ML. This can be the case in sites that use credentials such as passwords and
multifactor authentication, which might be valid only for a short period of time. Certificates can be valid for much longer.

How token management works
When you log in with Zowe CLI, an API ML token is supplied and stored on your computer in place of a username and password. The
token allows for a secure handshake with API ML when you issue each command, such that you do not need to reauthenticate until
the token expires.

NOTE

Zowe CLI also supports standard token implementations such as Java Web Tokens (JWT) and Lightweight Third-Party
Authentication (LTPA).

Logging in
Follow these steps to request a token and log in to API ML:

1. Issue the following command to log in to API ML:

2. When prompted, enter the following information:

Username

Password (can be a PIN concatenated with a second factor for MFA)

Host

Port for the API ML instance

A base profile is created or updated with your token, which is stored on your computer in place of a username and password.
When you issue commands, you can omit your username, password, host, and port.

If you do not want to store the token on your PC, append the --show-token option to the login command.

If you already created a base profile, you might not be prompted for the host and port.

https://docs.zowe.org/stable/user-guide/appendix/zowe-glossary#base-profile

NOTE

Where the token is saved depends on whether you have an existing base profile and where that profile is located. To learn
about the precedence Zowe CLI follows with profile configurations, see How configuration files and profiles work together.

3. Provide a base path and base profile on commands to connect to API ML.

To establish a base path, see instructions for Zowe V2 profiles or Zowe V1 profiles.

If you use the --show-token option with the login command, you must manually supply the token on each command using the

--token-value option. For example:

NOTES

Tokens expire after a period of time defined by your security administrator. When a token expires, you must log in to API ML
again to get a new token.

If you omit connection details from a service profile, such as zosmf profile, the CLI uses the information from your base

profile.

You can choose to specify all connection details on a service profile and connect directly to the service. Routing through API
ML is not required.

Logging out
Log out to prompt the API ML token to expire and remove it from your base profile.

Use the following logout prompt:

This causes the token to expire. Log in again to obtain a new token.

Accessing a service through API ML
To access mainframe services through API ML using the token in your base profile, use the following command options:

--base-path : Indicates the base path of the API ML instance that you want to access.

To establish a base path, see instructions for Zowe V2 profiles or Zowe V1 profiles.

--disable-defaults : Prevents default values from being stored in service profiles. If you do not use this flag, the defaults can

override values in your base profile.

NOTE

Ensure that you do not provide username, password, host, or port directly on the service commands or profiles. Supplying those
options causes the CLI to ignore the API ML token in your base profile and access the service directly.

Specifying a base path with Zowe V2 profiles

https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together

Use the following steps to specify a base path with Zowe V2 profiles:

1. Note the complete path for a z/OSMF instance registered to API ML.

For example:

The format of base paths can vary based on how API ML is configured at your site.

2. Using the example included in Step 1, access the API ML instance by creating or updating a service profile, or issuing a command,
with the --base-path value of ibmzosmf/api/v1 . Your service profile uses the token and credentials stored in your default base
profile.

To create or update a service profile with the preceding base path in a project team configuration file:

If you are using a global team configuration file (located in your home directory), add --global-config to the end of the
command.

Commands issued with this profile are routed through the layer to access an appropriate z/OSMF instance.

Specifying a base path with Zowe V1 profiles

Use the following steps to specify a base path with Zowe V1 profiles:

1. Note the complete path for a z/OSMF instance registered to API ML.

For example:

The format of base path can vary based on how API ML is configured at your site.

2. Access the API ML instance by creating a service profile (or issuing a command) with the --base-path value of

ibmzosmf/api/v1 . Your service profile uses the token and credentials stored in your default base profile.

Using the preceding example, you would issue the following command with your profile name:

Commands issued with this profile are routed through the layer to access an appropriate z/OSMF instance.

Accessing multiple services with SSO
If multiple services are registered to the API Mediation Layer at your site, Zowe CLI lets you access the services with Single Sign-on
(SSO). Log in once to conveniently access all available services.

When you are logged in, supply the --base-path option on commands for each service. Ensure that you do not provide username,
password, host, or port directly on your service commands or profiles. Supplying those options causes the CLI to ignore the token in
your base profile and directly access the service. You might need to remove those options from existing profiles to use SSO.

For information about registering an API service at your site, see Developing for API Mediation Layer.

Accessing services through SSO and a service not through API ML

https://docs.zowe.org/stable/user-guide/user-guide/cli-using-using-team-profiles#zowe-cli-profile-types
https://docs.zowe.org/stable/user-guide/user-guide/cli-using-using-profiles-v1#zowe-cli-v1-profile-types
https://docs.zowe.org/stable/user-guide/extend/extend-apiml/onboard-overview

A scenario might exist where you log in to API ML with SSO, but you also want to access a different service directly.

To access the SSO-enabled services, log in and issue commands with the --base-path and --base-profile options. The token from

your base profile is used for authentication. Remember, your command or service profile must not contain username, password, host,
or port.

To access the other service directly — and circumvent API ML — supply all connection information (username, password, host, and
port) on a command or service profile. When you explicitly supply the username and password in a command or service profile, the
CLI always uses that connection information instead of the API ML token.

Accessing services through SSO and a service through API ML but not SSO

You might want to access multiple services with SSO, but also access a service through API ML that is not SSO-enabled.

To perform SSO for the first set of services, log in to API ML and supply the --base-path and --base-profile on commands. For

more information, see Accessing multiple services with SSO.

To access the service that is not SSO-enabled, explicitly provide your username and password when you issue commands. Using the -

-base-path option ensures that the request is routed to API ML, but the username and password that you provide overrides the

credentials in your base profile. This lets you sign in to the individual service.

Using client certificates to authenticate to API ML
To use a client certificate to generate an API ML token, open a command line window and issue the following command:

<APIML Host>

Specifies the API ML host.

<APIML Port>

Specifies the API ML port.

<PEM Public Certificate Path>

Specifies the path for the PEM public certificate.

<PEM Private Certificate Path>

Specifies the path to the PEM private certificate.

Zowe CLI procures a security token from the API ML and adds that token to the base profile in the applicable configuration file.

NOTE

If you have multiple types of configuration files and base profiles, see How configuration files and profiles work together to learn
which configuration and profile would be used to store the API ML token.

https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together

Version: v2.17.x LTS

Working with certificates
Certificates authorize communication between a server and client, such as z/OSMF and Zowe CLI. The client CLI must "trust" the server
to successfully issue commands. Use one of the following methods to let the CLI communicate with the server.

Configure certificates signed by a Certificate Authority (CA)
System Administrators can configure the server with a certificate signed by a Certificate Authority (CA) trusted by Mozilla. When a CA
trusted by Mozilla exists in the certificate chain, the CLI automatically recognizes the server and authorizes the connection. Related
information:

Using certificates with z/OS client/server applications in the IBM Knowledge Center.

Configuring the z/OSMF key ring and certificate in the IBM Knowledge Center.

Certificate management in Zowe API Mediation Layer

Mozilla Included CA Certificate List

Extend trusted certificates on client
If your organization uses self-signed certificates in the certificate chain (rather than a CA trusted by Mozilla), you can download the
certificate to your computer add it to the local list of trusted certificates. Provide the certificate locally using the
NODE_EXTRA_CA_CERTS environment variable. Organizations might want to configure all client computers to trust the self-signed

certificate. This blog post outlines the process for using environment variables to trust the self-signed certificate.

Bypass certificate requirement
If you do not have server certificates configured at your site, or you want to trust a known self-signed certificate, you can append the
--reject-unauthorized false flag to your CLI commands. Setting the --reject-unauthorized flag to false rejects self-signed
certificates and essentially bypasses the certificate requirement.

Important! Understand the security implications of accepting self-signed certificates at your site before you use this command.

Example:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha700/icha700_Using_certificates_with_z_OS_client_server_applications.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml
https://wiki.mozilla.org/CA/Included_Certificates
https://medium.com/@dkelosky/zowe-cli-providing-node-extra-ca-certs-117727d936e5

Version: v2.17.x LTS

Using environment variables

NOTE

For information on how to modify Zowe CLI default environment variables, see Configuring Zowe CLI environment variables.

You can define environment variables to execute commands more efficiently. Store a value such as your password in an environment
variable, then issue commands without specifying your password every time.

The term environment can refer to your operating system, container environment, or automation server such as Jenkins.

Consider assigning a variable in the scenarios outlined in the following table.

Use case Example Benefit

Store a commonly used
value.

Specify your mainframe username as an environment
variable.

Issue commands without the --user option,

and Zowe CLI automatically uses the value
defined in the environment variable.

Override a value in
existing profiles.

Override a value previously defined in multiple
profiles. Specify the new value as a variable to
override the value in profiles.

Avoid recreating each profile.

Secure credentials in an
automation server or
container

Set environment variables for use in scripts that run
in your CI/CD pipeline. You can also define sensitive
information in the Jenkins secure credential store.

Hide passwords and other sensitive
information from plaintext in logs.

Store credentials securely in CI/CD pipelines
You can use environment variables when running CI/CD pipelines to load credentials that are securely stored.

To do so, use the ZOWE_OPT_ prefix to turn a Zowe CLI command option into the proper format for a Zowe CLI environment variable.

For instructions, see Formatting environment variables.

The environment variables to use environment variables for a username and password are ZOWE_OPT_USER and ZOWE_OPT_PASSWORD .

Include the username and password environment variables in CI/CD pipelines that run Zowe CLI, as in the following example
Jenkinsfile that uses the Jenkins credential store:

For more information on Jenkins credential storage, see Using credentials and Using a Jenkinsfile.

https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev
https://docs.zowe.org/stable/user-guide/cli-using-formatting-environment-variables
https://www.jenkins.io/doc/book/using/using-credentials/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/#for-secret-text-usernames-and-passwords-and-secret-files

Version: v2.17.x LTS

Formatting environment variables
Transform an option into the proper format for a Zowe CLI environment variable, then define a value to the variable. Transform option
names according to the following rules:

Prefix environment variables with ZOWE_OPT_ .

Convert lowercase letters in arguments/options to uppercase letters.

Convert hyphens in arguments/options to underscores.

TIP

Refer to your operating system documentation for information about how to set and get environment variables. The procedure
varies between Windows, Mac, and various versions of Linux.

Examples of transformed CLI options
The following table provides examples of CLI options and the corresponding environment variable to which you can define a value:

Command
Option

Environment Variable Use Case

--user ZOWE_OPT_USER
Define your mainframe username to an environment variable to avoid
specifying it on all commands or profiles.

--reject-

unauthorized
ZOWE_OPT_REJECT_UNAUTHORIZED

Define a value of true to the --reject-unauthorized flag when you
always require the flag and do not want to specify it on all commands
or profiles.

--editor ZOWE_OPT_EDITOR

Define an editor that Zowe CLI uses to open files. The value can be
either the editor's executable file location or the name of a program
(for example, notepad on Windows or nano on Linux).

Version: v2.17.x LTS

Setting environment variables in an automation server
You can use environment variables in an automation server, such as Jenkins, to write more efficient scripts and make use of secure
credential storage. Automation tools such as Jenkins automation server usually provide a mechanism for securely storing
configuration (for example, credentials). In Jenkins, you can use withCredentials to expose credentials as an environment variable
(ENV) or Groovy variable.

You can either set environment variables using the SET command within your scripts, or navigate to Manage Jenkins > Configure

System > Global Properties and define an environment variable in the Jenkins GUI. For example:

Version: v2.17.x LTS

Using the prompt feature
Zowe CLI uses a command-line "prompt" feature to request you to provide required option values. The CLI always prompts for host,
port, username, and password information if not supplied in commands or profile configuration.

You can also manually enable the prompt for any option. This is helpful to mask sensitive information on the screen while you type.
You can enable a one-time prompt, or you can choose to always prompt for a particular option.

Enabling a one-time prompt

To enable a one-time prompt:

1. Open the Zowe CLI command prompt.

2. Specify an option or positional argument as prompt* :

Zowe CLI responds with a prompt for the information.

3. Enter the correct value at the prompt.

The prompt hides the user's input as it is entered into the command line.

Always prompting for a particular option

Always prompting can be a good practice when your environment's security protocols prevent storing credentials on a personal
computer, or expire passwords frequently (as with multi-factor authentication).

To always prompt for a particular option:

1. Use a text editor to open the configuration file that contains the profile to be modified.

2. In the profile, save prompt* as the plain-text value for the profile properties for which you want to be prompted:

3. Test the prompt by running a command using the modified profile.

Zowe CLI prompts for the configured properties, such as the user ID and password in the following example:

The prompt hides the user's input as it is entered into the command line.

Version: v2.17.x LTS

Writing scripts
You can combine multiple Zowe CLI commands in bash or shell scripts to automate actions on z/OS. Implement scripts to enhance
your development workflow, automate repetitive test or build tasks, and orchestrate mainframe actions from continuous
integration/continuous deployment (CI/CD) tools such as Jenkins or TravisCI.

Note: The type of script that you write depends on the programming languages that you use and the environment where the script is
executed. The following is a general guide to Zowe CLI scripts. Refer to third-party documentation to learn more about scripting in
general.

Follow these steps:

1. Create a new file on your computer with the extension .sh. For example, testScript.sh .

Note: On Mac and Linux, an extension is not required. To make the file executable, issue the command chmod u+x testScript .

2. (Mac and Linux only) At the top of the file, specify the interpreter that your script requires. For example, type #!/bin/sh or

#!/bin/bash .

Note: The command terminal that you use to execute the script depends on what you specify at the top of your script. Bash
scripts require a bash interpreter (bash terminal), while shell scripts can be run from any terminal.

3. Write a script using a series of Zowe CLI commands.

Tip: You can incorporate commands from other command-line tools in the same script. You might choose to "pipe" the output of
one command into another command.

4. From the appropriate command terminal, issue a command to execute the script. The command you use to execute script varies
by operating system.

The script runs and prints the output in your terminal. You can run scripts manually, or include them in your automated testing and
delivery pipelines.

Sample script library

Refer to the Zowe CLI Sample Scripts repository for examples that cover a wide range of scripting languages and use cases.

Example: Clean up Temporary Data Sets

The script in this example lists specified data sets, then loops through the list of data sets and deletes each file. You can use a similar
script to clean up temporary data sets after use.

Note: Run this script from a bash terminal.

Example: Submit Jobs and Save Spool Output

The script in this example submits a job, waits for the job to enter output status, and saves the spool files to local files on your
computer.

https://github.com/zowe/zowe-cli-sample-scripts

Note: Run this script from a bash terminal.

Version: v2.17.x LTS

Zowe CLI plug-ins
You can install plug-ins to extend the capabilities of Zowe™ CLI. Plug-ins CLI to third-party applications are also available, such as
Visual Studio Code Extension for Zowe (powered by Zowe CLI). Plug-ins add functionality to the product in the form of new command
groups, actions, objects, and options.

IMPORTANT

Plug-ins can gain control of Zowe CLI legitimately during the execution of every command. Install third-party plug-ins at your
own risk.

Installing Zowe CLI plug-ins

IBM® CICS Plug-in for Zowe CLI

IBM® Db2® Database Plug-in for Zowe CLI

IBM® z/OS FTP Plug-in for Zowe CLI

IBM® MQ Plug-in for Zowe CLI

IDF Plug-in for Zowe CLI

Visual Studio Code (VSCode) Extension for Zowe

IBM® IMS™ Plug-in for Zowe CLI

WARNING

As of Zowe v2.15, the IBM IMS Plug-in has been deprecated.

No additional security updates, bug fixes, or enhancements for the plug-in are expected.

https://docs.zowe.org/stable/user-guide/cli-installplugins
https://docs.zowe.org/stable/user-guide/cli-cicsplugin
https://docs.zowe.org/stable/user-guide/cli-db2plugin
https://docs.zowe.org/stable/user-guide/cli-ftpplugin
https://docs.zowe.org/stable/user-guide/cli-mqplugin
https://docs.zowe.org/stable/user-guide/cli-idfplugin
https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/cli-imsplugin

Version: v2.17.x LTS

Software requirements for Zowe CLI plug-ins
Before you use Zowe™ CLI plug-ins, complete the following steps:

Important! You can perform the required configurations for the plug-ins that you want to use before or after you install the plug-ins.
However, if you do not perform the required configurations, the plug-ins will not function as designed.

Plug-in Required Configurations

IBM CICS Plug-in for
Zowe CLI

Ensure that IBM CICS Transaction Server v5.2 or later is installed and running in your mainframe
environment

IBM CICS Management Client Interface (CMCI) is configured and running in your CICS region.

IBM Db2 Database Plug-
in for Zowe CLI

Download and prepare the ODBC driver (required for only package installations) and address the
licensing requirements. Perform this task before you install the plug-in.

(MacOS) Download and Install Xcode.

IBM z/OS FTP Plug-in for
Zowe CLI

Ensure that z/OS FTP service is enabled and configured with JESINTERFACELEVEL = 2.

FTP over SSL is recommended.

IBM MQ Plug-in for
Zowe CLI

Ensure that IBM® MQ™ v9.1.0 or later is installed and running in your mainframe environment.
Please read this blog for more information: Exposing the MQ REST API via the Zowe API
Mediation Layer

Visual Studio Code
Extension for Zowe

Node.js V8.0 or later

Access to z/OSMF; at least one profile is configured

Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs REST
interface. For more information, see z/OS Requirements.

IBM IMS Plug-in for
Zowe CLI
DEPRECATED

As of Zowe v2.15, the IBM IMS Plug-in has been deprecated. No additional security
updates, bug fixes, or enhancements are expected.

Ensure that IBM® IMS™ v14.1.0 or later is installed and running in your mainframe environment.

Configure IBM® IMS™ Connect.

Configure IBM IMS Operations APIs to enable communication between the CLI and the IMS
instance.

Important! You can perform the required configurations for the plug-ins that you want to use before or after you install the plug-ins.
However, if you do not perform the required configurations, the plug-ins will not function as designed.

https://docs.zowe.org/stable/user-guide/cli-cicsplugin
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
https://docs.zowe.org/stable/user-guide/cli-db2plugin
https://docs.zowe.org/stable/user-guide/cli-db2plugin#downloading-the-odbc-driver
https://developer.apple.com/xcode/resources/
https://docs.zowe.org/stable/user-guide/cli-ftpplugin
https://docs.zowe.org/stable/user-guide/cli-mqplugin
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.pro.doc/q121910_.htm
https://developer.ibm.com/messaging/2019/05/17/exposing-the-mq-rest-api-via-the-zowe-api-mediation-layer/
https://docs.zowe.org/stable/user-guide/ze-install
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf
https://docs.zowe.org/stable/user-guide/cli-imsplugin
https://www.ibm.com/support/knowledgecenter/en/SSEPH2_14.1.0/com.ibm.ims14.doc/ims_product_landing_v14.html
https://www.ibm.com/support/knowledgecenter/en/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_intro.html
https://github.com/zowe/ims-operations-api

Version: v2.17.x LTS

Installing Zowe CLI plug-ins
Use commands in the plugins command group to install and manage Zowe™ CLI plug-ins.

IMPORTANT

Plug-ins can gain control of Zowe CLI legitimately during the execution of every command. Install third-party plug-ins at your
own risk.

You can install the following Zowe plug-ins:

IBM® CICS® Plug-in for Zowe CLI

IBM® Db2® Plug-in for Zowe CLI

Third-party Zowe Conformant Plug-ins

Use either of the following methods to install plug-ins:

Install from an online NPM registry. Use this method when your computer can access the Internet.

For more information, see Installing plug-ins from an online registry.

Install from a local package. With this method, you download and install the plug-ins from a bundled set of .tgz files. Use this

method when your computer cannot access the Internet.

For more information, see Installing plug-ins from a local package.

Installing plug-ins from an online registry
Install Zowe CLI plug-ins on Windows, Mac, and Linux. The procedures in this article assume that you previously installed the core CLI.

Follow these steps:

1. Meet the software requirements for each plug-in that you install.

2. Issue the following command to install a plug-in from public npm:

Replace <my-plugin> with the installation command syntax in the following table

Plug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli@zowe-v2-lts

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli@zowe-v2-lts

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli@zowe-v2-lts

https://openmainframeproject.org/our-projects/zowe-conformance-program/
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

Plug-in Syntax

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli@zowe-v2-lts

IBM IMS Plug-in for Zowe CLI
DEPRECATED

@zowe/ims-for-zowe-cli@zowe-v2-lts

WARNING

As of Zowe v2.15, the IBM IMS Plug-in has been deprecated.

No additional security updates, bug fixes, or enhancements for the plug-in are expected.

3. (Optional) Issue the following command to install two or more plug-ins using one command. Separate the <my-plugin> names

with one space.

NOTE

The IBM Db2 Plug-in for Zowe CLI requires additional licensing and ODBC driver configurations. If you installed the DB2
plug-in, see IBM Db2 Plug-in for Zowe CLI.

You have successfully installed Zowe CLI plug-ins.

Installing plug-ins from a local package
Install plug-ins from a local package on any computer that has limited or no access to the Internet. The procedure assumes that you
previously installed the core CLI.

Follow these steps:

1. Meet the software requirements for each plug-in that you want to install.

2. Obtain the installation files.

From the Zowe Download website, click Download Zowe CLI to download the Zowe CLI installation package named zowe-cli-

package-*v*.*r*.*m*.zip to your computer.

NOTE

v indicates the version, r indicates the release number, and m indicates the modification number.

3. Open a command-line window, such as Windows Command Prompt. Browse to the directory where you downloaded the Zowe
CLI installation package (.zip file). Issue the following command, or use your preferred method to unzip the files:

Example:

By default, the unzip command extracts the contents of the zip file to the directory where you downloaded the .zip file. You can
extract the contents of the zip file to your preferred location.

https://docs.zowe.org/stable/user-guide/cli-db2plugin
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://zowe.org/download/

4. Issue the following command against the extracted directory to install each available plug-in:

Replace <my-plugin> with the .tgz file name listed in the following table:

Plug-in .tgz File Name

IBM CICS Plug-in for Zowe CLI cics-for-zowe-cli.tgz

IBM Db2 Plug-in for Zowe CLI db2-for-zowe-cli.tgz

IBM z/OS FTP Plug-in for Zowe CLI zos-ftp-for-zowe-cli.tgz

IBM MQ Plug-in for Zowe CLI mq-for-zowe-cli.tgz

IBM IMS Plug-in for Zowe CLI
DEPRECATED

ims-for-zowe-cli.tgz

WARNING

As of Zowe v2.15, the IBM IMS Plug-in has been deprecated.

No additional security updates, bug fixes, or enhancements for the plug-in are expected.

You have successfully installed the Zowe CLI plug-ins.

Validating plug-ins
Issue the plug-in validation command to run tests against all plug-ins (or against a plug-in that you specify) to verify that the plug-ins
integrate properly with Zowe CLI. The tests confirm that the plug-in does not conflict with existing command groups in the base
application. The command response provides you with details or error messages about how the plug-ins integrate with Zowe CLI.

The validate command has the following syntax:

[plugin] (Optional) Specifies the name of the plug-in that you want to validate. If you do not specify a plug-in name, the

command validates all installed plug-ins. The name of the plug-in is not always the same as the name of the NPM package.

Plug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli

IBM IMS Plug-in for Zowe CLI @zowe/ims-for-zowe-cli

Plug-in Syntax

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli

Examples: Validate plug-ins

The following example illustrates the syntax to use to validate the IBM CICS Plug-in for Zowe CLI:

The following example illustrates the syntax to use to validate all installed plug-ins:

Updating plug-ins
You can update Zowe CLI plug-ins from an online registry or from a local package.

Update plug-ins from an online registry

Issue the update command to install the latest stable version or a specific version of a plug-in that you installed previously. The

update command has the following syntax:

[plugin...]

Specifies the name of an installed plug-in that you want to update. The name of the plug-in is not always the same as the name
of the NPM package. You can use npm semantic versioning to specify a plug-in version to which to update. For more information,
see npm semver.

[--registry \<registry>\]

(Optional) Specifies a registry URL that is different from the registry URL of the original installation.

Examples: Update plug-ins

The following example illustrates the syntax to use to update an installed plug-in to the latest version:

The following example illustrates the syntax to use to update a plug-in to a specific version:

Update plug-ins from a local package

You can update plug-ins from a local package. You acquire the media from the Zowe Download website and update the plug-ins using
the zowe plugins install command.

To update plug-ins from a local package, follow the steps described in Installing plug-ins from a local package.

Uninstall Plug-ins
Issue the uninstall command to uninstall plug-ins from Zowe CLI. After the uninstall process completes successfully, the product no

longer contains the plug-in configuration.

The uninstall command contains the following syntax:

https://zowe.org/download/

[plugin]

Specifies the name of the plug-in that you want to uninstall.

The following table describes the uninstallation command syntax for each plug-in:

Plug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli

IBM IMS Plug-in for Zowe CLI @zowe/ims-for-zowe-cli

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli

Example:

The following example illustrates the command to uninstall the CICS plug-in:

Version: v2.17.x LTS

IBM® CICS® Plug-in for Zowe CLI
The IBM® CICS® Plug-in for Zowe™ CLI lets you extend Zowe CLI to interact with CICS programs and transactions. The plug-in uses
the IBM CICS® Management Client Interface (CMCI) API to achieve the interaction with CICS. For more information, see CICS
management client interface on the IBM Knowledge Center.

Use Cases

Commands

Software requirements

Installing

Creating a user profile

Use cases

As an application developer, you can use the plug-in to perform the following tasks:

Deploy code changes to CICS applications that were developed with COBOL.

Deploy changes to CICS regions for testing or delivery. See the define command for an example of how you can define programs
to CICS to assist with testing and delivery.

Automate CICS interaction steps in your CI/CD pipeline with Jenkins Automation Server or TravisCI.

Deploy build artifacts to CICS regions.

Alter, copy, define, delete, discard, and install CICS resources and resource definitions.

Commands

For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help. It is available for
download in three formats: a PDF document, an interactive online version, and a ZIP file containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins.

Installing
Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Creating a user profile
You create a cics profile to avoid entering your connection details each time that you issue a command. You can create multiple
profiles and switch between them as needed. Use one of the following methods to create a profile:

Create plug-in profiles using a configuration file: Specify your profile and connection details in the zowe.config.json
configuration file.

Create plug-in profiles using a command: Issue the zowe profiles create command to create the profile. We recommend

that you create profiles using the configuration file. We do not recommend using profile commands because we are removing
them from a future major release.

Creating plug-in profiles using a configuration file

When you issue various zowe config commands, such as init , auto-init , and convert-profiles , they create a

zowe.config.json configuration file. When you install the CICS plug-in, the commands create an entry for a cics profile in your

zowe.config.json file.

Alternatively, you can create a CICS profile manually by adding a section that contains the configuration details to your
zowe.config.json configuration file.

1. Browse to the following directory C:\Users\<username>\.zowe

2. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ.

NOTE: If the file does not exist, issue the following command to create the configuration file:

3. Add code to the "profiles" section as shown in the following example: :

4. Save the file.

You can now use your profile when you issue commands in the cics command group.

Creating plug-in profiles using a command

The following steps describe how to create a profile using the zowe profiles create command.

1. Open a terminal window and issue the following command:

profile_name :

Specifies a name for your profile.

host :

Specifies the host name for the instance.

user :

Specifies your user name to log in to the instance.

password :

Specifies your password to log in to the instance.

port :

Specifies the port number to connect to the instance.

region :

Specifies the region to use on the instance.

Example:

2. Press Enter. The result of the command displays as a success or failure message.

You can now use your profile when you issue commands in the cics command group.

The plug-in uses HTTPS by default. Use the optional flag --protocol http to override the default with HTTP.

Version: v2.17.x LTS

IBM® Db2® Database Plug-in for Zowe CLI
The IBM® Db2® Database Plug-in for Zowe™ CLI lets you interact with Db2 for z/OS to perform tasks through Zowe CLI and
integrate with modern development tools. The plug-in also lets you interact with Db2 to advance continuous integration and to
validate product quality and stability.

Zowe CLI Plug-in for IBM Db2 Database lets you execute SQL statements against a Db2 region, export a Db2 table, and call a stored
procedure. The plug-in also exposes its API so that the plug-in can be used directly in other products.

Use cases
As an application developer, you can use Zowe CLI Plug-in for IBM Db2 Database to perform the following tasks:

Execute SQL and interact with databases.

Execute a file with SQL statements.

Export tables to a local file on your computer in SQL format.

Call a stored procedure and pass parameters.

Commands
For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help. It is available for
download in three formats: a PDF document, an interactive online version, and a ZIP file containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

Software requirements
Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins.

Installing

Use one of the following methods to install the the Zowe CLI Plug-in for IBM Db2 Database:

Install from an online registry

Install from a local package

Installing from an online registry

Complete the following steps if you installed Zowe CLI from online registry:

https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins

1. If you are installing the plug-in on an Apple computer that contains an M1 (or later architecture) processor, complete the steps in
M1 processor installation. If not, continue to Step 2.

2. Open a command line window and issue the following command:

3. Address the license requirements to begin using the plug-in.

Installing from a local package

Follow these procedures if you downloaded the Zowe installation package:

Downloading the ODBC driver

Download the ODBC driver before you install the Db2 plug-in:

1. If you are installing the plug-in on a Apple computer that contains an M1 (or later architecture) processor, complete the steps in
M1 processor installation. If not, continue to Step 2.

2. Download the ODBC CLI Driver. Use the table within the download URL to select the correct CLI Driver for your platform and
architecture.

3. Create a new directory named odbc_cli on your computer. Remember the path to the new directory. You will need to provide

the full path to this directory immediately before you install the Db2 plug-in.

4. Place the ODBC driver in the odbc_cli folder. Do not extract the ODBC driver.

You downloaded and prepared to use the ODBC driver successfully. Proceed to install the plug-in to Zowe CLI.

Installing Xcode on MacOS

To install the Db2 CLI plug-in on MacOS, you need the command line tools, which can be obtained by installing Xcode from the App
Store.

NOTE

On some versions of MacOS, you may receive the error xcrun: error: invalid active developer path as shown below:

If this occurs, a manual refresh of the command line tools is required by running the following commands:

Installing the plug-in

With the Db2 ODBC CLI driver downloaded, set the IBM_DB_INSTALLER_URL environment variable and install the Db2 plug-in to Zowe

CLI:

1. Open a command line window and change the directory to the location where you extracted the zowe-cli-bundle.zip file. If

you do not have the zowe-cli-bundle.zip file, see the topic Install Zowe CLI from local package in Installing Zowe CLI for

information about how to obtain and extract it.

2. From a command line window, set the IBM_DB_INSTALLER_URL environment variable:

https://docs.zowe.org/stable/user-guide/cli-db2-install-m1
https://docs.zowe.org/stable/user-guide/cli-db2-install-m1
https://github.com/ibmdb/node-ibm_db#-download-clidriver-based-on-your-platform--architecture-from-the-below-ibm-hosted-url
https://medium.com/r/?url=https%3A%2F%2Fapps.apple.com%2Fus%2Fapp%2Fxcode%2Fid497799835%3Fmt%3D12
https://docs.zowe.org/stable/user-guide/cli-installcli

Windows operating systems:

Linux and Mac operating systems:

For example, if you downloaded the Windows x64 driver (ntx64_odbc_cli.zip) to C:\odbc_cli :

3. To install the IBM Db2 Database Plug-in:

4. Address the license requirements to begin using the plug-in.

You have installed the IBM Db2 Database Plug-in successfully.

Addressing the license requirement
To successfully connect the Db2 CLI plug-in to a database on z/OS, a license needs to be present either on the client where the Zowe
CLI is executed from, or else on z/OS. If you do not have a license configured when you execute Db2 CLI commands, you receive an
error SQL1598N :

Server-side license

You can execute the utility db2connectactivate on z/OS to enable a Db2 database to accept client requests. For more information,
see db2connectactivate - Server license activation utility. This avoids having to apply the Db2 Connect license on each database client
that connects directly to the server. It is also the preferred approach to enabling users of the Zowe Db2 CLI because it avoids
individual client license distribution and configuration.

Client-side license

If the utility db2connectactivate has not been executed against the Db2 database that your profile is connecting to, then it is

possible to obtain the license file db2consv_zs.lic from a copy of Db2 Connect and use this for client configuration. This will need
to be done separately for each client PC.

1. Locate your client copy of the Db2 license file db2consv_zs.lic .

NOTE

The license must be of version 11.5 if the Db2 server is not db2connectactivated . You can buy a db2connect license from

IBM. The connectivity can be enabled either on server using db2connectactivate utility or on client using client side license
file. For more information about Db2 license and purchasing cost, please contact IBM Customer Support.

2. Copy your Db2 license file db2consv_za.lic and place it in the following directory.

TIP

By default, <zowe_home> is set to ~/.zowe on \UNIX and Mac systems, and C:\Users\<Your_User>\.zowe on Windows

systems.

After the license is copied, you can use the Db2 plug-in functionality.

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.licensing.doc/doc/r0057377.html

Creating a user profile
You create a Db2 profile to avoid entering your connection details each time that you issue a command. You can create multiple
profiles and switch between them as needed. Use one of the following methods to create a profile:

Create plug-in profiles using a configuration file: Specify your profile and connection details in the zowe.config.json
configuration file.

Create plug-in profiles using a command: Issue the zowe profiles create command to create the profile.

We recommend that you create profiles using the configuration file. We do not recommend using profile commands because we are
removing them in a future major release.

Creating plug-in profiles using a configuration file

When you issue various zowe config commands, such as init , auto-init , and convert-profiles , they create a

zowe.config.json configuration file. When you install the Db2 plug-in, the commands create an entry for a db2 profile in your

zowe.config.json file.

Alternatively, you can create a Db2 profile manually by adding a section that contains the configuration details to your
zowe.config.json configuration file:

1. Browse to the following directory: C:\Users\<username>\.zowe

2. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ.

NOTE

If the file does not exist, issue the following command to create the configuration file: zowe config init --gc

3. Add code to the "profiles" section as shown in the following example:

4. Save the file.

You can now use your profile when you issue commands in the zowe db2 command group.

Creating plug-in profiles using a command

Create a profile using the zowe profiles create command:

1. Open a terminal window and issue the following command:

profile_name

Specifies a name for your profile.

host

Specifies the host name for the instance.

user

Specifies your user name to log in to the instance.

password

Specifies your password to log in to the instance.

port

Specifies the port number to connect to the instance.

database

Specifies the database to use on the instance.

Example:

2. Press Enter . The result of the command displays as a success or failure message.

You can now use your profile when you issue commands in the zowe db2 command group.

Version: v2.17.x LTS

M1 processor installation
The IBM ODBC DB2 driver functions only on MacOS x86_64 architecture.

Use the following steps to configure an M1 (or later architecture) processor to behave as MacOS x86_64 architecture so that it can
communicate with the IBM ODBC DB2 driver.

1. Install Rosetta. Open a terminal window and issue the following command:

2. Modify ~/.zshrc to contain the following syntax:

3. Source the new file by issuing the following command:

4. Switch to the x86_64 architecture by issuing the following command:

5. Reinstall Zowe CLI.

6. After you complete these steps, do one of the following:

If you are installing the plug-in from an online registry, continue with Step 2 in Install from an online registry.

If you are installing the plug-in from a local package, continue with Step 2 in Installing from a local package.

Important! You must issue the intel command every time that you open a new terminal window to help ensure that Zowe CLI,

Secure Credential Storage and the DB2 plug-in function properly on x86_64 architecture. Also, issue the command before you issue
Zowe CLI commands.

https://docs.zowe.org/stable/user-guide/cli-db2plugin#installing-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-db2plugin#installing-from-a-local-package

Version: v2.17.x LTS

IBM® z/OS FTP Plug-in for Zowe CLI
The IBM® z/OS FTP Plug-in for Zowe™ CLI lets you extend Zowe CLI to access z/OS datasets, USS files, and submit JCL. The plug-in
uses the z/OS FTP service to achieve the interaction with z/OS.

Use cases
As a z/OS user, you can use the plug-in to perform the following tasks:

List, view, rename, and download z/OS datasets or USS files.

Upload local files or stdin to z/OS datasets or USS files.

List, view, and download job status or job spool files.

Delete a z/OS dataset, USS file, or job.

Commands
:::

When transferring files, data sets, or data set members, use only ASCII characters. If a file contains non-ASCII characters (such as
glyphs or mathematical symbols), a translation error can happen when the file is downloaded from, or uploaded to, the mainframe.
This error can result in data loss.

:::

For detailed documentation on commands, actions, and options available in this plug-in, see the Web Help. It is available for
download in the following formats:

Browse the online Web Help

Download the ZIP file

Download the PDF document

Software requirements
Before you install the plug-in, meet the Software requirements for Zowe CLI plug-ins.

Installing

Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Creating a user profile
You create a zftp profile to avoid entering your connection details each time that you issue a command. You can create multiple
profiles and switch between them as needed. Use one of the following methods to create a profile:

Create plug-in profiles using a configuration file: Specify your profile and connection details in the zowe.config.json
configuration file.

Create plug-in profiles using a command: Issue the zowe profiles create command to create the profile.

We recommend that you create profiles using the configuration file. We do not recommend using profile commands because we are
removing them in a future major release.

Creating plug-in profiles using a configuration file

When you issue various zowe config commands, such as init , auto-init , and convert-profiles , they create a

zowe.config.json configuration file. When you install the z/OS FTP plug-in, the commands create an entry for a zftp profile in

your zowe.config.json file.

Alternatively, you can create a zftp profile manually by adding a section that contains the configuration details to your
zowe.config.json configuration file.

1. Browse to the following directory: C:\Users\<username>\.zowe

2. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ.

NOTE: If the file does not exist, issue the following command to create the configuration file: zowe config init --gc

3. Add code to the "profiles" section as shown in the following example:

Note: The value of the “ secureftp " option is defined as true by default. We recommend that you specify this value when FTPS

(FTP over SSL) is enabled in the z/OS FTP service. FTPS is not equivalent to SFTP (FTP over SSH). SFTP is not currently supported.

4. Save the file

You can now use your profile when you issue commands in the zftp command group.

Creating plug-in profiles using a command

The following steps describe how to create a profile using the zowe profiles create command.

1. Open a terminal window and issue the following command:

profile_name :

Specifies a name for your profile.

host :

Specifies the host name for the instance.

user :

Specifies your user name to log in to the instance.

password :

Specifies your password to log in to the instance.

port :

Specifies the port number to connect to the instance.

Example:

2. Press Enter. The result of the command displays as a success or failure message.

Note: The command contains an option named --secure-ftp that is defined as true by default. We recommend that you specify

this value when FTPS (FTP over SSL) is enabled in the z/OS FTP service. FTPS is not equivalent to SFTP (FTP over SSH).

You can now use your profile when you issue commands in the zftp command group.

Issuing test commands

After installing the plugin successfully, you can issue commands to test basic Zowe CLI functionality.

For example, you can use one of the following methods to download a data set:

Download a data set using a default profile:

Download a data set without using a default profile:

Version: v2.17.x LTS

IBM® IMS™ Plug-in for Zowe CLI

WARNING

As of Zowe v2.15, the IBM IMS Plug-in has been deprecated.

No additional security updates, bug fixes, or enhancements for the plug-in are expected.

The IBM IMS Plug-in for Zowe CLI lets you extend Zowe CLI such that it can interact with IMS resources (regions, programs and
transactions). You can use the plug-in to start, stop, and query regions and start, stop, query, and update programs and transactions.

NOTE

For more information about IMS, see IBM Information Management System (IMS) on the IBM Knowledge Center.

Use cases
As an application developer or DevOps administrator, you can use IBM IMS Plug-in for Zowe CLI to perform the following tasks:

Refresh IMS transactions, programs, and dependent IMS regions.

Deploy application code into IMS production or test systems.

Write scripts to automate IMS actions that you traditionally perform using ISPF editors, TSO, and SPOC.

Commands
For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help. It is available for
download in three formats: a PDF document, an interactive online version, and a ZIP file containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins.

Installing
Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

https://www.ibm.com/it-infrastructure/z/ims
https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Creating user profiles
You create an IMS profile to avoid entering your connection details each time that you issue a command. You can create multiple
profiles and switch between them as needed. Use one of the following methods to create a profile:

Create plug-in profiles using a configuration file: Specify your profile and connection details in the zowe.config.json
configuration file.

Create plug-in profiles using a command: Issue the zowe profiles create command to create the profile.

We recommend that you create profiles using the configuration file. We do not recommend using profile commands because we are
removing them in a future major release.

Creating plug-in profiles using a configuration file

When you issue various zowe config commands, such as init , auto-init , and convert-profiles , they create a

zowe.config.json configuration file. When you install the z/OS IMS plug-in, the commands create an entry for an ims profile in

your zowe.config.json file.

Alternatively, you can create an ims profile manually by adding a section that contains the configuration details to your
zowe.config.json configuration file.

1. Browse to the following directory: C:\Users\<username>\.zowe

2. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ.

NOTE

If the file does not exist, issue the following command to create the configuration file: zowe config init --gc

3. Add code to the "profiles" section as shown in the following example:

4. Save the file

You can now use your profile when you issue commands in the ims command group.

Creating plug-in profiles using a command

The following steps describe how to create a profile using the zowe profiles create command.

1. Open a terminal window and issue the following command:

profile_name :

Specifies a name for your profile.

host :

Specifies the host name for the instance.

user :

Specifies your user name to log in to the instance.

password :

Specifies your password to log in to the instance.

port :

Specifies the port number to connect to the instance.

ims_host :

Specifies the host name to connect to the IMS Connect instance.

ims_port :

Specifies the port number to connect to the IMS Connect instance.

Example:

2. Press Enter . The result of the command displays as a success or failure message.

You can now use your profile when you issue commands in the ims command group.

Version: v2.17.x LTS

IBM® MQ Plug-in for Zowe CLI
The IBM MQ Plug-in for Zowe CLI lets you issue MQSC commands to a queue manager. MQSC commands let you to perform
administration tasks. For example, you can define, alter, or delete a local queue object.

Note: For more information about MQSC commands and the corresponding syntax, see MQSC commands on the IBM Knowledge
Center.

Use cases
You can use the plug-in to execute MQSC Commands. With MQSC commands you can manage queue manager objects (including the
queue manager itself), queues, process definitions, channels, client connection channels, listeners, services, namelists, clusters, and
authentication information objects.

Using IBM MQ plug-in commands
For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help. It is available for
download in three formats: a PDF document, an interactive online version, and a ZIP file containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

Software requirements
Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-ins.

Installing
Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

Creating a user profile
You create an mq profile to avoid entering your connection details each time that you issue a command. You can create multiple
profiles and switch between them as needed. Use one of the following methods to create a profile:

Create plug-in profiles using a configuration file: Specify your profile and connection details in the zowe.config.json

configuration file.

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q085130_.htm
https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/zowe_web_help.zip
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Create plug-in profiles using a command: Issue the zowe profiles create command to create the profile.

We recommend that you create profiles using the configuration file. We do not recommend using profile commands because we are
removing them in a future major release.

Creating plug-in profiles using a configuration file

When you issue various zowe config commands, such as init , auto-init , and convert-profiles , they create a

zowe.config.json configuration file. When you install the MQ plug-in, the commands create an entry for an mq profile in your

zowe.config.json file.

Alternatively, you can create a mq profile manually by adding a section that contains the configuration details to your
zowe.config.json ok configuration file.

1. Browse to the following directory C:\Users\<username>\.zowe

2. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code or IntelliJ.

NOTE: If the file does not exist, issue the following command to create the configuration file: zowe config init --gc

3. Add code to the "profiles" section as shown in the following example:

Example:

4. Save the file

You can now use your profile when you issue commands in the mq command group.

Creating plug-in profiles using a command

The following steps describe how to create a profile using the zowe profiles create command.

1. Open a terminal window and issue the following command:

profile_name :

Specifies a name for your profile.

host :

Specifies the host name for the instance.

user :

Specifies your user name to log in to the instance.

password :

Specifies your password to log in to the instance.

port :

Specifies the port number to connect to the instance.

Example:

2. Press Enter. The result of the command displays as a success or failure message.

You can now use your profile when you issue commands in the mq command group.

Version: v2.17.x LTS

IDF Plug-in for Zowe CLI
The IDF Plug-in for Zowe CLI lets you extend Zowe CLI to make it easier to map mainframe users with an identity provided by an
external identity provider.

The plug-in is designed to work with the ESMs: IBM RACF, ACF/2, and Top Secret.

Use case
For a system administrator for the Zowe API Mediation Layer, the IDF Plug-in for Zowe CLI can help facilitate the mapping of an
external identity from a distributed identity provider to mainframe users administered by the system ESM.

Commands
The plug-in provides the map command. For details about the map command, see Using.

NOTE

The plug-in help command includes specific parameters of Zowe-profiles which are not used.

Software requirements
Before you install the plug-in, ensure that you meet the software requirements in Software requirements for Zowe CLI plug-ins.

Installing
Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

Use the following Plug-in ID with either of these installation methods:

Plug-in Syntax

IDF Plugin for Zowe CLI @zowe/id-federation-for-zowe-cli

Using
Currently, the plug-in does not interface with the mainframe system, so no Zowe CLI profile configuration is required.

https://docs.zowe.org/stable/user-guide/cli-swreqplugins
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/stable/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

For the most up-to-date details of required parameters, use the help command:

zowe idf map --help .

Use the following command to enable Zowe to generate a JCL. A security administrator can then submit this JCL to create a mapping.

zowe idf map <csv-file> --esm <esm> --registry <registry> --system <system>

csv-file
The path to the input CSV-formatted file, see below for the details of the format.

esm
The identifier of the target external security manager, one of ACF2, RACF, or TSS.

registry
The registry to identify the distributed identity provider, for example LDAP ldap://12.34.56.78:389

system
This is an optional parameter, system identifier for JCL purposes. Ensure that this value matches the system name defined in JES.

CSV Format

For proper functionality of the plug-in, ensure that the CSV input file has the following format without a header:

name
The descriptive name of the user.

dist_id
The distributed identity of the user.

mf_id
The mainframe id of the user.

Output

The map command generates an output file with a valid JCL. The output file name has the following pattern:

idf_ESMSYSTEM.jcl

$SYSTEM
This parameter is omitted if it is not provided.

Version: v2.17.x LTS

Using Zowe Explorer
Review this section to familiarize yourself with Zowe Explorer and make the best use of its available options and features.

Supported operating systems, environments, and platforms

Operating systems

MacOS 10.15 (Catalina), 11 (Big Sur), 12 (Monterey)

Unix-like:
CentOS 8+

RHEL 8+

Ubuntu 20.04+

Windows 10+

Integrated development environments:

VS Code 1.53.2+

Eclipse Che

Red Hat CodeReady Workspaces

Theia 1.18+

NOTE

Zowe Explorer is compatible with Theia 1.18.0 or higher. However, we recommend using a Theia community release as Zowe
Explorer could experience possible unexpected behaviors with the latest Theia releases.

Using Zowe Explorer in remote environments
As of Zowe Version 2.11, Zowe Explorer and the Zowe Explorer API no longer use node-keytar , which was used to manage

mainframe credentials. This change might cause some users issues when trying to interact with remote environments.

See Usage in Remote Environments to learn more about how to resolve credential errors.

Using a specific version of Zowe Explorer

Depending on their circumstances, developers might want to keep using a specific version of Zowe Explorer. To ensure that a
particular version remains installed on VS Code, refer to the procedure for one of the following scenarios:

Zowe Explorer is installed

Preventing automatic version updates

https://www.centos.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://ubuntu.com/
https://code.visualstudio.com/
https://www.eclipse.org/che/
https://www.redhat.com/en/technologies/jboss-middleware/codeready-workspaces
https://theia-ide.org/
https://theia-ide.org/releases/
https://github.com/zowe/zowe-explorer-vscode/wiki/Usage-in-Remote-Environments

By default, VS Code automatically updates extensions as new versions are released. Refer to the following steps to prevent automatic
updates:

1. On the VS Code menu bar, click File, Preferences, and click Settings to display the Settings editor.

2. Select the User or Workspace tab, depending on which settings you want to update.

3. In the Settings navigation menu, click Features and click Extensions.

4. In the Auto Update dropdown menu, select None. This prevents VS Code from updating your extensions automatically.

Installing a specific previous version

1. Select the Extensions tab on the Activities Bar to display a list of installed extensions.

2. In the Side Bar, click the Gear icon next to Zowe Explorer to open a dropdown menu that lists available options.

3. Select Install Another Version… to open a dropdown menu that lists previous versions of Zowe Explorer.

4. Click the version of Zowe Explorer you want to install.

Zowe Explorer is not installed

If Zowe Explorer is not installed, you can install the current release of the extension and then revert to a previous version.

Installing a previous version of Zowe Explorer

1. Select the Extensions tab on the Activities Bar to display the Search Extensions in Marketplace field.

2. In the Side Bar, search for Zowe Explorer . Click the Install button on the Zowe Explorer search result item. This opens a Zowe

Explorer tab in the Editor area.

3. Click the Down arrow next to the Uninstall button. Select Install Another Version… to open a dropdown menu that lists
previous versions of Zowe Explorer.

4. Search for and click the version of Zowe Explorer you want to install.

Credentials in Zowe Explorer
When working in remote or virtualized environments — such as Eclipse Che, GitHub Codespaces, CodeReady Workspaces —
administrators may find the configuration process for storing credentials securely too cumbersome. Instead, they may prefer to rely on
the security tools integrated with these environments, such as file access permissions. To do so, administrators need to disable Zowe
Explorer's credential management functionality.

Preventing Zowe Explorer from storing credentials

1. Open the zowe.config.json file in Visual Studio Code.

2. Find the autoStore property.

3. Set the autoStore property to false .

Credentials will be stored on a per profile/per panel basis until one of the following takes place:

Data Sets/USS/Jobs tree refresh caused by an update to the zowe.config.json file

Zowe Explorer refresh in the Command Palette

Reload of the Visual Studio Code window

Closing and reopening the VS Code window

Disabling Secure Credential Storage of credentials

Zowe Explorer v2

1. Navigate to Settings in VS Code.

2. In Zowe Explorer Settings, uncheck the Zowe Security: Secure Credentials Enabled checkbox.

When disabled and autoStore is set to True in zowe.config.json , z/OS credentials are stored as plain text in the configuration

file.

Zowe Explorer v1

1. Navigate to Settings in VS Code.

2. In Zowe Explorer Settings, leave the Zowe Security: Credential Key field blank.

Version: v2.17.x LTS

Usage tips
Make the best use of Zowe Explorer with the following tips.

Data sets, USS, and jobs persistence settings
You can store any data sets, USS files, or jobs permanently in the Favorites tab. Right-click on a data set, USS file, or job and click Add
Favorite.

Identify syntax errors with a syntax highlighter

Zowe Explorer supports a syntax highlighter for data sets. To enhance the experience of using the extension, you can download an
extension that highlights syntax.

Configure the detected language of a file or data set
You can configure Visual Studio Code to use a specific language for a particular file extension type. This prevents the language for a
file or data set opened in Zowe Explorer to be detected incorrectly. To set file associations, see Add a file extension to a language.

Edit a profile
You can edit existing profiles listed in the Side Bar by clicking the profile's Edit icon (next to the Search icon). The feature lets you
modify the information inside your profile.

Delete a profile

In Zowe V1, you can permanently delete profiles by right-clicking the profile and selecting the Delete Profile option. The feature
deletes the profile from your .zowe folder. In Zowe V2, right-click the profile, and select Delete Profile to open the configuration file

and manually delete the profile.

TIP

Alternatively, you can delete a profile by using the VS Code Command Palette. Press F1 on your keyboard, then select the

Zowe Explorer: Delete a Profile Permanently option. In Zowe V1, you select the profile to delete. In Zowe V2, the
configuration file opens for you to delete the profile manually.

Hide a profile
You can hide a profile from the Side Bar by right-clicking the profile and selecting the Hide Profile option. If necessary, add the
profile back by clicking the + icon on the DATA SETS, UNIX SYSTEM SERVICES (USS), or JOBS bar.

https://code.visualstudio.com/docs/languages/overview#_add-a-file-extension-to-a-language

Open recent members
Zowe Explorer lets you open a list of members you have previously worked on. You can access the list by pressing Ctrl+ Alt+ R or

Command+ Option+ R .

Version: v2.17.x LTS

Working with data sets

Viewing data sets and using multiple filters
1. Expand DATA SETS in the Side Bar, and hover over the profile you want to filter.

2. Click the Search icon.

3. Use the picker field to select or enter the patterns you want to apply as filters.

The data sets that match your pattern(s) display in the Side Bar.

TIP

To use multiple filters, separate individual entries with a comma. You can append or postpend any filter with an * to indicate
a wildcard search. You cannot enter an * as the entire pattern.

Viewing data sets with member filters
1. Expand DATA SETS in the Side Bar, and hover over the profile you want to filter.

2. Click the Search icon.

3. In the picker field, enter or select a search pattern in the HLQ.ZZZ.SSS(MEMBERNAME) format to filter out and display the specified
member in the Side Bar.

Refreshing the list of data sets
1. Hover over DATA SETS in the Side Bar.

2. Click the Refresh All icon.

Renaming data sets
1. Expand DATA SETS in the Side Bar, and select the data set you want to rename.

2. Right-click the data set and select the Rename Data Set option.

3. Enter the new name of the data set in the picker field.

Copying data set members
1. Expand DATA SETS in the Side Bar, and select the member you want to copy.

2. Right-click the member and select the Copy Member option.

3. Right-click the data set where the member is to be contained and select the Paste Member option.

4. In the picker field, enter the name of the copied member.

Editing and uploading a data set member
1. Expand DATA SETS in the Side Bar, and select a profile to open it.

2. Open the data set with the member you want to edit.

3. Click on the member name to display it in an Editor tab.

4. Edit the document.

5. Press Ctrl+ S or Command+ S to save the changes and upload the data set to the mainframe.

NOTE

If someone else has made changes to the data set member while you were editing, you can merge your changes before
uploading to the mainframe. See Preventing merge conflicts for more information.

Preventing merge conflicts

1. Expand DATA SETS in the Side Bar, and navigate to the member you want to edit.

2. Edit the document in the Editor tab.

3. Press Ctrl+ S or Command+ S to save the changes.

If the original content in your local version no longer matches the same file in the mainframe, a warning message displays
advising the user to compare both versions.

4. If necessary, use the editor tool bar to resolve merge conflicts.

Creating data sets and specifying parameters
1. Expand DATA SETS in the Side Bar.

2. Right-click the profile you want to create a data set with and select Create New Data Set.

3. Enter a name for your data set in the picker field and press Enter .

4. From the picker drop-down menu, select the data set type that you want to create and press Enter .

5. Select Edit Attributes in the picker drop-down menu and press Enter .

The attributes list for the data set displays. You can edit the following attributes:

Allocation Unit

Average Block Length

Block Size

Data Class

Device Type

Directory Block

Data Set Type

Management Class

Data Set Name

Data Set Organization

Primary Space

Record Format

Record Length

Secondary Space

Size

Storage Class

Volume Serial

6. Select the attribute you want to edit, provide the value in the picker field, and press Enter .

7. (Optional) Edit the parameters of your data set.

8. Select the + Allocate Data Set option to create the data set and list it in the Side Bar.

Creating data sets and data set members
1. Expand DATA SETS in the Side Bar.

2. Right-click on the profile where you want to create a data set and select Create New Data Set.

3. Enter a name for your data set in the picker field and press Enter .

4. From the picker drop-down menu, select the data set type that you want to create.

5. Select +Allocate Data Set to create your data set.

6. In the Side Bar, right-click your newly-created data set and select Create New Member.

7. Enter a name for your new data set member in the picker field and press Enter. The member is created and opened in an Editor
tab.

Deleting a data set member and a data set
1. Expand DATA SETS in the Side Bar.

2. Open the profile and data set containing the member you want to delete.

3. Right-click the member and select Delete Member.

4. Confirm the deletion by selecting Delete on the picker drop-down menu.

5. To delete a data set, right-click the data set and select Delete Data Set, then confirm the deletion.

NOTE

You can delete a data set before you delete its members.

Viewing data set, member attributes

1. Expand DATA SETS in the Side Bar, and click the + icon.

2. Select the Search icon.

3. In the picker field, enter or select a search pattern to filter search results in the Side Bar.

4. Right-click a data set or member and select the Show Attributes option.

The attributes display in an Editor tab.

Viewing and accessing multiple profiles simultaneously
1. Expand DATA SETS in the Side Bar, and click the + icon.

2. Select the profiles from the picker drop-down to add them to the Side Bar.

3. Click the Search icon for each profile to search and select associated data sets.

Filtering partitioned data set members
Filter partitioned data set members in the DATA SETS tree view by Date Modified or User ID.

Filtering all partitioned data set members under a specific profile

1. In the DATA SETS tree, click on the Filter icon to the right of a profile.

The filter selection menu appears in the picker field.

2. Select a filter type from the list of available options:

Date Modified

User ID

3. Enter a valid value for the selected filter.

4. Press the Enter key to confirm the filter.

Expanded data sets display a filtered list of members under the selected profile in the DATA SETS tree.

Filtering members for a single partitioned data set

1. In the DATA SETS tree, right-click on a data set and select the Filter PDS members… option.

The filter selection menu appears in the picker field.

2. Select a filter type from the list of available options:

Date Modified

User ID

3. Enter a valid value for the selected filter.

4. Press the Enter key to confirm the filter. This overrides any profile filter preferences that might be in effect for the single data set.

The selected data set displays a filtered list of members in the DATA SETS tree.

Sorting partitioned data set members
Sort partitioned data set members in the DATA SETS tree view by member Name, Date Modified, or User ID.

Sorting all partitioned data set members under a specific profile

1. In the DATA SETS tree, click on the Sort icon to the right of a profile.

The sorting selection menu appears in the picker field.

2. To change the sorting direction, select the Sort Direction option and select a direction type from the picker menu.

3. Select a sort type from the list of available options:

Name

Date Created

Date Modified

User ID

Expanded data sets display a sorted list of members under the selected profile in the DATA SETS tree.

Sorting members for a single partitioned data set

1. In the DATA SETS tree, right-click on a data set and select the Sort PDS members… option. The sort selection menu appears in
the picker field.

2. To change the sorting direction, select the Sort Direction option and select a direction type from the picker menu.

3. Select a sort type from the list of available options:

Name

Date Created

Date Modified

User ID

This overrides any profile sort preferences that might be in effect for the single PDS. The selected data set displays a sorted list of
members in the DATA SETS tree.

Submiting a JCL
1. Expand DATA SETS in the Side Bar.

2. Select the data set or data set member you want to submit.

3. Right-click the data set or member and select the Submit Job option.

NOTE

Click on the hyperlink on the notification pop-up message to view the job.

Allocate like
1. Expand DATA SETS in the Side Bar.

2. Right-click a data set and select the Allocate Like (New File with Same Attributes) option.

3. Enter the new data set name in the picker field and press Enter .

Version: v2.17.x LTS

Working with USS files

Viewing Unix System Services (USS) files
1. Expand UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Hover over the profile you want to search and click the Search icon.

3. In the picker field, enter or select the path that you want as the root of your displayed tree and press Enter .

All child files and directories of that path display in the Side Bar.

NOTE

You cannot expand directories or files to which you are not authorized.

Refreshing the list of files
1. Hover over UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Click the Refresh All button.

Renaming USS files

1. Expand UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Select a USS file you want to rename.

3. Right-click the USS file and select the Rename USS file option.

4. In the picker field, change the name of the USS file and press Enter .

Downloading, editing, and uploading existing USS files
1. Expand UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Navigate to the file you want to download and click on the file name.

This displays the file in an Editor tab.

NOTE

If you define file associations with syntax coloring, the suffix of your file is marked up.

3. Edit the document.

4. Press Ctrl+ S or Command+ S to save the changes and upload the USS file to the mainframe.

Creating and deleting USS files and directories

Creating a directory

1. Expand UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Right-click the directory where you want to add the new directory.

3. Select the Create Directory option and enter the directory name in the picker field.

4. Press Enter to create the directory.

Creating a file

1. Expand UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Right-click the directory to which you want to add the new file.

3. Select the Create File option and enter the file name in the picker field.

4. Press Enter to create the file.

Deleting a file

1. Expand UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Right-click the file you want to remove.

3. Select the Delete option and click Delete again to confirm and delete the file.

Deleting a directory

1. Expand UNIX SYSTEM SERVICES (USS) in the Side Bar.

2. Right-click the directory you want to remove.

3. Select the Delete button and click Delete again to confirm and delete the directory and all its child files and directories.

Viewing and accessing multiple USS profiles simultaneously
1. Expand UNIX SYSTEM SERVICES (USS) in the Side Bar, and click the + icon.

2. Select or enter a profile in the picker drop-down menu to add it to the Side Bar.

Version: v2.17.x LTS

Working with jobs

Viewing a job

1. Expand JOBS in the Side Bar.

2. Open a directory with JCL files.

3. Right-click on the JCL file you want to view, and select the Get JCL option.

Downloading spool content
1. Expand JOBS in the Side Bar.

2. Open a directory with JCL files.

3. Click the Download icon next to a folder with the spool content.

4. Save the file on your computer.

Sorting jobs
1. Expand JOBS in the Side Bar.

2. Click on the Sort icon to the right of a profile.

3. Select the Sort Direction option and select either Ascending or Descending from the picker field.

4. Select a sort type from the list of available options:

Job ID (default)

Date Submitted

Date Completed

Job Name

Return Code

Issuing MVS commands
1. Expand JOBS in the Side Bar.

2. Right-click on your profile and select the Issue MVS Command option.

Alternatively, press the F1 key to open the Command Pallette, and then select the Zowe Expolorer: Issue MVS Command

option.

3. In the picker field, enter a new command or select a saved command.

4. Press Enter to execute the command.

Issuing TSO commands
1. Expand JOBS in the Side Bar.

2. Right-click on your profile and select the Issue TSO Command option.

Alternatively, press the F1 key to open the Command Pallette, then select the Zowe Explorer: Issue TSO Command option.

3. In the picker field, enter a new command or select a saved command.

4. Press Enter to execute the command.

The output displays in the Output panel.

Polling a spool file
Users can periodically refresh a spool file during long-running jobs to get the latest job outputs. This avoids having to close and
reopen a spool file to get the latest job outputs.

There are two main ways to poll a spool file — automatically at set intervals or manually on demand.

Defining a default interval for polling spool files

1. Click on the Settings icon on the Activity Bar and select Settings.

2. In either the User or Workspace tab, click on the Extensions option to open the menu.

3. Select Zowe Explorer.

4. In the Jobs: Poll Interval field, enter a valid time interval, in milliseconds.
Value must be greater than or equal to 1000 ms (1 second).

5. Press Enter to start the polling action.

Polling a spool file at set intervals

1. Expand JOBS in the Side Bar.

2. Navigate to the spool file by expanding its corresponding profile and job folder.

3. Right click the spool file and select Start Polling.

Repeat this step with additional spool files to poll multiple files simultaneously.

4. The Poll interval (in ms) for: <spoolfilename> field displays the current interval value.

The default value is set to 5000 ms.

Change the value by entering a different number (must be greater than or equal to 1000 ms).

5. Press Enter to confirm the interval time and start the polling action.

The poll request is added to the poller, and the selected spool file is marked with a "P" in the Side Bar and any corresponding
Editor tabs.

Stopping spool file polling

1. In the Side Bar, select a spool file that is being polled.

Spool files being polled are marked with a "P" in the Side Bar.

2. Right click the spool file and select Stop Polling.

The poll request is removed from the poller, and the selected spool file is no longer marked with a "P" in the Side Bar and any
corresponding Editor tabs.

Polling a spool file manually

A spool file can be polled on demand by using a designated keyboard shortcut.

To manually poll a spool file:

1. In the Side Bar, double click a spool file to open it in an Editor tab.

2. With the spool file in an active tab, press the keyboard shortcut.

See Configuring the keyboard shortcut for manual polling to set the keyboard shortcut.

The spool file is updated and "Polling..." displays in the bottom status bar.

Configuring the keyboard shortcut for manual polling

1. Click on the Settings icon on the Activity Bar and select Keyboard Shortcuts.

2. Navigate to Zowe Explorer: Poll Content in Active Editor.

3. Select the Edit icon to designate a different keyboard shortcut.

The default shortcut is the F5 key.

The entered key(s) can be used to activate polling.

Version: v2.17.x LTS

Zowe Explorer CICS Extension

Installing
You can install or update the extension from Visual Studio Code Extensions or from a VSIX file.

Installing from Visual Studio Code Extensions

1. Navigate to Extensions tab of your VS Code application.

2. Search for Zowe Explorer for IBM CICS and click it.

3. Click Install at the top of the page.

If Zowe Explorer is not installed, this automatically installs it for you as part of the installation.

Installing from a VSIX file

Before you install Zowe Explorer CICS Extension from a VSIX file, ensure that Zowe Explorer is installed. Zowe Explorer is a required
dependency. For more information, see Installing Zowe Explorer.

If Zowe Explorer is installed, you can install Zowe Explorer CICS Extension from a VSIX file.

1. Visit the download site. Select the Latest button, which directs to a page that includes the latest version of .vsix file. Download
it to your PC.

https://docs.zowe.org/stable/user-guide/ze-install#installing
https://github.com/zowe/cics-for-zowe-client

2. Open the Extensions icon in the side bar, navigate to the ... menu, press Install from VSIX ... and select the downloaded
Zowe.cics-extension-for-zowe-2.x.x.vsix file.

The following message indicates that the extension is installed successfully.

The Zowe Explorer pane shows tree views for Data Sets, Unit System Services (USS) and Jobs, and a new view for CICS.

Uninstalling
To uninstall the Zowe Explorer CICS extension from the VS Code Extensions tab:

1. Navigate to the Extensions tab of the VS Code application.

2. Find Zowe Explorer for IBM CICS and click it.

3. A panel opens. Click Uninstall at the top of the page.

4. A reload may be required. If a button appears for reload, click it and the extension is no longer installed.

Version: v2.17.x LTS

Using Zowe Explorer CICS Extension
The CICS Extension for Zowe Explorer adds additional functionality to the popular Visual Studio Code extension, Zowe Explorer. This
extension allows you to interact with CICS regions and programs, and run commands against them.

System requirements

Client side requirements

Visual Studio Code

Zowe Explorer V2

Server side requirements

The following services must be installed, configured, and running on the mainframe:

CMCI APIs

z/OSMF (optional but recommended)

Features
Load profiles directly from a locally installed Zowe instance.

Create new Zowe CICS profiles and connect to them.

Update session details, and delete profiles by using the user-friendly interface.

Work with multiple regions that contain programs, local transactions, and local files within a plex in a comprehensible tree-like
format.

Perform actions such as Enable, Disable, New Copy, and Phase In directly from the UI.

Perform additional actions on local files including Open and Close directly from the UI.

View and search attributes of resources and regions by right-clicking and using the dynamic filtering feature.

Apply multiple filters to regions, programs, local transactions, and local files.

View and interact with all resources under a plex.

https://github.com/zowe/zowe-explorer-vscode
https://code.visualstudio.com/download
https://docs.zowe.org/stable/user-guide/user-guide/ze-install#installing-zowe-explorer

Version: v2.17.x LTS

Creating Zowe Explorer CICS Extension profiles
You need to have a Zowe Explorer profile to use all functions of the extension.

If you already have a Zowe CICS CLI profile, the CICS tree loads the default profile on startup.

If you do not have an existing Zowe CICS CLI profile, follow these steps to create one:

Using Zowe team configuration
1. Select the + button in the CICS tree.

2. Select the Create New CICS profile option to open the config file.

3. Edit the config file to add a CICS profile.

4. Save the config file.

5. Click the Refresh button at the top level of the CICS tree or run the Zowe Explorer for IBM CICS: Refresh option in the

command palette to refresh the Zowe Explorer for IBM CICS extension.

6. Select the + button in the CICS tree and click the newly created profile to load it into view.

Using Zowe V1 profiles

1. Select the + button in the CICS tree.

2. Select the Create a CICS profile option to open a panel that defines connection details.

Note: The connection must point to a CICS region's CICS Management Client Interface (CMCI) TCP/IP host name and port number.
The region can be a WUI server in a CICSPlex, or else a stand-alone Single Management Application Programming (SMSS) region.

Configuring a CICS region to have a connection is a system programmer task and more details can be found in Setting up CMCI with
CICSPlex SM or Setting up CMCI in a stand-alone CICS region. If your CMCI connection is configured to use a self-signed certificate
that your PC's trust store does not recognize, see Overriding untrusted TLS certificates.

To show more than one CICS profiles in the tree, select the + button and choose from the list of profiles. Only profiles that are not
already included in the CICS tree are shown.

Updating profiles

Updating profiles using Zowe team profiles

1. Right-click a profile to open up the profile menu actions.

2. Select the Update Profile button to open the config file.

3. Edit the config file to update the profile(s).

4. Save the config file.

https://www.ibm.com/docs/en/cics-ts/5.3?topic=explorer-setting-up-cmci-cicsplex-sm
https://www.ibm.com/docs/en/cics-ts/5.3?topic=suace-setting-up-cmci-in-stand-alone-cics-region
https://docs.zowe.org/stable/user-guide/ze-override-tls-certs

5. Click the Refresh button at the top level of the CICS tree or run the Zowe Explorer for IBM CICS: Refresh option in the

command palette to refresh the Zowe Explorer for IBM CICS extension.

Updating Zowe V1 profiles

1. Right-click a profile to open up the profile menu actions.

2. Select the Update Profile button to update the session details.

This opens a panel with fields containing the details that are used to create the connection. You can modify all fields apart from
the Profile Name.

3. Once the details are updated, click the Update Profile button to apply the changes to the profile.

Hiding profiles

1. Right-click the profile you want to hide to open the menu actions.

2. Select Hide Profile to hide it from the CICS view.

3. To unhide the profile, click the + button and select the profile from the quick pick list.

Deleting profiles

Deleting Zowe team profiles

1. Right-click the team profile you want to delete to open the menu actions.

2. Select Delete Profile, which opens the config file.

3. Edit the config file to remove the cics profile entry.

4. Save the config file.

5. Click the Refresh button at the top level of the CICS tree or run the Zowe Explorer for IBM CICS: Refresh option in the

command palette to refresh the Zowe Explorer for IBM CICS extension.

Deleting Zowe V1 profiles

1. Right-click the Zowe V1 profile you want to delete to open the menu actions.

2. Select Delete Profile and click the Yes button when prompted to confirm the action of permanently deleting the profile. The
functionality deletes the CICS profile from the persistent storage directory ~/.zowe/profiles/cics .

Version: v2.17.x LTS

Using CICS resources
Expand a CICS profile to see the region name, and expand the region to view its resources.

If the CICS profile is connected to a CMAS region that is part of a CICSPlex, the tree shows all of the regions managed by the
CICSPlex.

If the CICS profile is for an SMSS region, then just one region is shown. Inactive regions in a plex are shown with an empty icon.

Showing and filtering resources in a region
Expand a CICS region to show folders for the resource types Programs, Transactions, and Local Files. Expand each type to show the
resources. The number of resources in a resource tree appears in square brackets next to the tree name.

The list of resources is pre-filtered to exclude many of the IBM supplied ones to narrow the contents to just include user programs.

Use the search icon against a resource type to apply a filter. You can enter an exact resource name or use wildcards. The search
history is saved so you can recall previous searches.

To reset the filter to its initial criteria, use the clear filter icon against the resource type. If you want to see all resources in a region
(including IBM supplied ones), use * as a filter.

Tip: To apply multiple filters, separate entries with a comma. You can append any filter with an *, which indicates wildcard searching.

Showing and filtering resources in a plex
Similar to filtering resources in a region, you can apply a filter on a all region resources in a plex.

Use the search icon inline with the Regions tree and then select Regions, Programs, Local Transactions or Local Files from the
drop-down menu to specify which resource type the filter should be applied for all regions in the plex.

To reset the filter to its initial criteria, use the clear filter icon against the Regions tree. This opens a drop-down menu that gives
the option to clear the filter for all the Regions, Programs, Local Transactions or Local Files in the plex, and the option All to
clear all filters in the plex.

Tip: To apply multiple filters, separate entries with a comma. You can append any filter with an *, which indicates wildcard searching.

Showing and filtering resources in an 'All' resource tree
Plexes includes All Programs, All Local Transactions and All Local Files trees that contain all the corresponding resources from all
regions in the plex.

To view resources under these trees, use the search icon inline with the tree and apply a filter.

If the applied filter results in over 500 records, you can change the filter to narrow the search, or click the view X more ... item to
retrieve 'X' more resources.

Showing attributes
Right-click the program to open a pop-up menu that lists the available actions that can be performed.

For every resource, including a CICS region, the Show Attributes option opens a viewer that lists all attributes and their values. The
attributes page has a filter box at the top that lets you search for attributes matching the criteria.

Enabling and disabling
1. Right-click a program, local transaction, or local file to open a pop-up menu that lists the available actions that can be performed.

2. Click Disable [CICS resource] to disable the resource. A disabled resource is identified by (Disabled) text next to its name.

When a resource is already disabled, you can re-enable it by clicking Enable [CICS resource] in the pop-up menu.

New copy and phase in
Use the new copy and the phase in actions against a CICS program to get the CICS region to load a fresh copy of the selected
program into memory. This could be useful after you edited a COBOL program source and successfully compiled it into a load library
and now want to test your change.

The New copy count for a program which is greater than zero is shown next to the program item in the CICS resource tree.

Opening and closing local files

Open a local file

1. Right-click a closed local file.

2. Select Open Local File to toggle the openstatus attribute to OPEN .

Close a local file

1. Right-click an open local file and select Close Local File.

2. When prompted, choose one option: Wait, No Wait, or Force.

After you select an option, the local file name is appended with a (Closed) label upon success.

Version: v2.17.x LTS

Overriding untrusted TLS certificates
If the CMCI connection uses a TLS certificate that does not exist in your PC's trust store, then by default the connection is rejected
because the certificate could be from an unsafe site.

To override this behavior, set the Only accept trusted TLS certificates field to False on the form when creating or updating

the profile. This is the same as setting rejectUnauthorized=false on the Zowe CICS CLI profile.

If you define a profile to accept trusted TLS certificates only when the Zowe Explorer first connects, it detects the mismatch and
display a message. You can select Yes to override the profile's setting to accept the untrusted certificate authority.

Version: v2.17.x LTS

Usage tips
The following tips can help you perform tasks more efficiently when working with the CICS extension:

All menu action commands available when right-clicking a profile or resource (excluding Show Attributes) can be applied to
multiple items. To do this, select the multiple nodes of the same type before right-clicking and selecting the command.

To select multiple nodes, you can hold Ctrl or Cmd key while clicking on the resources. You can also select multiple consecutive

nodes by selecting the first item in a list of nodes and then holding the Shift key while selecting the last item in the list.

Click the refresh icon at the top of the CICS view to reload the resources in every region.

Version: v2.17.x LTS

Providing feedback and contributing
To help make Zowe Explorer CICS Extension better, you are welcome to contribute in different ways.

Filing an issue
Before filing an issue, check if the error stems from either the Zowe Explorer for IBM CICS extension or Zowe Explorer.

1. To check the error source, expand the error message that displays in VS Code and review the Source description:

Errors arising from the Zowe Explorer CICS extension identify the Source as Zowe Explorer for IBM CICS (Extension).

Errors arising from Zowe Explorer identify the Source as Zowe Explorer (Extension).

2. File issues with Zowe Explorer for IBM CICS to the Zowe Explorer for IBM CICS issue list and include all relevant information.

Chatting with the community
Chat with the community on Slack by indicating the message is for the Zowe Explorer for IBM CICS extension.

https://github.com/zowe/cics-for-zowe-client/issues
https://openmainframeproject.slack.com/archives/CUVE37Z5F

Version: v2.17.x LTS

Zowe Explorer FTP Extension
Zowe Explorer FTP extension adds the FTP protocol to the Zowe Explorer VS Code extension, allowing you to use z/OS FTP profiles to
connect and interact with z/OS USS.

Installing
1. Install the VS Code extension from the Microsoft or Open VSX marketplace.

Note: The installation includes Zowe Explorer if it is not already installed as it is a required dependency.

2. Close and reopen VS Code to check that the notification message "Zowe Explorer was modified for FTP support" displays.

Once installed, the notification displays every time you open VS Code to confirm that the FTP extension is available.

Uninstalling
1. Click the Extension icon on the Activity Bar in VS Code to display a list of installed extensions.

2. Click on Zowe Explorer Extension for FTP to open a tab in the Editor area.

3. Click the Uninstall icon at the top of the tab. Select the Reload Required button at the top of the tab to complete the uninstall.

https://github.com/zowe/zowe-explorer-vscode
https://marketplace.visualstudio.com/items?itemName=Zowe.zowe-explorer-ftp-extension
https://open-vsx.org/extension/Zowe/zowe-explorer-ftp-extension

Version: v2.17.x LTS

Using Zowe Explorer FTP Extension

System Requirements
Ensure that you can obtain remote access to a z/OS FTP service before using the extension.

Some functionality within the FTP extension requires the FTP server on the mainframe to be configured with the JESINTERFACELevel
parameter set to 2 . For more information, see the JESINTERFACELEVEL (FTP server) statement.

The JESINTERFACELevel parameter can be found in multiple locations within the mainframe, depending on your site's security

policies. Contact your system administrator to determine if your FTP server is configured with the correct JESINTERFACELevel . For
more information, see FTP configuration statements in FTP.DATA.

Using

CAUTION

When transferring files, data sets, or data set members, use only ASCII characters. If a file contains non-ASCII characters (such as
glyphs or mathematical symbols), a translation error can happen when the file is downloaded from, or uploaded to, the
mainframe. This error can result in data loss.

To use the FTP Extension with Zowe Explorer:

1. Select the Zowe Explorer icon on the Activity Bar in VS Code.

2. Hover over the DATA SETS, UNIX SYSTEM SERVICES (USS), or JOBS bar and select the corresponding + icon to view the Zowe
CLI FTP profiles in the picker dropdown list.

If you do not have an existing FTP profile, see Creating an FTP profile with Zowe Explorer.

3. Select a profile to display it in the Side Bar.

4. Hover over the profile and click the Search icon.

5. Enter the applicable values in the picker field:

For data sets, select or enter the data set name.

For USS, select or enter the path.

For jobs, select or enter the job owner and job prefix.

Creating an FTP profile with Zowe Explorer
If you do not have an existing Zowe FTP profile, you can create one graphically with Zowe Explorer:

https://www.ibm.com/docs/en/zos/2.5.0?topic=protocol-jesinterfacelevel-ftp-server-statement
https://www.ibm.com/docs/en/zos/2.5.0?topic=protocol-ftp-configuration-statements-in-ftpdata
https://docs.zowe.org/stable/user-guide/user-guide/ze-ftp-using-ze-ftp-ext#creating-an-ftp-profile-with-zowe-explorer

1. Select the Zowe Explorer icon on the Activity Bar in VS Code.

2. Expand UNIX SYSTEM SERVICES (USS) and click the + icon.

3. In the picker drop-down menu, select the Create a New Connection to z/OS option.

4. Enter a profile name and press Enter .

5. Select the zftp connection type from the dropdown list of available connection options.

6. Continue providing values for the remaining prompts, which are specific for FTP-type connections.

Version: v2.17.x LTS

Supported functionality
The functionality available in Zowe Explorer FTP Extension is detailed in the following list:

Supported data set functionalities
Migrated data set:

Show Data Set Attribute

Add to Favorites

Sequential data set:

Show Data Set Attribute

Pull from Mainframe

Edit Data Set

Rename Data Set

Delete Data Set

Partitioned data set:

Show Data Set Attribute

Create New Member

Edit Member

Upload Member

Rename Data Set

Delete Data Set

Partitioned data set member:

Pull from Mainframe

Edit Member

Rename Member

Delete Member

Supported USS functionalities
List USS files and directories

View file in text/binary mode

Edit file

Save file

Create a new directory/new file

Upload file

Rename file/directory

Delete file/directory

Pull from mainframe

Add to Favorites

Supported jobs functionalities
List Jobs with prefix and owner

List job by jobid

List spool files

View spool files content

Download spool files

Submit job from dataset/member

Delete job

Add to favorites

Version: v2.17.x LTS

Providing feedback and contributing
To help make the Zowe Explorer FTP Extension better, you are welcome to contribute in different ways.

Before filing an issue, check if the error stems from either the Zowe Explorer FTP Extension or Zowe Explorer.

1. To check the error source, expand the error message that displays in VS Code and review the Source description:

Errors arising from the Zowe Explorer FTP extension identify the Source as Zowe Explorer Extension for FTP (Extension).

Errors arising from Zowe Explorer identify the Source as Zowe Explorer (Extension).

2. File issues with Zowe Explorer FTP Extension to the Zowe Explorer FTP Extension issue list and include all relevant information.

Chatting with the community
Chat with the community on Slack by indicating the message is for the Zowe Explorer FTP Extension.

https://github.com/zowe/zowe-explorer-ftp-extension/issues
https://openmainframeproject.slack.com/archives/CUVE37Z5F

Version: v2.17.x LTS

Using Zowe Chat
You can interact with Zowe Chat by mouse navigation or issuing commands.

Mouse navigation
Zowe Chat supports users to click buttons, dropdown menu, and other clickable components in chat to query information, drill down
content, etc.

Interacting through commands

You can also mention "@" the bot user and issue commands to interact with Zowe Chat. Zowe Chat supports Zowe Chat commands
and Zowe CLI commands.

Zowe Chat commands

You can issue Zowe Chat commands in the following format:

For example,

For detailed Zowe Chat commands, see Zowe Chat command reference.

Zowe CLI commands

You can also issue Zowe CLI commands to perform operations, such as help and z/OS resource management including z/OS job, data
set, USS file, error code, and console command. Theorytically, most of Zowe CLI commands are supported as long as it is excutable
with single-submit.

WARNING

Zowe CLI must be installed on your Zowe Chat server first before you can issue Zowe CLI commands.

Zowe Chat currently does not support the Zowe CLI command-line interactive or "prompt" feature that asks you to provide
required option values.

For detailed CLI commands, see Zowe CLI command reference.

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/zowe-chat-command-reference
https://docs.zowe.org/stable/user-guide/cli-using-using-prompt-feature
https://docs.zowe.org/stable/web_help/index.html

Version: v2.17.x LTS

Using Zowe IntelliJ plug-in
Learn how to work with the Zowe IntelliJ plug-in, including working with datasets, USS files, and jobs.

Settings
Before you start to use the plug-in, there are some settings available. First one - synchronization option.

Auto-sync option

It is possible to synchronize the file or dataset you are editing either manually or automatically. The method is controlled by Enable
auto-sync with mainframe option. When it is checked, you don't need to manually synchronize the file/dataset whilst you are editing
it, the IntelliJ platform decides by itself, when and how to synchronize it. The plug-in is using this feature and allows users to avoid
additional sync action. In case you want to be sure that you control the process of syncing with the mainframe, or in case you have
some limitations for calls to z/OSMF, or for some other reason, you can disable this option and continue with manual synchronization
either by button, appearing if there are any changes in the file, or by pressing simultaneously Ctrl + Shift + S (Cmd + Shift + S for
MacOS).

Batch size option

Mainframe z/OS and USS filesystems could have a lot of datasets/files under a specified mask. Sometimes the loading of datasets/files
list could take a lot of time if there are a lot of entries. To eliminate this problem, the plug-in provides the ability to control the amount
of items loading at one time. It is called Batch amount to show per fetch in Settings. By default, it is set to 100 entries. When the list

contains more than the specified number, you can load next amount of entries, specified in this option, double-clicking by load more
item in the File Explorer view.

Working with Files Working Sets
To work with z/OS datasets or USS files, you need to set up a Files Working Set. The most of the functions are available under context
menu in Files Working Set view.

Using the plug-in, you will be able to:

create, rename, view, edit, delete PS, PDS, PDS/e datasets, as well as PDS and PDS/e members

use feature Allocate Like to create a dataset with parameters of another dataset

use feature Migrate for datasets

submit JCL jobs with Submit Job

create, rename, view, edit, delete USS files and folders

copy, move z/OS datasets and USS files, both inside the filesystem, and between them, as well as between systems with different
IP address

Working with z/OS PS datasets

https://docs.zowe.org/stable/user-guide/intellij-working-sets#files-working-set

Working with z/OS PDS datasets

"Allocate Like" feature

To issue the Allocate Like, click the right mouse button on any of datasets and select Allocate Like.

"Submit Job" feature

To issue the Submit Job, click the right mouse button on any of PS datasets or PDS members and select Submit Job.

Working with USS files

There is a possibility to work with USS filesystem using the plug-in. Plug-in allows users to create files with a specific set of access
rules, edit the file, rename, delete them, copy and move. With the existing ones, it is also possible to change the rules. Also the plug-in
allows to change encoding of the file to a desired one, so the content of the file is shown correctly.

About the encoding: there is two different options for encoding change. One is Reload option, which allows users to reload the file
with the specified encoding. It means that the file won't be converted to that encoding, and the plug-in just opens it with the specified
one. The second option is Convert. This option converts the file to the specified encoding, changing it contents. It means that the
plug-in will try to change the file bytes if it is possible, and then will display the contents with the changed bytes.

Copy/move functionality

There are some options to copy and move z/OS datasets and members, and USS files.

Important note: the contents of the source files and datasets will stay the same, until you try to copy/move a file from USS to a z/OS
partitioned dataset. If the file contents are longer than the specified for the PDS logical record length, then firstly the content will be
cut to the specified LRECL, and the rest is going to be on the next lines.

It is possible to move and copy files and datasets either through keyboard shortcut buttons and context menu, or using drag and
drop.

To move a member from one dataset to another:

1. Right click on the member to be moved

2. Select Cut

3. On the target dataset click Paste

4. ...or just drag and drop it

If a sequential dataset is being moved to PDS, the name will be trimmed to the last element in the HLQ.

To move a sequential dataset to a partitioned dataset:

1. Right click on the PS to be moved

2. Select Cut

3. On the target dataset click Paste

4. ...or just drag and drop it

To copy member from one dataset to another:

1. Right click on the member to be copied

2. Select Copy

3. On the target dataset click Paste

To move USS file or folder to another USS folder:

1. Right click on the folder or the file to be moved;

2. Select Cut

3. On the target folder click Paste

4. ...or just drag and drop it

To copy PDS member to USS filesystem:

1. Right click on the member to be copied

2. Select Copy

3. On the target folder or the USS filesystem mask click Paste

While moving or copying a partitioned dataset to the USS filesystem, it will be converted to a USS folder. All the contents will become
USS files.

To move a PDS to USS filesystem:

1. Right click on the PDS to be copied

2. Select Cut

3. On the target folder or the USS filesystem mask click Paste

4. ...or just drag and drop it

Also, it is possible to copy/move USS file to PDS dataset. The file will become the PDS member.

Be aware: the file name being copied/moved should be no more than 8 symbols. Also, see the limitations and rules for the file being
copied

To move USS file to a PDS:

1. Right click on the file to be copied

2. Select Cut

3. On the target PDS click Paste

4. ...or just drag and drop it

Cross-system copy

The plug-in makes it possible to move and copy z/OS datasets and USS files between different system. E.g.: a user has two systems,
the first - z/OS 2.3, the second - z/OS 2.4. So, it is possible to copy or move files and datasets either from z/OS 2.3 to z/OS 2.4, or vice
versa. The rules of copying and moving that are described previously, are also applicable to such kind of action.

To copy/move element from one system to another:

1. Right click on the element to be copied/moved

2. Select Copy/Cut

3. On the target system's element click Paste

(Use drag and drop to move elements faster)

Working with JES Working Sets

To operate with your JCL jobs, ensure you create a JES Working Set first, which will hold all the filters for the JES Explorer.

With the plug-in it is possible to view a status of jobs, view full log of a job run, view and edit jobs' JCLs, submit them right after they
are edited, purge them.

To edit JCL of a job and run it just after it is edited:

1. Right click on a job

2. Select Edit JCL, the JCL will appear in the editor

3. Change the JCL as you want

4. Click green button Submit Job in the edittor

After the job is started, a console view will appear. In the console view it is possible to see the full execution log of the job.

To view the execution log of the job again:

1. Right click on the job

2. Select View Job

Also, it is possible to control the job execution through the console view.

If you don't need the job anymore:

1. Right click on the job

2. Select Purge Job (Delete is the keyboard shortcut)

https://docs.zowe.org/stable/user-guide/intellij-working-sets#jes-working-set

TSO Command Line Interface

Starting from the v1.0.0 of the plug-in, there is a feature to send TSO commands directly from the IntelliJ Platform IDE.

To start using the TSO Command Line Interface:

1. Click + in the Zowe Explorer view

2. Select TSO Console

3. In the dialog appeared, type in all the necessary parameters (the default ones are most likely to fit), click OK

After that, the TSO Command Line Interface should appear. You can type in TSO commands, as well as run any possible scripts.

Version: v2.17.x LTS

Working Sets Concept
We use term "Working Sets" to describe the place to store sets of masks and filters. These items are stored separately for each
working set. The working set is more like "profile" and is used to logically aggregate sets for each separate need (both for users and to
separate the different items to categories, in case it is needed).

There are two types of working sets:

Files Working Sets - are used to store z/OS and USS masks

JES Working Sets - are used to store JCL Job filters

You can create working sets either through Settings or by clicking on + button. Note: you can create a working set only when a
connection is set up.

Files Working Set
This type of working sets is used to store z/OS and USS masks. Masks are similar to filters, they are used to show z/OS datasets and
USS files under a specified path.

To create Files working set:

1. Press + button

2. Select Working Set

3. Type in the Working Set name (it should be unique) and select an appropriate connection

4. Add some masks

5. Click OK

JES Working Set
This type of working sets is used to operate with your JCL jobs, see their logs, view and edit JCL with further job run. It will hold all the
filters for the JES Explorer.

To create JES working set:

1. Select JES Explorer tab

2. Press + button

3. Select JES Working Set

4. Type in the Working Set name (it should be unique) and select an appropriate connection

5. Add some JCL filters

6. Click OK

Version: v2.17.x LTS

Using Zowe SDKs
Leverage the Zowe Client Software Development Kits (SDKs) to build client applications and scripts that interface with the mainframe.

The SDKs include programmatic APIs, each of which performs a particular mainframe task. For example, one API package provides the
ability to upload and download z/OS data sets. You can leverage that package to rapidly build a client application that interacts with
data sets.

The following SDKs are available:

Zowe Java Client SDK

Zowe Node.js Client SDK

Zowe Python Client SDK

SDK documentation
For detailed SDK documentation, see the following:

Zowe Node.js SDK

Zowe Client Python SDK

Software requirements

Java SDK

Requires Java runtime version 11 and above.

Node.js SDK

If you install Node SDK packages from the online registry, the required dependencies are installed automatically.

If you download Node SDK packages from Zowe.org, the folder contains dependencies that you must install manually. Extract the TGZ
files from the folder, copy the files to your project, and issue the following commands to install the dependencies.

Python SDK

If you install Python SDK packages from the online registry, the required dependencies are installed automatically.

If you download the Python SDK packages from Zowe.org, the downloaded folder contains dependencies that you must install
manually. Extract the WHL files from the folder, copy the files to your project, and issue the following command for each dependency:

Getting started
To get started, import the SDK packages to your project. You can pull the packages from an online registry, or download the packages
from Zowe.org to install locally.

https://docs.zowe.org/stable/typedoc/index.html
https://zowe-client-python-sdk.readthedocs.io/en/latest/

Install Java SDK from an online registry

To install this library in your project, use a build tool such as Maven, Gradle or Ant. Use the following link to get the necessary artifact:

https://mvnrepository.com/artifact/org.zowe.client.java.sdk/zowe-client-java-sdk

For a Maven project add the SDK as a dependency by updating your pom.xml as follows:

For a Gradle project add the SDK as a dependency by updating your build.gradle as follows:

The version 2.2.0 can change. Look at the artifact link to select latest version.

Install Node.js from an online registry

Pull the packages from an online registry such as npm.

1. In command-line window, navigate to your project directory. Issue the following command to install a package from the registry:

To import a Node.js package: npm install <PackageName>

where <packageName> is the name of the SDK package that you want to install, such as zos-files-for-zowe-sdk .

The packages are installed. Node packages are defined in package.json in your project.

2. (Optional) You might want to automatically update the SDK version when updates become available, or you might want to
prevent automatic updates.

To define the versioning scheme for Node packages, use semantic versioning.

Install Pyhton SDK from an online registry

Pull the packages from an online registry such as PyPi.

1. In command-line window, navigate to your project directory. Issue the following command to install a package from the registry:

To import a Python package: pip install <PackageName>

where <packageName> is the name of the SDK package that you want to install, such as zos-files-for-zowe-sdk .

Python packages are installed by default to $PYTHONPATH/Lib/site-packages (Linux) or to the Python folder in your local

/AppData folder (Windows).

2. (Optional) You might want to automatically update the SDK version when updates become available, or you might want to
prevent automatic updates.

To define versioning for Python packages, specify versions or version ranges in a requirements.txt file checked-in to your
project. For more information, see pip install in the pip documentation.

Install Node.js and Python SDKs from a local package

Download and install the packages.

https://mvnrepository.com/artifact/org.zowe.client.java.sdk/zowe-client-java-sdk
https://docs.npmjs.com/about-semantic-versioning
https://pip.pypa.io/en/stable/cli/pip_install/

1. Navigate to Zowe.org Downloads. Select your desired programming language in the Zowe Client SDKs section.

The SDK is downloaded to your computer.

2. Unzip the SDK folder, which contains the packages for each set of functionality (such as z/OS Jobs). Copy each file that you want
to install and paste them into your project directory.

3. Install required dependencies, which are included in the bundle. See Software requirements above for more information.

4. In a command-line window, navigate to your project directory. Issue one of the following commands.

To install a Node.js package: npm install <packageName>.tgz

To install a Python package: pip install <packageName>.whl

where <packageName> is the name of the package that you want to install, such as zos-files-for-zowe-sdk .

Repeat the command for each package that you need. Packages are now installed.

Using
After you install the SDK, you can make API calls to the mainframe from within your project.

Using - Java

For Java SDK usage and syntax examples, refer to the following package readmes:

Team Config - Read only team configuration operations.

z/OS Console - Perform z/OS console operations.

z/OS Files-dsn - Work with data sets on z/OS.

z/OS Files-uss - Work with UNIX system services (USS) files on z/OS.

z/OS Jobs - Work with batch jobs on z/OS.

z/OS Log - Work with logs on z/OS.

z/OS Management Facility - Return data about z/OSMF, such as connection status or a list of available systems.

z/OS TSO - Interact with TSO/E address spaces on z/OS.

z/OS USS - ssh unix command request operation.

SDK Javadoc:

https://javadoc.io/doc/org.zowe.client.java.sdk/zowe-client-java-sdk/latest/index.html

See the following GitHub organization location Zowe-Java-SDK for demo apps and code examples for most API calls:

https://github.com/Zowe-Java-SDK

Using - Node.js

For Node SDK usage and syntax examples, refer to the following package Readmes:

https://www.zowe.org/download.html
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/teamconfig/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosconsole/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosfiles/dsn/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosfiles/uss/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosjobs/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zoslogs/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosmfinfo/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zostso/README.md
https://github.com/zowe/zowe-client-java-sdk/blob/main/src/main/java/zowe/client/sdk/zosuss/README.md
https://javadoc.io/doc/org.zowe.client.java.sdk/zowe-client-java-sdk/latest/index.html
https://github.com/Zowe-Java-SDK

Core libraries - Use shared libraries, such as rest to access z/OSMF REST APIs, auth for connecting to token-based

authentication services, and more.

z/OS Console - Perform z/OS console operations.

z/OS Files - Work with data sets on z/OS.

z/OS Jobs - Work with batch jobs on z/OS.

z/OS Management Facility - Return data about z/OSMF, such as connection status or a list of available systems.

z/OS Provisioning - Provision middleware and resources such as IBM CICS, IBM Db2, IBM MQ, and more.

z/OS TSO - Interact with TSO/E address spaces on z/OS.

z/OS USS - Work with UNIX system services (USS) files on z/OS.

z/OS Workflows - Create and manage z/OSMF workflows on z/OS.

Using - Python

For information about the Python SDK, including usage and syntax examples, see the Python SDK ReadTheDocs.

Contributing
For information about contributing to the open-source Zowe SDKs, see Developing for Zowe SDKs.

https://www.npmjs.com/package/@zowe/core-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-console-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-files-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-jobs-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zosmf-for-zowe-sdk
https://www.npmjs.com/package/@zowe/provisioning-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-tso-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-uss-for-zowe-sdk
https://www.npmjs.com/package/@zowe/zos-workflows-for-zowe-sdk
https://zowe-client-python-sdk.readthedocs.io/en/latest/
https://docs.zowe.org/stable/extend/extend-sdks

Version: v2.17.x LTS

Extending Zowe
Zowe is designed as an extensible tools platform. One of the Zowe architecture goals is to provide consistent interoperability between
all Zowe components including extensions. The Zowe Conformance Program defines the criteria to help accomplish the
aforementioned goal. By satisfying the Zowe Conformance Program criteria, extension providers are assured that their software
remains functional throughout the Zowe release cycle. For more information, see the Zowe Conformance Program.

Zowe can be extended in the following ways:

Extending the server side

Extend Zowe API Mediation Layer

Developing for Zowe Application Framework

Extending the client side

Extend Zowe CLI

Extend Zowe Explorer

Add a plug-in to the Zowe Desktop

To assist with extension development, see the following Sample extensions:

Sample Zowe API and API Catalog extension

Sample Zowe Desktop extension

Extending the server side

Extending Zowe API Mediation Layer

The API Mediation Layer extension primarily focuses on extending via onboarding services running as standalone services. These
services are subsequently available in the API Catalog and can be accessed through the API Gateway. For more information about
onboarding a service to the API Mediation Layer, see the Onboarding Overview. The API Mediation Layer squad also provides libraries
to simplify the integration for multiple programming languages and different frameworks.

Developing for Zowe Application Framework

You can create application plug-ins to extend the capabilities of the Zowe™ Application Framework. An application plug-in is an
installable set of files that present resources in a web-based user interface, as a set of RESTful services, or in a web-based user
interface and as a set of RESTful services.

For more information about developing for Zowe Application Framework, see Zowe Application Framework overview.

Extending the client side

Extend Zowe CLI

https://docs.zowe.org/stable/extend/zowe-conformance-program
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux

Zowe CLI extenders can build plug-ins that provide new commands. Zowe CLI is built using Node.js and is typically run on a machine
other than z/OS, such as a PC, where the CLI can be driven through a terminal or command prompt, or on an automation machine
such as a DevOps pipeline orchestrator.

For more information about extending the Zowe CLI, see Developing a new plug-in. This article includes a sample plug-in that is
provided with the tutorial; see Installing the sample plug-in.

Extend Zowe Explorer

Zowe Explorer provides extension APIs that assist third party extenders to create extensions that access Zowe Explorer resource
entities to enrich the user experience. There are many ways Zowe Explorer can be extended to support many different use cases.

For the kinds of extensions that are supported and how to get started with extending Zowe Explorer, see Extensions for Zowe Explorer.

Add a plug-in to the Zowe Desktop

The Zowe Desktop allows a user to interact with z/OS applications through a web browser. The Desktop is served by the Zowe
Application Framework Server on z/OS, also known as Z Lightweight User Experience (ZLUX). The Zowe desktop comes with a set of
default applications. You can extend it to add new applications. For more information, see Developing for Zowe Application
Framework.

The Zowe Desktop is an angular application that allows native plug-ins to be built that provide for a high level of interoperability with
other desktop components. The React JavaScript toolkit is also supported. Additionally, you can include an existing web application in
the Zowe Desktop using an iframe.

Notes: For more information, see the following samples:

Sample iframe App.

Sample Angular App.

Sample React App.

Sample extensions
To help Zowe extenders better understand how extensions are developed and deployed, we provide a set of sample. These sample
extensions contain the necessary boilerplate project setup, application code, and installation scripts to jumpstart the extension
development and deployment to Zowe.

Note: For more information on the architecture of Zowe, see Zowe Architecture.

Sample Zowe API and API Catalog onboarded service

The service Discoverable Client within API Mediation Layer repository contains a sample Zowe onboarded service with a Spring Boot
server providing sample Helo world APIs. For more information, see discoverable-client.

Sample Zowe Desktop extension

The repository https://github.com/zowe/sample-trial-app contains a sample Zowe extension with a node server providing a web page
that gives a user interface to the APIs included with the API sample above.

https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-installing-sample-plugin
https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux#sample-iframe-app
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux#sample-angular-app
https://docs.zowe.org/stable/extend/extend-desktop/mvd-extendingzlux#sample-react-app
https://docs.zowe.org/stable/getting-started/zowe-architecture
https://github.com/zowe/api-layer/tree/v3.x.x/discoverable-client
https://github.com/zowe/api-layer/blob/v3.x.x/discoverable-client/README.md
https://github.com/zowe/sample-trial-app

Version: v2.17.x LTS

Zowe Conformance Program

Introduction
Administered by the Open Mainframe Project, the Zowe™ Conformance Program aims to give users the confidence that when they
use a product, app, or distribution that leverages Zowe, they can expect a high level of common functionality, interoperability, and
user experience.

Conformance provides Independent Software Vendors (ISVs), System Integrators (SIs), and end users greater confidence that their
software will behave as expected. Just like Zowe, the Zowe Conformance Program will continue to evolve and is being developed by
committers and contributors in the Zowe community.

As vendors, you are invited to submit conformance testing results for review and approval by the Open Mainframe Project. If your
company provides software based on Zowe, you are encouraged to get certified today.

How to participate
To participate in the Zowe Conformance Program, follow the process on the Zowe Conformance Program website. You can also find a
list of products that have earned Zowe Conformant status.

To learn the criteria of achieving Zowe conformance for an offering, see Zowe Conformance Criteria.

How to suggest updates to the Zowe conformance program
The Zowe conformance criteria is available as a table in a Markdown file in the Open Mainframe Project's GitHub repo. If you find a
mistake with the Zowe conformance documents, or you are a Zowe squad lead and want to make an amendment to the criteria, you
can update that Markdown file. The same information is also held in another document Zowe Conformance Test Evaluation Guide that
has history going back to Zowe 2019 conformance and allows easy change history comparison.

To submit a proposal to update the conformance criteria, fork the OMP's foundation repository at

https://github.com/openmainframeproject/foundation and make a pull request. Flag the Pull Request to the attention of GitHub user
ID @mertic , and also reach out to the Zowe onboarding squad in the #zowe-onboarding Slack channel. If you are not already signed

up to Zowe Slack community, you can sign up at https://slack.openmainframeproject.org first.

https://openmainframeproject.org/our-projects/zowe-conformance-program/
https://github.com/openmainframeproject/foundation/tree/master/zowe_conformance
https://github.com/openmainframeproject/foundation/blob/master/zowe_conformance/test_evaluation_guide_table.md
https://github.com/openmainframeproject/foundation/blob/master/zowe_conformance/test_evaluation_guide.md
https://github.com/openmainframeproject/foundation
https://openmainframeproject.slack.com/archives/CC60ALD61
https://slack.openmainframeproject.org/

Version: v2.17.x LTS

Packaging z/OS extensions
You can extend Zowe in multiple ways. You may extend Zowe with microservices, which may start a new service within Zowe. You can
also create Zowe App Framework plug-ins to provide users with a UI.

Before you start, review the following terms:

component:

Component refers to the most generic way to describe a program which can work within Zowe. It can be a microservice, a Zowe
App Framework plug-in, or even just a shared program to be used by other Zowe components. This is also the generic word when
referring to both Zowe core components and extensions. In most of the cases described in this topic, this terminology does not
include programs running on the client side, like Zowe CLI plug-in or Zowe Explorer (VSCode extension).

extension

Extension is similar to component but excludes Zowe core components. It is recommended that you install all Zowe extensions
into a shared extension directory.

Zowe server component package format
You can package Zowe components (extensions) into various formats. You can package them as a stand-alone PAX, ZIP, or TAR file.
You can also bundle and ship your Zowe extension(s) within another product.

A typical component package, for example, jobs-api-package-1.0.4.zip , consists of the following files and directories:

manifest.yaml

Refers to the Zowe component manifest file. You can find detailed definition of manifest in Server Component Manifest File
Reference.

schema.json

An example filename of the json schema file specified by the manifest property schemas.configs as detailed in Server

Component Manifest File Reference. The file details the parameters that are valid for the component's configuration within Zowe
server configuration files. See documentation on server component schema files for more information.

apiml-static-registration.yaml.template

Refers to a supporting file that instructs the Zowe launch script how to register this extension service to the API Mediation Layer
Discovery service. In this case, this file is referred in the manifest.yaml apimlServices.static[0].file field. This file is

optional depending on the function of the component and you can change and customize the file name in the manifest file.

bin/(configure|start|validate).sh

This file contains the Zowe component lifecycle scripts. You may not need these files depending on the function of the
component. You can find detailed definition of lifecycle scripts in Zowe component runtime lifecycle.

https://docs.zowe.org/stable/appendix/server-component-manifest
https://json-schema.org/
https://docs.zowe.org/stable/appendix/server-component-manifest
https://docs.zowe.org/stable/extend/server-schemas
https://docs.zowe.org/stable/extend/lifecycling-with-zwesvstc#zowe-component-runtime-lifecycle

It is also suggested that you put the following files into the package:

README.md

This file is a brief introduction to your extension in Markdown format, including how it should be installed, configured, verified,
and so on.

LICENSE

This is the full license text file.

If you decide to bundle and ship Zowe extensions within another product, you can put the whole directory structure presented
previously into your product package as subdirectories. Take the following structure as an example.

Zowe component manifest
Zowe extensions, as well as core components, can use a manifest file to describe itself. Check Server Component Manifest File
Reference for details.

Sample manifests
For examples of manifests thoughout Zowe GitHub repositories, see the following links:

API Catalog manifest.yaml

Jobs API manifest.yaml

Sample Node API and API Catalog extension manifest.yaml

Sample Zowe App Framework extension manifest.yaml

https://docs.zowe.org/stable/appendix/server-component-manifest
https://github.com/zowe/api-layer/blob/v2.x.x/api-catalog-package/src/main/resources/manifest.yaml
https://github.com/zowe/jobs/blob/v2.x/master/jobs-zowe-server-package/src/main/resources/manifest.yaml
https://github.com/zowe/sample-node-api/blob/master/manifest.yaml
https://github.com/zowe/sample-trial-app/blob/master/manifest.yaml

Version: v2.17.x LTS

Server component schemas
Starting with Zowe v2.0, each Component in Zowe must contain a json schema describing the configuration parameters that are valid
for its component section in Zowe's server configuration. If a component does not have anything that can be configured, this file can
just be boilerplate specifying that it fully inherits generic Component parameters and nothing more.

The server infrastructure will utilize each components' schema files to validate a Zowe instance configuration every startup, so this
requirement is enforced by code.

Requirements

Server component json schema files must follow the json schema spec 2019-09.

Each component must state where its base schema file is located by the manifest parameter "schemas.configs"

The schema file must use and/or extend the Zowe Component base schema by use of the "allOf" attribute.

The schema must have an $id property which is a URI that has a domain related to the entity that developed the Component.

The file should be tagged on z/OS but elsewhere must at least be encoded as ASCII-subset of UTF-8

Additional information
The schema file can reference other schema files within the component if compartmentalization of definitions are desired

Example
Below is an example manifest and schema for a Component named "component1". The manifest file specifies the location of the
schema file, and the schema file specifies the configuration parameters that are valid for this Component.

Example manifest

Example schema

Below is an example of the "schema.json" file referenced above. In it, we have 1 special property, "my-custom-prop", which is just a
boolean that can be true or false.

Validation
Zowe server infrastructure will validate that a user's server configuration is correct by checking every schema file found in every
component. If invalid, the servers will not start until the configuration is corrected. Developers may wish to confirm their schema and
there are several tools available such as Microsoft Visual Studio Code for validating schema syntax is correct and
jsonschemavalidator.net for testing a configuration against a schema.

https://json-schema.org/
https://json-schema.org/draft/2019-09/schema

Version: v2.17.x LTS

Component package registries
Component package registries are on-premisis or remote storage which contains Zowe components (usually, extensions) and allows
Zowe administrators to download an extension and its dependent extensions from that storage. A component package registry makes
Zowe component and extension management easier by reducing the need for manually uploading and installing an extension and its
dependencies into Zowe.

Zowe server content can manage components and extensions via the zwe components commands. These commands have optional

parameters for performing operations using a registry instead of only using content local to the Zowe host. Note: Using zwe with

component package registries requires that zowe.useConfigmgr=true is set in your Zowe server configuration. See using the
configuration manager for more info

Registries can be any technology that can be used to satisfy the Zowe component registry handler API. For example, npm, conda,
artifactory, rpm and more could potentially be used as registries. Currently Zowe server installs ship with a registry "Handler" for using
an NPM server as a Zowe component package registry. Support for alternatives can be added, please refer to the making your own
handler section.

Registry examples
Consider the following examples where use of a registry is compared to managing extensions without a registry.

Installing an extension

A Zowe server extension can be installed with a local archive such as in zwe components install -o my-zowe-extension-

1.0.0.pax --config zowe.yaml

This has two shortcomings:

In order to run that command, the extension must first have been uploaded to the Zowe host.

Does that extension work after installation, or does it have a dependency that must also be installed? It's not known without
reading documentation.

Both issues can be resolved by using a registry, such as in zwe components install -o my-zowe-extension --config zowe.yaml

In this example, because zwe was not given the name of a file, it takes the parameter "my-zowe-extension" and searches for an
extension package with that exact name within the component package registry configured for Zowe. If the package is found in the
registry, that extension and all of its dependencies will be downloaded and then installed. Note: This means you must trust the
registry that you use. On-premisis registries are a great way to curate a list of trusted extensions and make it easy to install
them. On the other hand, it would not be recommended to use a registry found on a public network, because you do not
want to install extensions that you have not vetted.

The above example omits the registry configuration information, so the values default to what is containted within the zowe.yaml If
they were explicitly provided instead, the command may look like zwe components install -o my-zowe-extension --config
zowe.yaml --handler npm --registry https://my-on-prem-registry.company.com/npm

https://docs.zowe.org/stable/user-guide/install-configure-zos-extensions
https://docs.zowe.org/stable/user-guide/configmgr-using

Upgrading an extension

If a new version of an extension comes out, you can upgrade your extension from a local archive with zwe components install -o
my-zowe-extension-2.0.0.pax --config zowe.yaml

This will replace the old extension with the new one. This has three shortcomings:

You must somehow be alerted that there is a new version available.

In order to run that command, the extension must first have been uploaded to the Zowe host.

Does that extension work after installation, or does it have a dependency that must also be installed? It's not known without
reading documentation.

If you use a registry, you can be alerted that a new version is available by running the command zwe components upgrade -o all -

-config zowe.yaml --dry-run

This command reports on all of the components that have upgrades available. The --dry-run parameter skips doing the actual

upgrade, so you could upgrade every available extension at once by running this without --dry-run too.

Once learning that an upgrade is available, you can perform it with zwe components upgrade -o my-zowe-extension --config

zowe.yaml

This command is similar to install , it will upgrade your extension and also any dependencies.

Uninstalling extensions

When running zwe components uninstall -o my-zowe-extension , the extension will be removed regardless of if you are using a

registry or not. But if you are using a registry, the registry handler will also ensure any information it kept about the extension is
cleaned up at that time.

Searching for extensions

zwe components search requires a registry to function, because it searches that registry to try to find an extension that includes

whatever you searched for. You can search for any pattern, which may include fuzzy matches such as

zwe components search -o database* --config zowe.yaml This would return a list of extensions that can be installed that start

with the word "database". Note that each registry and handler can have different search capabilities. Not all will support partial
matches.

Configuring zwe to use a registry
Each zwe components command can take the parameter --registry to specify the location (such as HTTPS URL) of a registry, and
the parameter --handler to specify which handler to use with that registry. --handler determines which registry type you are using,

such as npm.

When these parameters are not specified, then the default values are found within the zowe YAML configuration. Within a zowe YAML
configuration, the section zowe.extensionRegistry controls how zwe uses a registry. The schema for this section can be found in

the zowe YAML schema

https://github.com/zowe/zowe-install-packaging/blob/v2.x/master/schemas/zowe-yaml-schema.json

An example of configuring zwe for use with Zowe's own npm registry and npm handler would look like:

The above example states that the default registry type will be "npm", and that the npm type is handled by the handler located at the
path ${{ zowe.runtimeDirectory }}/bin/commands/components/npm.js . This handler will by default use the registry located at

https://zowe.jfrog.io/zowe/api/npm/npm-local-release/ .

Using multiple registries
It is anticipated that extensions from different companies will be located on different registries, so it is possible to use multiple
registries with Zowe. Please note that registry types or handlers may not be able to resolve dependencies across different registries, so
in this case extensions should only declare a dependency on other extensions that can be found within the same registry. To switch
between registries for accessing extensions in different registries, you can just use the --registry option on a zwe components
command. For example, instead of searching for "database" extensions within the default registry as in

zwe components search -o database* --config zowe.yaml

You may instead specify a registry,

zwe components search -o database* --config zowe.yaml --registry first-registry.foo

And if the extension you want isn't found there, you can try another registry,

zwe components search -o database* --config zowe.yaml --registry second-registry.foo

Then you'd be able to install the extension from that specific registry such as,

zwe components install -o database-product --config zowe.yaml --registry second-registry.foo

Note that Zowe does not currently track which registry an extension originated from, so when performing zwe component upgrade ,

you will need to specify the registry if the extension did not come from the default registry.

Setting up a registry
Although you can use a registry set up by an organization you trust, you can also set up your own registry. This can be very useful for
curating a list of Zowe extensions that are approved for use in your organization. Many package managers, whether language-specific,
z/OS native or otherwise, could be used to manage Zowe extension packages via whichever registry or repository technology they
use. Therefore Zowe cannot give guidance on every possible registry, but below are some suggestions that may be useful to you.

npm

npm is the nodejs package manager. Typically npm registries store javascript code intended for use in a web browser or nodejs, but
it's also possible to just store Zowe extensions instead. npm registries are webservers that have an API which associates uploaded
packages to users which own them, and such user accounts may also determine what you are permitted to download. What webserver
you use, and how user credentials are managed isn't standardized by npm, any webserver could be an npm server as long as it fulfills
the npm API.

As an example, https://verdaccio.org/ is such a webserver that you can set up to create your own on-premisis npm package registry.
You can find out more about verdaccio and how to set up a verdaccio-based npm registry on their website

https://verdaccio.org/
https://verdaccio.org/docs/what-is-verdaccio/

Another example is jfrog artifactory. Artifactory can store packages to serve through an npm registry, a docker registry, and much
more. You can find out more about artifactory and how to set up an artifactory-based npm registry on their website

Making your own handler

Handlers connect zwe with a component package registry. For each zwe components command, zwe will call one hanndler with a set
of parameters and expect certain output from the handler in return before completing the zwe command processing.

Handlers are at minimum an EECMAScript2020-compatible JavaScript module file that implements the Handler API. This file is not
nodejs, but rather is run within a quickjs environment. This file can in turn call other commands, but must return output for zwe to

continue with.

This handler JavaScript file can be located at any unix path on the host where Zowe is, and the location is specified within the zowe
YAML

When a zwe components command needs to use a handler, the handler is given input in the form of environment variables. If output
is expected, the handler API requires each output attribute to be a key=value pair on a new line.

The following table details the input and output expected for each handler action.

Attribute Type
Input

or
Output

Actions Description

ZWE_CLI_REGISTRY_COMMAND string Input All
Values of 'install', 'upgrade', 'uninstall', 'search'
inform handler which action to take and what
additional input & output to expect

ZWE_CLI_PARAMETER_REGISTRY string Input

Install,
Upgrade,
Uninstall,
Search

Used to inform handler which registry to use.
Can be any format the handler understands.

ZWE_CLI_REGISTRY_DRY_RUN boolean Input
Install,
Upgrade,
Uninstall

If true, handler should show as much as possible
about what would happen during this command,
without committing changes that would alter
which components are installed.

ZWE_CLI_PARAMETER_COMPONENT_NAME string Input

Install,
Upgrade,
Uninstall,
Search

Value varies by command. For 'install' and
'uninstall', this value is the exact name of a
component. For upgrade, it may also be 'all' to
perform an upgrade for all components possible.
For 'search', it may be any string to perform
searching for exact or partial matching
component names.

https://www.jfrog.com/confluence/display/JFROG/npm+Registry
https://bellard.org/quickjs/quickjs.html

Attribute Type
Input

or
Output

Actions Description

ZWE_CLI_PARAMETER_COMPONENT_FILE string Output
Install,
Upgrade,
Uninstall

A comma-separated list of components that
have been added or removed. During 'install' or
'upgrade', the list must be full unix paths to
component folders or archives that were added.
For 'uninstall', the list must instead be just the
names of the components that were removed. If
the handler failed during its operation or there
were no changes, the output should instead just
be the string 'null'.

An example of running zwe components install -o exact-component-name --handler npm --registry

"https://zowe.jfrog.io/zowe/api/npm/npm-local-release/" would have the handler being given the following environment

variables:

And after the command completes, the handler can print anything in STDOUT and STDERR as long as STDOUT includes a line
specifying the location of the components installed, via ZWE_CLI_PARAMETER_COMPONENT_FILE . The output could look like:

Where archive.pax is an archive of exact-component-name , while 'dependency1' is a folder containing the un-archived contents of

dependency1 .

Handler code

The Handler API interface is located within Zowe's code here

And Zowe delivers a handler written for use with npm, located here

Component Packaging Requirements

Zowe extensions can be written in a variety of languages and may have network-level dependencies. These attributes of extensions
may seem like an odd fit for some existing package managers such as those that are language specific. However, all Zowe requires out
of a package manager is that the manager can deliver an archive of a extension or folder containing an extension. The Zowe
community has found that delivering a Zowe extension as an archive can avoid the complexities of some package managers and make
it simple to deliver an extension via one or more package manager with minimal work. Below are some patterns that can work for
certain package managers.

npm

The npm handler that is delivered by Zowe expects that each npm package either contains an archive of a Zowe extension or that the
entire package folder is itself the Zowe extension. You should become familiar with the attributes of a package.json file as some are
referenced below.

https://github.com/zowe/zowe-install-packaging/blob/2751a194048f0050fc7ebcaeaac8c96a36106991/bin/commands/components/handlerutils.ts
https://github.com/zowe/zowe-install-packaging/blob/2751a194048f0050fc7ebcaeaac8c96a36106991/bin/commands/components/npm.ts
https://docs.npmjs.com/files/package.json/

The Zowe component registry handler determines which is true by reading the package.json of the npm package and looking for

the main attribute. If main exists, its value must be a path to the archive of the extension, relative to the package root folder. For

example, the angular-sample extension npm package has this folder structure:

The handler determines that angular-sample.pax is the archive of the extension when it sees the main property within the

package.json below:

If main were not defined, then Zowe would instead expect that this folder was an extension, which for example would have a

manifest.yaml at the root of the folder.

npm requires that each package contain a package.json file, and there are certain fields that are required within it. Several fields

have overlap in meaning with Zowe's extension manifest files, so Zowe delivers a utility to help you automate the creation of a
package.json file using a manifest.yaml file as input. This Zowe npm module will copy the properties from one file to the other for

you

The simplest and most robust way to deliver a Zowe extension via npm is to build your extension, then archive the entire folder of the
extension as a .pax file, and put that into a folder with a single package.json file for npm which has the main attribute set to the

name of your pax archive, and use the dependencies section of the package.json to list if your extension depends on any other Zowe

extensions. Once you have your npm package, you can upload it to the registry of your choice using standard npm commands, such
as:

Additional resources
While this document is the authoritative source on Zowe's component package regpistry technology, older additional information
may be found in the presentation and the recording used during the initial technology prototype.

https://github.com/zowe/zowe-install-packaging/tree/v2.x/master/bin/utils/manifest-to-npmpackage
https://github.com/zowe/zowe-install-packaging/files/9292283/appstore2.pdf
https://zoom.us/rec/share/y6zsW5U9QWE1s1r4M3nFnSO9Kkv3yeT5boyZFqWH1BxW3Tju_jcAGP7jO1DsLuZq.rhlqHx6DgPxmXBhW?startTime=1660053548000

Version: v2.17.x LTS

Zowe server component runtime lifecycle

Zowe runtime lifecycle
This topic describes the runtime lifecycle of Zowe core components and how an offering that provides a Zowe extension can set up
runtime lifecycle for their component.

The Zowe UNIX System Services (USS) components are run as part of the started task ZWESLSTC . There are two key USS directories

that play different roles when launching Zowe.

The Zowe runtime directory <RUNTIME_DIR> that contains the executable files is an immutable set of directories and files that are

replaced each time a new release is applied. The initial release or an upgrade is installed either with UNIX shell scripts (see
Installing Zowe runtime from a convenience build), or SMP/E where the runtime directory is laid down initially as FMID AZWE002
and then upgraded through rollup PTF builds (see Installing Zowe SMP/E). The Zowe runtime directory is not altered during
operation of Zowe, so no data is written to it and no customization is performed on its contents. Important, any customizations
to the original Zowe runtime directory are not recommended. This may include installing extensions to this directory, putting your
zowe.yaml or Zowe workspace into this directory, or changing any of the files in it, etc.

The Zowe workspace directory <WORKSPACE_DIR> contains information that is specific to a launch of Zowe. It contains temporary

configuration settings that helps an instance of the Zowe server to be started, such as ports that are used or paths to dependent
Java and Node.js runtimes. Zowe runtime user should have write permission to this directory. More than one Zowe workspace
directories can be created to allow multiple launches of a Zowe runtime, each one isolated from each other and starting Zowe
depending on how Zowe YAML configuration is configured.

The Zowe logs directory <LOGS_DIR> contains USS file logs when running Zowe. Some components like app-server and zss will
always write USS log files. Some components like APIML Gateway will write log files to this directory if you enabled debug mode.
Zowe runtime user should have write permission to this directory.

To start Zowe, the command zwe start is run from a USS shell. This uses a program ZWELNCH to launch the started task ZWESLSTC ,
passing an optional HAINST parameter to define which Zowe HA instance will be started. It is the equivalent of using the TSO

command /S ZWESLSTC,HAINST='<HA_INSTANCE>',JOBNAME='<JOBNAME>' . The ZWELNCH program understands your Zowe YAML

configuration and will start components enabled in the <HA_INSTANCE> by executing zwe internal start component command. If

you execute zwe internal start directly, the USS processes will not run as a started task and will run under the user ID of whoever

ran the zwe internal start command rather than the Zowe user ID of ZWESVUSR , likely leading to permission errors accessing the
contents of the <RUNTIME_DIR> as well as the Zowe certificate. For these reasons, the zwe start script launches Zowe's USS process

beneath the started task ZWESLSTC .

Zowe relies on zowe.yaml configuration file to know your customization for the instance. For more information, see Zowe YAML

Configuration File Reference.

Note:

The scripts of core Zowe components and some extensions use the helper library <RUNTIME_DIR>/bin/libs . You can also use those

functions but please keep away from functions marked as internal or experimental .

https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/stable/user-guide/install-zowe-smpe
https://docs.zowe.org/stable/appendix/zowe-yaml-configuration

Zowe component runtime lifecycle
Each Zowe component will be installed with its own USS directory, which contains its executable files. Within each component's USS
directory, a manifest file is required to describe itself and a bin directory is recommended to contain scripts that are used for the
lifecycle of the component. When Zowe is started, by reading components manifest commands definition, it identifies the components

that are configured to launch and then execute the scripts of those components in the cycle of validate, configure, and start. All
components are validated, then all are configured, and finally all are started. This technique is used as follows:

Used for the base Zowe components that are included with the core Zowe runtime.

Applies to extensions to allow vendor offerings to be able to have the lifecycle of their 'microservices' within the Zowe USS shell
and be included as address spaces under the ZWESLSTC started task.

Note:

All lifecycle scripts are executed from the root directory of the component. This directory is usually where the component manifest is
located.

Check Server Component Manifest File Reference to learn how to define lifecycle commands in component manifest file.

Validate

Each component can optionally instruct Zowe runtime to validate itself with a USS command defined in manifest commands.validate .

If present, the validate script performs tasks such as:

Check that the shell has the correct prerequisites.

Validate that ports are available.

Perform other steps to ensure that the component is able to be launched successfully.

During execution of the validate script, if an error is detected, then a component should echo a message that contains information

to assist a user diagnosing the problem.

Configure

Each component can optionally instruct Zowe runtime to configure itself with a USS command defined in manifest
commands.configure .

If the component has manifest defined, some configure actions will be performed automatically based on manifest definition:

apimlServices.static : Zowe runtime will automatically parse and add your static definition to API Mediation Layer.

appfwPlugins.[].path : Zowe runtime will automatically parse and install/configure the component to Zowe App Framework.

It's possible to export configuration variables from the configure step to the start step. Each component runs in separated shell

space, which means that the variable of one component does not affect the same variable of another component. For example, when
you run export MY_VAR=val in /bin/configure.sh , then the variable ${MY_VAR} will be available in your /bin/start.sh script.

However, ${MY_VAR} will not be available in other components.

Start

https://docs.zowe.org/stable/appendix/server-component-manifest

Each component can optionally instruct Zowe runtime to start itself with a USS command defined in manifest commands.start . If this

is not defined, for backward compatible purpose, a call to its /bin/start.sh script will be executed if it exists. If your component is

not supposed to be started by itself, for example, the component is a shared library, you can skip this instruction.

It is up to each component to start itself based on how it has been written. We recommend that any variables that someone who
configure Zowe may need to vary, such as timeout values, port numbers, or similar, are specified as variables in the instance.env file

and then referenced as shell variables in the start.sh script to be passed into the component runtime.

Version: v2.17.x LTS

Creating and adding Zowe extension containers
Zowe extensions can be used within a Zowe container environment. To do this, you must deliver the extension as a container image
that is compatible with Zowe containers. Zowe server extensions such as services or app framework plugins must be packaged as
components to work in the container environment. You can follow Zowe's container conformance criteria to understand and achieve
compatibility.

Note: Container code may depend on z/OS code, and it is recommended that components state these dependencies in their manifest.
Users should verify these dependencies to ensure a correctly configured Zowe container environment.

You can add extension containers to a Zowe container environment the same way as Zowe's core components by completing the
following steps.

1. Build and publish an extension image to a registry. For details, see Build and publish an extension image to a registry.

2. Define a deployment or job object. For details, see Define Deployment or Job object.

3. Start the extension from the deployment or job definition. For details, see Start your component.

1. Build and publish an extension image to a registry
An extension must have a container image to run in a Zowe container environment. To create such images, you can use a Dockerfile
and refer to the following examples of building images for Zowe core components.

Examples:

The core components define component Dockerfiles and use GitHub Actions to build images. For example,

jobs-api is a component which has built-in web service. To build the images, this component defines a Dockerfile at

https://github.com/zowe/jobs/blob/v2.x/master/container/Dockerfile and defines a GitHub Actions workflow at
https://github.com/zowe/jobs/tree/v2.x/master/.github/workflows.

explorer-jes is a Zowe App Server Framework plug-in but does not have a built-in web service. It follows Zowe's container

conformance criteria. It defines a Dockerfile at https://github.com/zowe/explorer-jes/blob/v2.x/master/container/Dockerfile.
Similar to jobs-api , it also defines a GitHub Actions workflow at https://github.com/zowe/explorer-

jes/blob/v2.x/master/.github/workflows/build_test.yml to build the images.

The following GitHub Actions are used by the core components to build conformant images. They might not be completely reusable
for you, but are provided as an example.

zowe-actions/shared-actions/docker-prepare will prepare required environment variables used by following steps.

zowe-actions/shared-actions/docker-build-local can build the Docker image directory on the GitHub Actions virtual machine. By
default, the Docker image directory is ubuntu-latest . You can use this action to build images for amd64 CPU architecture.

zowe-actions/shared-actions/docker-build-zlinux can build Docker image on a Linux on Z virtual machine. This is useful if you
want to build images for s390x CPU architecture.

zowe-actions/shared-actions/docker-manifest can collect all related images and define them as Docker manifests. This is useful
for users to automatically pull the correct image based on cluster node CPU architecture, and also pull images based on popular
tags such as latest and latest-ubuntu .

https://docs.zowe.org/stable/appendix/server-component-manifest
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://github.com/zowe/jobs/blob/v2.x/master/container/Dockerfile
https://github.com/zowe/jobs/tree/v2.x/master/.github/workflows
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/containers/conformance.md
https://github.com/zowe/explorer-jes/blob/v2.x/master/container/Dockerfile
https://github.com/zowe/explorer-jes/blob/v2.x/master/.github/workflows/build_test.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-prepare/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-build-local/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-build-zlinux/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-manifest/action.yml

After a component image is built, it is recommended that you publish it to a container registry before adding it to the Zowe container
environment. Alternatively, you can use docker save and docker load commands to copy the offline images to your Kubernetes

nodes.

2. Define Deployment or Job object

To start your component in Kubernetes, you must define a Deployment if your extension has built-in web services, or a Job object if
your extension is a Zowe Application Framework plug-in without built-in web services.

To define Deployment for your component, you can copy from samples/sample-deployment.yaml and modify all occurrences of the
following variables:

<my-component-name> : this is your component name. For example, sample-node-api .

<my-component-image> : this is your component image described in Build and publish an extension image to a registry. For

example, zowe-docker-release.jfrog.io/ompzowe/sample-node-api:latest-ubuntu .

<my-component-port> : this is the port of your service. For example, 8080 .

Continue to customize the specification to fit in your component requirements:

spec.template.spec.containers[0].resources : defines the memory and CPU resource required to start the container.

metadata.annotations , spec.template.spec.volumes and spec.template.spec.securityContext and so on.

To define Job for your component, you can also copy from samples/sample-deployment.yaml . Then, modify all entries mentioned

above and make the following changes:

Change kind: Deployment to kind: Job ,

Add restartPolicy: OnFailure under spec.template.spec like this:

3. Start your component
After you define your component Deployment or Job object, you can run kubectl apply -f /path/to/your/component.yaml to

apply it to the Kubernetes cluster that runs Zowe.

If it's a Deployment , you should be able to see that the component pod is started and eventually reached the Running status.

If it's a Job , you should be able to see that the plug-in pod is started and eventually reached the Completed status.

Now you can follow common Kubernetes practice to manage your component workload.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Version: v2.17.x LTS

Zowe Containerization Conformance Criteria
These conformance criteria are applicable for all Zowe components intending to run in a containerized environment. The
containerized environment could be Kubernetes or OpenShift running on Linux or Linux on Z.

Image
In general, the image should follow Best practices for writing Dockerfiles. The below requirements are in addition to the list.

Base Image

You are free to choose a base image based on your requirements.

Here are our recommendations of base images:

Zowe base images:
ompzowe/base : zowe-docker-release.jfrog.io/ompzowe/base:latest-ubuntu and zowe-docker-

release.jfrog.io/ompzowe/base:latest-ubi .

ompzowe/base-node : zowe-docker-release.jfrog.io/ompzowe/base-node:latest-ubuntu and zowe-docker-

release.jfrog.io/ompzowe/base-node:latest-ubi has node.js LTS (v14) version pre-installed.

ompzowe/base-jdk : zowe-docker-release.jfrog.io/ompzowe/base-jdk:latest-ubuntu and zowe-docker-

release.jfrog.io/ompzowe/base-jdk:latest-ubi has JRE v8 pre-installed.

Red Hat Universal Base Image 8 Minimal

Ubuntu

The image should contain as few software packages as possible for security and should be as small as possible such as by reducing
package count and layers.

Zowe base images,

are based on both Ubuntu and Red Hat Universal Base Image,

provide common dependencies including JDK and/or node.js,

support both amd64 and s390x CPU architecture.

If you use your own base image other than Zowe base images, please check this list and make sure it is compatible with Zowe
runtime:

The default shell /bin/sh must be bash . If it's not, you can fix it by installing and overwriting /bin/sh with the symbolic link of

/bin/bash .

These softwares must exist in the image: date , awk , sed , xargs .

These softwares are optional but good to have: ping , dig , netstat .

Multi-CPU Architecture

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://developers.redhat.com/articles/ubi-faq?redirect_fragment=resources#ubi_details
https://hub.docker.com/_/ubuntu

Zowe core components must release images based on both amd64 and s390x CPU architecture.

Zowe core component images must use multiple manifests to define if the image supports multiple CPU architectures.

Image Label

These descriptive labels are required in the Dockerfile: name , maintainer , vendor , version , release , summary , and description .

Example line:

Tag

Zowe core component image tags must be a combination of the following information in this format: <version>-<linux-distro>[-
<cpu-arch>][-sources][.<customize-build>] .

version: must follow semantic versioning or partial semantic versioning with major or major + minor. It may also be latest or

lts . For example, 1 , 1.23 , 1.23.0 , lts , latest , etc.

linux-distro: for example, ubi , ubuntu , etc.

cpu-arch: for example, amd64 , s390x , etc.

customize-build: string sanitized by converting non-letters and non-digits to dashes. For example, pr-1234 , users-john-

fix123 , etc.

Source Build: must be a string -sources appended to the end of the tag.

If this is a source build, the tag must contain full version number (major+minor+patch) information.

Linux Distro information is recommended.

Must NOT contain customize build information.

For example: 1.23.0-ubi-sources .

For example, these are valid image tags:

latest

latest-ubuntu

latest-ubuntu-sources

latest-ubi

latest-ubi-sources

lts

lts-ubuntu

lts-ubi

1

1-ubuntu

1-ubi

1.23

1.23-ubuntu

1.23-ubi

1.23.0

1.23.0-ubuntu

https://semver.org/

1.23.0-ubuntu-amd64

1.23.0-ubuntu-sources

1.23.0-ubi

1.23.0-ubi-s390x

1.23.0-ubi-sources

1.23.0-ubuntu.pr-1234

1.23.0-ubi.users-john-test1

The same image tag pattern is recommended for Zowe extensions.

Files and Directories

These file(s) and folder(s) are REQUIRED for all Zowe components:

/licenses folder holds all license-related files. It MUST include at least the license information for current application. It's

recommended to include a license notice file for all pedigree dependencies. All licenses files must be in UTF-8 encoding.

/component/README.md provides information about the application for end-user.

/component/manifest.(yaml|yml|json) provides basic information of the component. The format of this file is defined at Zowe

component manifest. Components must use the same manifest file as when it's running on z/OS.

These file(s) and folder(s) are recommended:

/component/bin/<lifecycle-scripts> must remain the same as what it is when running on z/OS.

User zowe

In the Dockerfile, a zowe user and group must be created. The zowe user UID and group GID must be defined as ARG and with
default values of UID=20000 and GID=20000 . Example commands:

USER zowe must be specified before the first CMD or ENTRYPOINT .

If you use Zowe base images, zowe user and group are already created.

Multi-Stage Build

A multi-stage build is recommended to keep images small and concise. Learn more from Use multi-stage builds.

Runtime
This section is mainly for information. No actions are required for components except where it's specified explicitly.

The below sections are mainly targeting Kubernetes or OpenShift environments. Starting Zowe containers in a Docker environment
with docker-compose is in a planning stage and may change some of the requirements.

General rules

Components MUST:

https://docs.zowe.org/stable/extend/packaging-zos-extensions/#zowe-component-manifest
https://docs.docker.com/develop/develop-images/multistage-build/

NOT be started as root user in the container.

listen to only ONE port in the container except for API Mediation Layer Gateway.

be cloud-vendor neutral and must NOT rely on features provided by a specific cloud vendor.

NOT rely on host information such as hostIP , hostPort , hostPath , hostNetwork , hostPID and hostIPC .

accept zowe.yaml as a configuration file, the same as when running on z/OS.

Persistent Volume(s)

This persistent volume MUST be created:
zowe-workspace mounted to /home/zowe/instance/workspace .

Files and Directories

In the runtime, the Zowe content is organized in this structure:

/home/zowe/runtime is a shared volume initialized by the zowe-launch-scripts container.

/home/zowe/runtime/components/<component-id> is a symbolic link to the /component directory. <component-id> is the

name entry defined in /component/manifest.(yaml|yml|json) .

/home/zowe/instance/zowe.yaml is a Zowe configuration file and MUST be mounted from a ConfigMap.

/home/zowe/instance/logs is the logs directory of Zowe instance. This folder will be created automatically by zowe-launch-

scripts container.

/home/zowe/instance/workspace is the persistent volume mounted to every Zowe component container.

Components writing to this directory should be aware of the potential conflicts of same-time writing by multiple instances of
the same component.

Components writing to this directory must NOT write container-specific information to this directory as it may potentially be
overwritten by another container.

/home/zowe/keystore is the directory where certificate is mounted. With a typical setup (by using zwe migrate for

kubernetes command), this folder contains keystore.p12 , truststore.p12 , keystore.key , keystore.cer and ca.cer .

Any confidential environment variables, for example, a Redis password, in zowe.yaml must be extracted and stored as Secrets.

These configurations must be imported back as environment variables.

ConfigMap and Secrets

zowe.yaml must be stored in a ConfigMap and be mounted under /home/zowe/instance directory.

All certificates must be stored in Secrets. Those files will be mounted under the /home/zowe/keystore directory.

Secrets must be defined manually by a system administrator. Zowe Helm Chart and Zowe Operator do NOT define the content of
Secrets.

ompzowe/zowe-launch-scripts Image and initContainers

The zowe-docker-release.jfrog.io/ompzowe/zowe-launch-scripts:latest-ubuntu or zowe-docker-

release.jfrog.io/ompzowe/zowe-launch-scripts:latest-ubi image contains necessary scripts to start Zowe components in

Zowe context.

This image has a /component directory and it will be used to prepare /home/zowe/runtime and /home/zowe/instance volumes

to help Zowe component start.

In Kubernetes and OpenShift environments this step is defined with initContainers specification.

Command Override

Component CMD and ENTRYPOINT directives will be overwritten with the Zowe launch script used to start it in Zowe context.

Components running in Zowe context requires to be started with bash with argument

/home/zowe/runtime/bin/internal/run-zowe.sh -c /home/zowe/instance . Here is example start command:

Environment Variables

These runtime environment variable(s) are REQUIRED to start Zowe components.

ZWE_POD_NAMESPACE : holds the current Kubernetes namespace. This variable can be optional if the service account

automountServiceAccountToken attribute is true . The value of this variable can be assigned to metadata.namespace (which

default value is zowe) in Pod spec section:

These runtime environment variable(s) are OPTIONAL to start Zowe components.

ZWE_POD_CLUSTERNAME : holds the Kubernetes cluster name. This variable has default value cluster.local . If your cluster name

is not default value, you should pass the variable to all workloads. The value of this variable can be assigned in Pod spec section:

CI/CD

Build, Test and Release

Zowe core component and extension images MUST be built, tested, and released on their own cadence.

The component CI/CD pipeline MUST NOT rely on the Zowe level CI/CD pipeline and Zowe release schedule.

Zowe core component images must be tested. This includes starting the component and verifying the runtime container works as
expected.

It is recommended to build snapshot images before release. Zowe core components MUST publish snapshot images to the zowe-

docker-snapshot.jfrog.io registry with proper tags.

Zowe core component images MUST be released before Zowe is released.

Zowe core components MUST publish release images to both zowe-docker-release.jfrog.io and Docker Hub registry under

ompzowe/ prefix.

Release images MUST also update relevant major/minor version tags and the latest tag. For example, when a component

releases a 1.2.3 image, the component CI/CD pipeline MUST also tag the image as 1.2 , 1 , and latest . Update the lts tag

when it is applicable.

Zowe core component release images MUST be signed by Zowe committer(s).

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://hub.docker.com/

Version: v2.17.x LTS

Onboarding Overview
As an API developer, you can onboard a REST API service to the Zowe™ API Mediation Layer (API ML). Onboarding your REST service
to the Zowe™ API Mediation Layer will make your service discoverable by the API ML Discovery Service, enable routing through the
API Gateway, and make service information and API documentation available through the API Catalog.

The specific method you use to onboard a REST API to the API ML depends on the programming language or framework used to
build your REST service.

NOTE

To streamline the process of onboarding new REST API services to the Zowe API Mediation Layer, see Onboarding a REST API
service with the YAML Wizard

This Onboarding Overview article addresses the following topics:

Prerequisites

Service Onboarding Guides to onboard your REST service with the API ML

Verify successful onboarding to the API ML

Using the Sample REST API Service to learn how to onboard a REST service to the API ML

Prerequisites
Meet the following prerequisites before you onboard your service:

Running instance of Zowe

Note: For static onboarding, access to Zowe runtime is required to create the static service definition.

A certificate that is trusted by Zowe and certificate(s) to trust Zowe services

Zowe uses secured communication over TLSv1.2. As such, the protocol version and the certificate is required. For more
information, see Certificate management in API Mediation Layer and Zowe API ML TLS requirements

A REST API-enabled service that you want to onboard

If you do not have a specific REST API service, you can use the sample service.

Your service should be documented in a valid OpenApi 2.0/3.0 Swagger JSON format.

Access to the Zowe artifactory

Either the Gradle or Maven build automation system

Service Onboarding Guides

https://docs.zowe.org/stable/user-guide/onboard-wizard
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml
https://docs.zowe.org/stable/extend/extend-apiml/zowe-api-mediation-layer-security-overview#zowe-api-ml-tls-requirements

Services can be updated to support the API Mediation Layer natively by updating the service code. Use one of the following guides to
onboard your REST service to the Zowe API Mediation Layer:

Recommended guides for services using Java

Onboard a REST API service with the Plain Java Enabler (PJE)

Onboard a Spring Boot based REST API Service

Onboard a Micronaut based REST API service

Recommended guides for services using Node.js

Onboard a Node.js based REST API Service

Guides for Static Onboarding and Direct Call Onboarding

Use one of the following guides if your service is not built with Java, or you do not want to change your codebase or use the
previously mentioned libraries:

Onboard a REST API using static definition without code changes

Onboard a REST API directly calling Zowe Discovery Service

Documentation for legacy enablers

Enabler version 1.2 and previous versions are no longer supported.

TIP

We recommend you use the enabler version 1.3 or higher to onboard your REST API service to the Zowe API Medaition Layer.

Verify successful onboarding to the API ML

Verifying that your service was successfully onboraded to the API ML can be done by ensuring service registration in the API ML
Discovery Service or visibility of the service in the API ML Catalog.

Verifying service discovery through Discovery Service

Verify that your service is discovered by the Discovery Service with the following procedure.

1. Issue a HTTP GET request to the Discovery Service endpoint /eureka/apps to get service instance information:

Note: The endpoint is protected by client certificate verification. A valid trusted certificate must be provided with the HTTP GET
request.

2. Check your service metadata.

Response example:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-micronaut-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition
https://docs.zowe.org/stable/extend/extend-apiml/onboard-direct-eureka-call

TIPS:

Ensure that addresses and user credentials for individual API ML components correspond to your target runtime
environment.

If you work with local installation of API ML and you use our dummy identity provider, enter user for both username

and password . If API ML was installed by system administrators, ask them to provide you with actual addresses of API

ML components and the respective user credentials.

Verifying service discovery through the API Catalog

Services may not be immediately visible in the API Catalog. We recommend you wait for 2 minutes as it may take a moment for your
service to be visible in the Catalog. If your service still does not appear in the Catalog, ensure that your configuration settings are
correct.

1. Check to see that your API service is displayed in the API Catalog UI, and that all information including API documentation is
correct.

2. Ensure that you can access your API service endpoints through the Gateway.

Sample REST API Service
To demonstrate the concepts that apply to REST API services, we use an example of a Spring Boot REST API service. This example is
used in the REST API onboarding guide REST APIs without code changes required (static onboarding).

You can build this service using instructions in the source code of the Spring Boot REST API service example.

The Sample REST API Service has a base URL. When you start this service on your computer, the service base URL is:
http://localhost:8080 .

NOTE

If a service is deployed to a web application server, the base URL of the service (application) has the following format:
https://application-server-hostname:port/application-name .

This sample service provides one API that has the base path /v2 , which is represented in the base URL of the API as

http://localhost:8080/v2 . In this base URL, /v2 is a qualifier of the base path that was chosen by the developer of this API. Each
API has a base path depending on the particular implementation of the service.

This sample API has only one single endpoint:

/pets/{id} - Find pet by ID.

This endpoint in the sample service returns information about a pet when the {id} is between 0 and 10. If {id} is greater than 0 or a

non-integer, an error is returned. These are conditions set in the sample service.

TIP

Access http://localhost:8080/v2/pets/1 to see what this REST API endpoint does. You should get the following response:

https://github.com/swagger-api/swagger-samples/tree/master/java/java-spring-boot
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition
https://github.com/swagger-api/swagger-samples/blob/master/java/java-spring-boot/README.md
http://localhost:8080/v2/pets/1

NOTE

The onboarding guides demonstrate how to add the Sample REST API Service to the API Mediation Layer to make the service
available through the petstore service ID.

The following diagram shows the relations between the Sample REST API Service and its corresponding API, REST API endpoint, and
API Gateway:

This sample service provides a Swagger document in JSON format at the following URL:

The Swagger document is used by the API Catalog to display API documentation.

«Service»
petstore

«API»
/v2
/pets

API Gateway
/api/v2/petstore

API Gateway routes
HTTP requests to /v2 of the API in the petstore service

The petstore service provides one API (/v2)
This service runs in its own embedded web server

Version: v2.17.x LTS

Managing certificates in Zowe API Mediation Layer
Review details of certificate management in Zowe API Mediation Layer (API ML). This article decribes both how to manage certificates
when running on localhost, as well as certificate management using Zowe runtime on z/OS. Additional information is provided about
about the API ML truststore and keystore, and API ML SAF Keyring.

Running on localhost
How to start API ML on localhost with full HTTPS

Certificate management guide

Generate a certificate for a new service on localhost

Add a service with an existing certificate to API ML on localhost

Service registration to Discovery Service on localhost

Zowe runtime on z/OS
Import the local CA certificate to your browser

Generate a keystore and truststore for a new service on z/OS

Add a service with an existing certificate to API ML on z/OS
Procedure if the service is not trusted

Truststore and keystore or SAF keyring
API ML truststore and keystore

API ML SAF Keyring

Running on localhost

How to start API ML on localhost with full HTTPS

The api-layer repository contains pre-generated certificates that can be used to start API ML with HTTPS on your computer. The
certificates are not trusted by your browser so you can either ignore the security warning or generate your own certificates and add
them to the truststore of your browser or system.

For more information about certificates, see TLS Certificates for localhost.

NOTE

When running on localhost, only the combination of using a keystore and truststore is supported.

Certificate management guide

Zowe API Mediation Layer provides a guide that can be used to generate a keystore and truststore using the Zowe local certificate
authority on Windows, Mac, Linux, and z/OS.

This guide is maintained in the zowe/api-layer repository keystore/README.md, and uses a combination of openssl and java
keytool.

Generate a certificate for a new service on localhost

https://github.com/zowe/api-layer
https://github.com/zowe/api-layer/blob/master/keystore/README.md
https://github.com/zowe/api-layer/blob/v2.x.x/keystore/README.md

To generate a certificate for a new service on localhost, see Generating certificate for a new service on localhost.

Add a service with an existing certificate to API ML on localhost

For information about adding a service with an existing certificate to API ML on localhost, see Trust certificates of other services.

Service registration to Discovery Service on localhost

To register a new service to the Discovery Service using HTTPS, provide a valid client certificate that is trusted by the Discovery Service.

Zowe runtime on z/OS
Certificates for the API ML local CA and API ML service are managed by installing the Zowe runtime on z/OS. For more information see
Installing the Zowe runtime on z/OS.

There are two ways to set up certificates on a z/OS machine:

Certificates in UNIX files (truststore and keystore)

Certificates in SAF keyring

For detailed instructions about how to set up certificates during installation, see the following articles:

Use PKCS12 certificates

Use JCERACFS certificates in a keyring

Follow the procedure in the applicable section described in this article during installation.

Import the local CA certificate to your browser

Trust in the API ML server is a necessary precondition for secure communication between a browser or API Client application. Ensure
this trust through the installation of a Certificate Authority (CA) public certificate. By default, API ML creates a local CA. Import the CA
public certificate to the truststore for REST API clients and to your browser. You can also import the certificate to your root certificate
store.

NOTES

If a SAF keyring is being used and set up with ZWEKRING JCL, the procedure to obtain the certificate does not apply. It is

recommended that you work with your security system administrator to obtain the certificate. Start the procedure at step 2.

The public certificate in the PEM format is stored at <KEYSTORE_DIRECTORY>/local_ca/localca.cer , where

<KEYSTORE_DIRECTORY> is defined in a customized zowe.yaml file during the installation step that generates Zowe

certificates. The certificate is stored in UTF-8 encoding so you need to transfer it as a binary file. Since this is the certificate
to be trusted by your browser, it is recommended to use a secure connection for transfer.

Windows currently does not recognize the PEM format. For Windows, use the P12 version of the local_cer .

Follow these steps:

https://github.com/zowe/api-layer/blob/master/keystore/README.md#generating-certificate-for-a-new-service-on-localhost
https://github.com/zowe/api-layer/blob/master/keystore/README.md#trust-certificates-of-other-services
https://docs.zowe.org/stable/user-guide/install-zos
https://docs.zowe.org/stable/user-guide/use-certificates#use-pkcs12-certificates
https://docs.zowe.org/stable/user-guide/use-certificates#use-jceracfks-certificates
https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

1. Download the local CA certificate to your computer. Use one of the following methods to download the local CA certificate to
your computer:

Use Zowe CLI (Recommended)
Issue the following command:

Use sftp
Issue the following command:

To verify that the file has been transferred correctly, open the file. The following heading and closing should appear:

2. Import the certificate to your root certificate store and trust it.

For Windows, run the following command:

Note: Ensure that you open the terminal as administrator. This will install the certificate to the Trusted Root Certification
Authorities.

For macOS, run the following command:

For Firefox, manually import your root certificate via the Firefox settings, or force Firefox to use the Windows truststore.

Note: Firefox uses its own certificate truststore.

Create a new Javascript file firefox-windows-truststore.js at C:\Program Files (x86)\Mozilla Firefox\defaults\pref
with the following content:

Generate a keystore and truststore for a new service on z/OS

You can generate a keystore and truststore for a new service using the local CA in the keystore directory.

NOTE

This procedure applies to a UNIX file keystore and truststore only. For the SAF keyring option, it is recommended that you
perform the actions manually using your security system commands.

Use the zwe command available in the zowe distribution package and execute following example.

Example:

cert-alias
Specifies a unique string to identify the key entry. All keystore entries (key and trusted certificate entries) are accessed via unique
aliases. Since the keystore has only one certificate, you can omit this parameter and use the default value localhost .

service-keystore-directory
Specifies the repository of security certificates plus the corresponding private keys. The <keystore_path> is the path excluding
the extension to the keystore that is generated. It can be an absolute path or a path relative to the current working directory. The
key store is generated in PKCS12 format with the .p12 extension. Ensure that the path is in an existing directory where your
service expects the keystore.

https://github.com/zowe/zowe-cli#zowe-cli--

Example: /opt/myservice/keystore/ .

service-name
Specifies the name of the service for which you want to generate keystore. A keystore will be created in the directory with the
same name. Example: my-new-service .

keystore-password
Specifies the keystore password.

ca-keystore-password
Specifies the local certificate authority keystore password.

ca-alias
Specifies the local certificate authority alias in the keystore. Zowe CA is stored under the local_ca alias.

Add a service with an existing certificate to API ML on z/OS

API Mediation Layer requires validation of the certificate of each service accessed by API Mediation Layer. API Mediation Layer
requires validation of the full certificate chain.

NOTE

This procedure applies only to UNIX file keystore/truststore. For the SAF keyring option, we recommend you perform the actions
manually using your security system commands.

Import the public certificate of the CA that has signed the certificate of the service to the API ML truststore.

NOTE

Validation fails if a service does not provide intermediate CA certificates to the API ML. This can be circumvented by importing
the intermediate CA certificates to the API ML truststore.

Procedure if the service is not trusted

If your service is not trusted, you may receive a response with the HTTP status code 502 Bad Gateway and a JSON response in the
standardized format for error messages. The following request is an example of when this error response may occur.

Example:

In this example, you receive a similar response:

The message has the key apiml.common.tlsError , and message number AML0105 . The content explains details about the message.

If you receive this message, import the certificate of your service or the CA that signed it to the truststore of the API Mediation Layer
as described previously.

Truststore and keystore or SAF keyring
There are two options for how certificates are stored when running Zowe on z/OS:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/502

API ML truststore and keystore

API ML SAF keyring

API ML truststore and keystore

A keystore is a repository of security certificates consisting of either authorization certificates or public key certificates with
corresponding private keys (PK), used in TLS encryption. A keystore can be stored in Java specific format (JKS) or use the standard
format (PKCS12). The Zowe API ML uses PKCS12 to enable the keystores to be used by other technologies in Zowe (Node.js).

API ML SAF Keyring

As an alternative to using a keystore and truststore, API ML can read certificates from a SAF keyring. The user running the API ML must
have rights to access the keyring. From the java perspective, the keyring behaves as the JCERACFKS keystore. The path to the keyring

is specified as safkeyring://user_id/key_ring_id . The content of the SAF keyring is equivalent to the combined contents of the
keystore and the truststore.

NOTE

When using JCEFACFKS as the keystore type, ensure that you define the class to handle the RACF keyring. Use the -D options to

specify the java.protocol.handler.pkgs property :

-Djava.protocol.handler.pkgs=com.ibm.crypto.provider

Review the characterisitics of following elements of the API ML SAF Keyring:

The API ML local certificate authority (CA)

The API ML local CA contains a local CA certificate and a private key that needs to be securely stored.

The API ML local certificate authority is used to sign certificates of services.

The API ML local CA certificate is trusted by API services and clients.

The API ML keystore or API ML SAF Keyring

The server certificate of the Gateway (with PK)can be signed by the local CA or an external CA.

The server certificate of the Discovery Service (with PK) can be signed by the local CA.

The server certificate of the Catalog (with PK) can be signed by the local CA.

The API ML keystore is used by API ML services.

The API ML truststore or API ML SAF Keyring

Local CA public certificate

External CA public certificate (optional)

Can contain self-signed certificates of API Services that are not signed by the local or external CA

Used by API ML services

Zowe core services

Services can use the same keystore and truststore or the same keyring as API ML for simpler installation and management.

When using a keystore and truststore, services have to have rights to access and read them on the filesystem.

When using a keyring, the user of the service must have authorization to read the keyring from the security system.

Alternatively, services can have individual stores for higher security.

API service keystore or SAF keyring (for each service)

The API service keystore contains a server and client certificate signed by the local CA.

API service truststore or SAF keyring (for each service)

(Optional) The API service truststore contains a local CA and external CA certificates.

Client certificates

A client certificate is a certificate that is used for validation of the HTTPS client. The client certificate of a Discovery Service client
can be the same certificate as the server certificate of the services which the Discovery Service client uses.

Version: v2.17.x LTS

Quick Start for Development
To validate that a service is working properly with the API Mediation Layer, you first need to have a running instance of API Mediation
Layer. Choose from the following options:

Install Zowe and validate against a Zowe instance of API Mediation Layer
For this setup you can either run Zowe without certificates, or preferably with certificates generated by installation in the
keystore.

Run API Mediation Layer in Codespace or on a local machine directly.
The details are available in API Mediation Layer repository

Run API Mediation Layer in containers.
The details are available in Docker for API Mediation Layer

Run API Mediation Layer as Java services on z/OS.
This part is not documented but is possible. You would need to build the services first, then upload them to the mainframe

To learn more about the certificate setup options for API Mediation Layer with respect to the Development purposes consult
Certificate Management in Zowe API Mediation Layer.

https://github.com/zowe/api-layer/
https://github.com/zowe/api-layer/tree/v3.x.x/docker
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml

Version: v2.17.x LTS

Deploying API Mediation Layer locally

General information
For development purposes, it is possible to deploy API ML locally. For more information, follow the instruction in the file Run API
Mediation Layer locally.

Dummy Authentication Provider
The Dummy Authentication Provider implements simple authentication for development purposes using dummy credentials
(username: user , password user). The Dummy Authentication Provider makes it possible for the API Gateway to run without

authenticating with the z/OSMF service.

Use the following property of the API Gateway to enable the Dummy Authentication Provider :

https://github.com/zowe/api-layer/?tab=readme-ov-file#run-api-mediation-layer-locally

Version: v2.17.x LTS

Onboarding a REST API service with the Plain Java
Enabler (PJE)
This article is part of a series of onboarding guides, which outline the process of onboarding REST API services to the Zowe API
Mediation Layer (API ML). As a service developer, you can onboard a REST service with the API ML with the Zowe API Mediation Layer
using our Plain Java Enabler (PJE). This enabler is built without a dependency on Spring Cloud, Spring Boot, or SpringFramework.

TIP

For more information about onboarding API services with the API ML, see the Onboarding Overview.

Introduction
Zowe API ML is a lightweight API management system based on the following Netflix components:

Eureka - a discovery service used for services registration and discovery

Zuul - reverse proxy / API Gateway

Ribbon - load balancer

The API ML Discovery Service component uses Netflix/Eureka as a REST services registry. Eureka endpoints are used to register a
service with the API ML Discovery Service.

The API ML provides onboarding enabler libraries. The libraries are JAR artifacts available through an artifactory. Using these libraries
is the recommended approach to onboard a REST service with the API ML.

The PJE library serves the needs of Java developers who are not using either Spring Boot or the Spring Framework. If Spring Boot or
the Spring framework are used in the project you would like to onboard, see the Onboarding Overview for the corresponding
enablers.

Additionally, this enabler is not intended for use in projects that depend on Spring Cloud Netflix components. Configuration settings
in the PJE and Spring Cloud Netflix Eureka Client are different. Using the two configuration settings in combination makes the result
state of the discovery registry unpredictable.

TIP

For more information about how to utilize another API ML enablers, see the documentation in the Onboarding Overview.

Onboarding your REST service with API ML
The following steps outline the overall process to onboard a REST service with the API ML using the PJE. Each step is described in
further detail in this article.

1. Prerequisites

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://spring.io/projects/spring-boot
https://spring.io/
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://spring.io/projects/spring-cloud-netflix
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview

2. Configuring your project

Gradle build automation system

Maven build automation system

3. Configuring your service

REST service identification

Administrative endpoints

API info

API routing information

API Catalog information

Authentication parameters

API Security

SAF Keyring configuration

Eureka Discovery Service

4. Registering your service with API ML

5. (Optional) Validating the discoverability of your API service by the Discovery Service

6. (Optional) Troubleshooting

Log messages during registration problems

Prerequisites

Ensure that the prerequisites from the Onboarding Overview are met.

The REST API service to onboard is written in Java

The service is enabled to communicate with API ML Discovery Service over a TLS v1.2 secured connection

:::noteNotes:

This documentation is valid for API ML version ZoweApimlVersion 1.3.0 and higher. We recommend that you check the Zowe

Artifactory for the latest stable versions.

Following this guide enables REST services to be deployed on a z/OS environment. Deployment to a z/OS environment, however,
is not required. As such, you can first develop on a local machine before you deploy on z/OS.

The API Mediation Layer provides the sample application using the Plain Java Enabler in the api-layer repository :::

Configuring your project

Use either Gradle or Maven build automation systems to configure the project with the service to be onboarded. Use the appropriate
configuration procedure that corresponds to your build automation system.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://zowe.jfrog.io/zowe/libs-release/org/zowe/apiml/sdk/onboarding-enabler-java/
https://github.com/zowe/api-layer/tree/v2.x.x/onboarding-enabler-java-sample-app

NOTE

You can use either the Zowe Artifactory or an artifactory of your choice. If you decide to build the API ML from source, you are
required to publish the enabler artifact to your artifactory. Publish the enabler artifact by using the Gradle tasks provided in the
source code.

Gradle build automation system

Use the following procedure to use Gradle as your build automation system.

Follow these steps:

1. Create a gradle.properties file in the root of your project if one does not already exist.

2. In the gradle.properties file, set the URL of the specific artifactory containing the PJE artifact. Provide the corresponding

credentials to gain access to the Maven repository.

3. Add the following Gradle code block to the repositories section of your build.gradle file:

4. In the same build.gradle file, add the necessary dependencies for your service. If you use the Java enabler from the Zowe

Artifactory, add the following code block to your build.gradle script. Replace the $zoweApimlVersion with the proper version

of the enabler, for example: 1.3.0 :

The published artifact from the Zowe Artifactory also contains the enabler dependencies from other software packages. If you are
using an artifactory other than Zowe, add also the following dependencies in your service build.gradle script:

Notes:

You may need to add more dependencies as required by your service implementation.

The information provided in this file is valid for ZoweApimlVersion 1.3.0 and higher.

5. In your project home directory, run the gradle clean build command to build your project. Alternatively, you can run gradlew

to use the specific gradle version that is working with your project.

Maven build automation system

Use the following procedure if you use Maven as your build automation system.

Follow these steps:

1. Add the following XML tags within the newly created pom.xml file:

Tip: If you want to use snapshot version, replace libs-release with libs-snapshot in the repository url and change

snapshots->enabled to true .

2. Add the proper dependencies:

3. In the directory of your project, run the mvn clean package command to build the project.

Configuring your service
To configure your service, create the configuration file service-configuration.yml in your service source tree resources directory.

The default path for a java application is src/main/resources . The service-configuration.yml file is used to set the application

properties and eureka metadata. Application properties are for your service runtime. For example, the ssl section specifies the

keystore and trustore. The eureka metadata is used for registration with API Mediation Layer.

NOTE

To externalize service onboarding configuration, see: Externalizing onboarding configuration.

The following code snippet shows an example of service-configuration.yml . Some parameters which are specific for your service

deployment are in ${parameterValue} format. For your service configuration file, provide actual values or externalize your

onboarding configuration.

Example:

Optional metadata section

The following snippet presents additional optional metadata that can be added.

Example:

The onboarding configuration parameters are broken down into the following groups:

REST service identification

Administrative endpoints

API info

API routing information

API catalog information

Authentication parameters

API security

SAF Keyring configuration

Eureka Discovery Service

Custom Metadata

Connection Timeout

REST service identification

serviceId

The serviceId uniquely identifies one or more instance of a microservice in the API ML and is used as part of the service URL
path in the API ML Gateway address space. Additionally, the API ML Gateway uses the serviceId for routing to the API service

instances. When two API services use the same serviceId , the API Gateway considers the services as clones of each other. An

incoming API request can be routed to either of them through utilized load balancing mechanism.

Important! Ensure that the serviceId is set properly with the following considerations:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler-external-configuration

The same servicedId should only be set for multiple API service instances for API scalability.

The servicedId value must only contain lowercase alphanumeric characters.

The servicedId cannot contain more than 40 characters.

Example:

If the serviceId is sampleservice , the service URL in the API ML Gateway address space appears as the following path:

title

This parameter specifies the human readable name of the API service instance. This value is displayed in the API Catalog when a
specific API service instance is selected. This parameter can be externalized and set by the customer system administrator.

Tip: We recommend that service developer provides a default value of the title . Use a title that describes the service instance
so that the end user knows the specific purpose of the service instance.

description

This parameter is a short description of the API service. This value is displayed in the API Catalog when a specific API service
instance is selected. This parameter can be externalized and set by the customer system administrator.

Tip: Describe the service so that the end user understands the function of the service.

baseUrl

This parameter specifies the base URL for the following administrative endpoints:

homePageRelativeUrl

statusPageRelativeUrl

healthCheckRelativeUrl

Use the following format to include your service name in the URL path:

protocol://host:port/servicename

Note: Ensure that the baseUrl does not end with a trailing / . Inclusion of / causes a malformed URL if any of the above
administrative endpoints begin with a / . It is expected that each administrative endpoint begins with a / . Warnings will be

logged if this recommendation is not followed.

serviceIpAddress (Optional)

This parameter specifies the service IP address and can be provided by a system administrator in the externalized service
configuration. If this parameter is not present in the configuration file or is not set as a service context parameter, it is resolved
from the hostname part of the baseUrl .

preferIpAddress (Optional)

Set the value of this parameter to true to advertise a service IP address instead of its hostname.

Administrative endpoints

The following snippet presents the format of the administrative endpoint properties:

homePageRelativeUrl

Specifies the relative path to the home page of your service.

Start this path with / . If your service has no home page, leave this parameter blank.

Examples:

homePageRelativeUrl: This service has no home page

homePageRelativeUrl: / This service has a home page with URL ${baseUrl}/

statusPageRelativeUrl

Specifies the relative path to the status page of your service.

Start this path with / .

Example:

statusPageRelativeUrl: /application/info

This results in the URL: ${baseUrl}/application/info

healthCheckRelativeUrl

Specifies the relative path to the health check endpoint of your service.

Start this path with / .

Example:

healthCheckRelativeUrl: /application/health

This results in the URL: ${baseUrl}/application/health

API info

REST services can provide multiple APIs. Add API info parameters for each API that your service wants to expose on the API ML.

The following snippet presents the information properties of a single API:

apiInfo.apiId

Specifies the API identifier that is registered in the API ML installation. The API ID uniquely identifies the API in the API ML. The
apiId can be used to locate the same APIs that are provided by different service instances. The API developer defines this ID. The

apiId must be a string of up to 64 characters that uses lowercase alphanumeric characters and a dot: . .

apiInfo.version

Specifies the api version . This parameter is used to correctly retrieve the API documentation according to requested version of

the API.

apiInfo.gatewayUrl

specifies the base path at the API Gateway where the API is available. Ensure that this value is the same path as the gatewayUrl

value in the routes sections that apply to this API.

apiInfo.swaggerUrl (Optional)

Specifies the Http or Https address where the Swagger JSON document is available.

apiInfo.documentationUrl (Optional)

Specifies the link to the external documentation. A link to the external documentation can be included along with the Swagger
documentation.

apiInfo.defaultApi (Optional)

Specifies that this API is the default one shown in the API Catalog. If no apiInfo fields have defaultApi set to true , the default

API is the one with the highest API version .

apiInfo.codeSnippet (Optional)

Specifies the customized code snippet for a specific endpoint (API operation). The snippet is displayed in the API Catalog under
the specified operation, after executing the request using the Try it out functionality. When specifying this configuration, you need
to provide the following parameters:

endpoint

The endpoint that represents the API operation of the customized snippet

language

The language of the snippet

codeBlock

The content of the snippet to be displayed in the API Catalog

API routing information

The API routing group provides the required routing information used by the API ML Gateway when routing incoming requests to the
corresponding REST API service. A single route can be used to direct REST calls to multiple resources or API endpoints. The route
definition provides rules used by the API ML Gateway to rewrite the URL in the Gateway address space. Currently, the routing
information consists of two parameters per route: The gatewayUrl and serviceUrl . These two parameters together specify a rule
for how the API service endpoints are mapped to the API Gateway endpoints.

The following snippet is an example of the API routing information properties.

Example:

routes

Specifies the container element for the route.

routes.gatewayUrl

The gatewayUrl parameter specifies the portion of the gateway URL which is replaced by the serviceUrl path part.

routes.serviceUrl

The serviceUrl parameter provides a portion of the service instance URL path which replaces the gatewayUrl part.

Examples:

is routed to:

API major version 1:

is routed to:

APIs docs major version 1:

is routed to:

API Catalog information

The API ML Catalog UI displays information about discoverable REST services registered with the API ML Discovery Service.
Information displayed in the Catalog is defined by the metadata provided by your service during registration. The following image is
an example of a tile in the API Catalog:

The Catalog groups correlated services in the same tile if these services are configured with the same catalog.tile.id metadata
parameter.

The following code block is an example of configuration of a service tile in the Catalog:

Example:

catalog.tile.id

Specifies the unique identifier for the product family of API services. This is a value used by the API ML to group multiple API
services into a single tile. Each unique identifier represents a single API dashboard tile in the Catalog.

Tip: Specify a value that does not interfere with API services from other products. We recommend that you use your company
and product name as part of the ID.

catalog.tile.title

Specifies the title of the product family of the API service. This value is displayed in the API Catalog dashboard as the tile title.

catalog.tile.description

The detailed description of the API services product family. This value is displayed in the API Catalog UI dashboard as the tile
description.

catalog.tile.version

specifies the semantic version of this API Catalog tile.

Note: Ensure that you increase the version number when you introduce changes to the API service product family details.

Authentication parameters

These parameters are not required. Default values are used when parameters are not specified. For more information, see
Authentication Parameters for Onboarding REST API Services.

API Security

REST services onboarded with the API ML act as both a client and a server. When communicating to API ML Discovery service, a REST
service acts as a client. When the API ML Gateway is routing requests to a service, the REST service acts as a server. These two roles
have different requirements. The Zowe API ML Discovery Service communicates with its clients in secure Https mode. As such, TLS/SSL
configuration setup is required when a service is acting as a server. In this case, the system administrator decides if the service will
communicate with its clients securely or not.

Client services need to configure several TLS/SSL parameters in order to communicate with the API ML Discovery service. When an
enabler is used to onboard a service, the configuration is provided in the ssl section/group in the same YAML file that is used to

configure the Eureka parameters and the service metadata.

For more information about API ML security, see API ML security overview.

TLS/SSL configuration consists of the following parameters:

verifySslCertificatesOfServices

This parameter makes it possible to prevent server certificate validation.

Important! Ensure that this parameter is set to true in production environments. Setting this parameter to false in production
environments significantly degrades the overall security of the system.

https://docs.zowe.org/stable/extend/extend-apiml/authentication-for-apiml-services#authentication-parameters
https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md

protocol

This parameter specifies the TLS protocol version currently used by Zowe API ML Discovery Service.

Tip: We recommend you use TLSv1.2 as your security protocol

keyAlias

This parameter specifies the alias used to address the private key in the keystore.

keyPassword

This parameter specifies the password associated with the private key.

keyStore

This parameter specifies the keystore file used to store the private key. When using keyring, the value should be set to the SAF
keyring location. For information about required certificates, see Zowe API ML TLS requirements.

If you have an issue with loading the keystore file in your environment, try to provide the absolute path to the keystore file. The
sample keystore file for local deployment is in api-layer repository

keyStorePassword

This parameter specifies the password used to unlock the keystore.

keyStoreType

This parameter specifies the type of the keystore.

trustStore

This parameter specifies the truststore file used to keep other parties public keys and certificates. When using keyring, this value
should be set to the SAF keyring location. For information about required certificates, see Zowe API ML TLS requirements.

If you have an issue with loading the truststore file in your environment, try to provide the absolute path to the truststore file. The
sample truststore file for local deployment is in api-layer repository

trustStorePassword: password

This parameter specifies the password used to unlock the truststore.

trustStoreType: PKCS12

This parameter specifies the truststore type. The default for this parameter is PKCS12.

Note: Ensure that you define both the keystore and the truststore even if your server is not using an Https port.

SAF Keyring configuration

You can choose to use SAF keyring instead of keystore and truststore for storing certificates. For information about required
certificates, see Zowe API ML TLS requirements. For information about running Java on z/OS with keyring, see SAF Keyring.

https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md#zowe-api-ml-tls-requirements
https://github.com/zowe/api-layer/tree/master/keystore/localhost
https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md#zowe-api-ml-tls-requirements
https://github.com/zowe/api-layer/tree/master/keystore/localhost
https://github.com/zowe/api-layer/blob/v3.x.x/docs/api-ml-security-overview.md#zowe-api-ml-tls-requirements
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml#api-ml-saf-keyring

Make sure that the enabler can access and read the keyring. Please refer to documentation of your security system for details.

The following example shows enabler configuration with keyrings.

Example:

Eureka Discovery Service

The Eureka Discovery Service parameters group contains a single parameter used to address Eureka Discovery Service location. An
example is presented in the following snippet:

Example:

discoveryServiceUrls

Specifies the public URL of the Discovery Service. The system administrator at the customer site defines this parameter. It is
possible to provide multiple values in order to utilize fail over and/or load balancing mechanisms.

Custom Metadata

For information about custom metadata, see the topic Custom Metadata.

Registering your service with API ML
The following steps outline the process of registering your service with API ML. Each step is described in detail in this article. The
process describes the integration with the usage of the Java application server. The guideline is tested with the Tomcat application
server. The specific steps that apply for other application servers may differ.

1. Add a web application context listener class

2. Register a web application context listener

3. Load service configuration

4. Register with Eureka discovery service

5. Unregister your service

Follow these steps:

1. Implement and add a web application context listener class:

implements javax.servlet.ServletContextListener

The web application context listener implements two methods to perform necessary actions at application start-up time as well as
when the application context is destroyed:

The contextInitialized method invokes the apiMediationClient.register(config) method to register the application

with API Mediation Layer when the application starts.

The contextDestroyed method invokes the apiMediationClient.unregister() method when the application shuts

down. This unregisters the application from the API Mediation Layer.

2. Register a web application context listener.

https://docs.zowe.org/stable/extend/extend-apiml/custom-metadata

Add the following code block to the deployment descriptor web.xml to register a context listener:

3. Load the service configuration.

Load your service configuration from a file service-configuration.yml file. The configuration parameters are described in the

preceding section, Configuring your service.

Use the following code as an example of how to load the service configuration.

Example:

Note: The ApiMediationServiceConfigReader class also provides other methods for loading the configuration from two files,

java.util.Map instances, or directly from a string. Check the ApiMediationServiceConfigReader class JavaDoc for details.

4. Register with Eureka Discovery Service.

Use the following call to register your service instance with Eureka Discovery Service:

Example:

5. Unregister your service.

Use the contextDestroyed method to unregister your service instance from Eureka Discovery Service in the following format:

Example:

The following code block is a full example of a context listener class implementation.

Example:

Validating the discoverability of your API service by the Discovery Service
Once you are able to build and start your service successfully, you can use the option of validating that your service is registered
correctly with the API ML Discovery Service.

Follow these steps:

1. Validate successful onboarding.

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target runtime environment.

NOTE

If you are working with local installation of API ML and you are using our dummy identity provider, enter user for both

username and password . If API ML was installed by system administrators, ask them to provide you with actual addresses of API

ML components and the respective user credentials.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

TIP

Wait for the Discovery Service to discover your service. This process may take a few minutes after your service was successfully
started.

Troubleshooting

Log messages during registration problems

When an Enabler connects to the Discovery service and fails, an error message prints to the Enabler log. The default setting does not
suppress these messages as they are useful to resolve problems during the Enabler registration. Possible reasons for failure include
the location of Discovery service is not correct, the Discovery Service is down, or the TLS certificate is invalid.

These messages continue to print to the Enabler log, while the Enabler retries to connect to the Discovery Service. To fully suppress
these messages in your logging framework, set the log levels to OFF on the following loggers:

com.netflix.discovery.DiscoveryClient, com.netflix.discovery.shared.transport.decorator.RedirectingEurekaHttpClient

Some logging frameworks provide other tools to suppress repeated messages. Consult the documentation of the logging framework
you use to find out what tools are available. The following example demonstrates how the Logback framework can be used to
suppress repeated messages.

Example:

Add the following code to your configuration file if you use XML configuration:

NOTE

For more information, see the full configuration used in the Core Services in GitHub.

https://github.com/zowe/api-layer/blob/master/apiml-common/src/main/resources/logback.xml

Version: v2.17.x LTS

API Mediation Layer onboarding configuration
This article describes the process of configuring a REST service to onboard with the Zowe API Mediation Layer using the API ML Plain
Java Enabler. As a service developer, you can provide basic configuration of a service to onboard to the API ML. You can also
externalize configuration parameters for subsequent customization by a systems administrator.

Introduction

Configuring a REST service for API ML onboarding

Plain Java Enabler service onboarding
Automatic initialization of the onboarding configuration by a single method call

Validating successful onboarding with the API Mediation Layer

Loading YAML configuration files
Loading a single YAML configuration file

Loading and merging two YAML configuration files

Introduction
The API ML Plain Java Enabler (PJE) is a library which helps to simplify the process of onboarding a REST service with the API ML. This
article describes how to provide and externalize the Zowe API ML onboarding configuration of your REST service using the PJE. For
detailed instructions about how to onboard your API service using the Plain Java Enabler, see Onboarding a REST API service with the
Plain Java Enabler (PJE).

The PJE is the most universal Zowe API ML enabler. This enabler uses only Java, and does not use advanced Inversion of Control (IoC)
or Dependency Injection (DI) technologies. The PJE enables you to onboard any REST service implemented in Java, avoiding
dependencies, versions collisions, unexpected application behavior, and unnecessarily large service executables.

Service developers provide onboarding configuration as part of the service source code. While this configuration is valid for the
development system environment, it is likely to be different for an automated integration environment. Typically, system
administrators need to deploy a service on multiple sites that have different system environments and requirements such as security.

The PJE supports both the service developer and the system administrator with the functionality of externalizing the service
onboarding configuration.

The PJE provides a mechanism to load API ML onboarding service configuration from one or two YAML files.

Configuring a REST service for API ML onboarding
In most cases, the API ML Discovery Service, Gateway, and service endpoint addresses are not known at the time of building the
service executables. Similarly, security material such as certificates, private/public keys, and their corresponding passwords depend on
the specific deployment environment, and are not intended to be publicly accessible. Therefore, to provide a higher level of flexibility,
the PJE implements routines to build service onboarding configuration by locating and loading one or two YAML file sources:

internal service-configuration.yml

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler

The first configuration file is typically internal to the service deployment artifact. This file must be accessible on the service
classpath . This file contains basic API ML configuration based on values known at development time. Usually, this basic API ML

configuration is provided by the service developer and is located in the /resources folder of the Java project source tree. This

file is usually found in the deployment artifacts under /WEB-INF/classes . The configuration contained in this file is provided by

the service developer or builder. As such, the configuration will not match every possible production environment and the
corresponding requirements of the environment.

external or additional service-configuration.yml

The second configuration file is used to externalize the configuration. This file can be stored anywhere on the local file system, as
long as that the service has access to that location. This file is provided by the service deployer/system administrator and contains
the correct parameter values for the specific production environment.

At service start-up time, both YAML configuration files are merged, where the externalized configuration (if provided) has higher
priority.

The values of parameters in both files can be rewritten by Java system properties or servlet context parameters that were defined
during service installation/configuration, or at start-up time.

In the YAML file, standard rewriting placeholders for parameter values use the following format:

${apiml.parameter.key}

The actual values are taken from [key, value] pairs defined as Java system properties or servlet context parameters. The system
properties can be provided directly on a command line. The servlet context parameters can be provided in the service web.xml or in

an external file.

The specific approach of how to provide the servlet context to the user service application depends on the application loading
mechanism and the specific Java servlet container environment.

Example:

If the service is deployed in a Tomcat servlet container, you can configure the context by placing an XML file with the same name as
the application deployment unit into _$CATALINA_BASE/conf/[enginename]/[hostname]/_ .

Other containers provide different mechanisms for the same purpose.

Plain Java Enabler service onboarding API
You can initialize your service onboarding configuration using different methods of the Plain Java Enabler class
ApiMediationServiceConfigReader :

Automatic initialization of the onboarding configuration by a single method call

The following code block shows automatic initialization of the onboarding configuration by a single method call:

This method receives the ServletContext parameter, which holds a map of parameters that provide all necessary information for

building the onboarding configuration. The following code block is an example of Java Servlet context configuration.

Example:

The two parameters corresponding to the location of the configuration files are:

apiml.config.location

is parameter describes the location of the basic configuration file.

apiml.config.additional-location

This parameter describes the location of the external configuration file.

The method in this example uses the provided configuration file names in order to load them as YAML files into the internal Java
configuration object of type ApiMediationServiceConfig.

The other context parameters with the apiml prefix are used to rewrite values of properties in the configuration files.

Validating successful onboarding with the API Mediation Layer
To ensure that you successfully onboarded a service with the API Mediation Layer, follow these steps:

1. Validate successful onboarding. Follow the procedure described in Verify successful onboarding to the API ML.

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Loading YAML configuration files
YAML configuration files can be loaded either as a single YAML file, or by merging two YAML files. Use the loadConfiguration
method described later in this article that corresponds to your service requirements.

After successfully loading a configuration file, the loading method loadConfiguration uses Java system properties to substitute
corresponding configuration properties.

Loading a single YAML configuration file

To build your configuration from multiple sources, load a single configuration file, and then rewrite parameters as needed using values
from another configuration source. See: Loading and merging two YAML configuration files described later in this article.

Use the following method to load a single YAML configuration file:

This method receives a single String parameter and can be used to load an internal or an external configuration file.

NOTE

This method first attempts to load the configuration as a Java resource. If the file is not found, the method attempts to resolve
the file name as an absolute. If the file name still cannot be found, this method attempts to resolve the file as a relative path.
When the file is found, the method loads the contents of the file and maps them to internal data classes. After loading the

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

configuration file, the method attempts to substitute/rewrite configuration property values with corresponding Java System
properties.

Loading and merging two YAML configuration files

To load and merge two configuration files, use the following method:

where:

String internalConfigurationFileName
references the basic configuration file name.

String externalizedConfigurationFileName
references the external configuration file name.

NOTE

The external configuration file takes precedence over the basic configuration file in order to match the target deployment
environment. After loading and before merging, each configuration will be separately patched using Java System properties.

The following code block presents an example of how to load and merge onboarding configuration from YAML files.

Example:

Version: v2.17.x LTS

Using API Mediation Layer Message Service
The API ML Message Service component unifies and stores REST API error messages and log messages in a single file. The Message
Service component enables users to mitigate the problem of message definition redundancy which helps to optimize the
development process.

Message Definition

Creating a message

Mapping a message
API ML Logger

Message Definition
API ML uses a customizable infrastructure to format both REST API error messages and log messages. yaml files make it possible to

centralize both API error messages and log messages. Messages have the following definitions:

Message key - a unique ID in the form of a dot-delimited string that describes the reason for the message. The key enables the

UI or the console to show a meaningful and localized message.

TIPS:

We recommend using the format org.zowe.sample.apiservice.{TYPE}.greeting.empty to define the message key.

{TYPE} can be the api or log keyword.

Use the message key and not the message number . The message number makes the code less readable, and increases

the possibility of errors when renumbering values inside the number .

Message number - a typical mainframe message ID (excluding the severity code)

Message type - There are two Massage types:

REST API error messages: ERROR

Log messages: ERROR , WARNING , INFO , DEBUG , or TRACE

Message text - a description of the issue

Message reason - A reason for why this issue occured

Message action - What should I as a user do to correct the problem

The following example shows the message definition.

Example:

Creating a message

Use the following classes when you create a message:

org.zowe.apiml.message.core.MessageService - lets you create a message from a file.

org.zowe.apiml.message.yaml.YamlMessageService - implements org.zowe.apiml.message.core.MessageService so that

org.zowe.apiml.message.yaml.YamlMessageService can read message information from a yaml file, and create a message

with message parameters.

Use the following process to create a message.

Follow these steps:

1. Load messages from the yaml file.

Example:

2. Use the Message createMessage(String key, Object... parameters); method to create a message.

Example:

Mapping a message
You can map the Message either to a REST API response or to a log message.

When you map a REST API response, use the following methods:

mapToView - returns a UI model as a list of API Message, and can be used for Rest API error messages

mapToApiMessage - returns a UI model as a single API Message

The following example is a result of using the mapToView method.

Example:

The following example is the result of using the mapToApiMessage method.

Example:

API ML Logger

The org.zowe.apiml.message.log.ApimLogger component controls messages through the Message Service component.

The following example uses the log message definition in a yaml file.

Example:

When you map a log message, use mapToLogMessage to return a log message as text. The following example is the output of the

mapToLogMessage .

Example:

Use the ApimlLogger to log messages which are defined in the yaml file.

Example:

The following example shows the output of a successful ApimlLogger usage.

Example:

Version: v2.17.x LTS

Onboarding a Spring Boot based REST API Service
This guide is part of a series of guides to onboard a REST API service with the Zowe API Mediation Layer. As an API developer, you can
onboard your REST API service built with the Spring Boot framework with the Zowe API Mediation Layer.

NOTE

Before API ML version 1.2, the API ML provided an integration enabler based on Spring Cloud Netflix components. From version
1.3 and later, the API ML uses a new implementation based on the Plain Java Enabler (PJE) that is not backwards compatible with
the previous enabler versions. API ML core services (Discovery Service, Gateway, and API Catalog) support both the old and new
enabler versions.

TIP

For more information about how to utilize another onboarding method, see:

Onboard a REST API service with the Plain Java Enabler (PJE)

Onboard a REST service directly calling eureka with xml configuration

Onboard an existing REST API service without code changes

Outline of onboarding a REST service using Spring Boot
The following steps outline the overall process to onboard a REST service with the API ML using a Spring Boot enabler. Each step is
described in further detail in this article.

1. Selecting a Spring Boot Enabler

2. Configuring your project

Gradle build automation system

Maven build automation system

3. Configuring your Spring Boot based service to onboard with API ML

Sample API ML Onboarding Configuration

Authentication properties

API ML Onboarding Configuration Sample

SAF Keyring configuration

Custom Metadata

Api Mediation Layer specific metadata

4. Registering and unregistering your service with API ML

Unregistering your service with API ML

Basic routing

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler
https://docs.zowe.org/stable/extend/extend-apiml/onboard-direct-eureka-call
https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition

5. Adding API documentation

6. (Optional) Validating the discoverability of your API service by the Discovery Service

7. (Optional) Troubleshooting

Log messages during registration problems

Selecting a Spring Boot Enabler
Add a dependency on the Spring Enabler version to your project build configuration that corresponds to the Spring Boot version that
you use for the whole project:

onboarding-enabler-spring-v1

onboarding-enabler-spring-v2

NOTE

The process of onboarding an API service is the same for both Spring Boot enabler versions.

Configuring your project
Use either Gradle or Maven as your build automation system to manage your project builds.

NOTE

You can download the selected enabler artifact from the Zowe Artifactory for latest stable versions.. Alternatively, if you decide to
build the API ML from source, it is necessary to publish the enabler artifact to your Artifactory. Publish the enabler artifact by
using the Gradle tasks provided in the source code.

Gradle build automation system

Use the following procedure to use Gradle as your build automation system.

Follow these steps:

1. Create a gradle.properties file in the root of your project if one does not already exist.

2. In the gradle.properties file, set the URL of the specific Artifactory containing the SpringEnabler artifact.

3. Add the following Gradle code block to the repositories section of your build.gradle file:

4. In the same build.gradle file, add the necessary dependencies for your service. If you use the SpringEnabler from the Zowe

Artifactory, add the following code block to your build.gradle script:

Use the corresponding artifact according to the Zowe APIML version you are using.

For Zowe APIML versions greater than 1.23.5 use the following artifact:

https://zowe.jfrog.io/zowe/libs-release/org/zowe/apiml/sdk/onboarding-enabler-java/

For Zowe APIML version 1.23.5 use the following artifact:

For Zowe APIML versions 1.22.3, 1.22.4, and 1.23.0 - 1.23.4 use the following artifact:

For Zowe APIML versions 1.21.6 - 1.21.13 and 1.22.0 - 1.22.2 use the following artifact:

For Zowe APIML versions earlier than 1.21.6 that use Spring 2.1.1 use the following artifact:

For Zowe APIML versions earlier than 1.21.6 that use Spring 1.5.9 use the following artifact:

Notes:

You may need to add additional dependencies as required by your service implementation.

The information provided in this file is valid for ZoweApimlVersion 1.3.0 and above.

5. In your project home directory, run the gradle clean build command to build your project. Alternatively, you can run gradlew
to use the specific gradle version that is working with your project.

Maven build automation system

Use the following procedure if you use Maven as your build automation system.

Follow these steps:

1. Add the following XML tags within the newly created pom.xml file:

Tip: If you want to use snapshot version, replace libs-release with libs-snapshot in the repository url and change snapshots-
>enabled to true.

2. Add the proper dependencies

For Zowe APIML versions greater than 1.23.5 use the following artifact:

For Zowe APIML version 1.23.5 use the following artifact:

For Zowe APIML versions 1.22.3, 1.22.4, and 1.23.0 - 1.23.4 use the following artifact:

For Zowe APIML versions 1.21.6 - 1.21.13 and 1.22.0 - 1.22.2 use the following artifact:

For Zowe APIML versions earlier than 1.21.6 that use Spring 2.1.1 use the following artifact:

For Zowe APIML versions earlier than 1.21.6 that use Spring 1.5.9 use the following artifact:

3. In the directory of your project, run the mvn clean package command to build the project.

Configuring your Spring Boot based service to onboard with API ML
To configure a Spring Boot based service, it is useful to first understand how API ML enabled service Spring Boot based configuration
relates to configuration using the Plain Java Enabler.

Spring Boot expects to find the default configuration of an application in an application.yml file that is placed on the classpath.

Typically application.yml contains Spring Boot specific properties such as properties that are used to start a web application

container including TLS security, different spring configuration profiles definitions, and other properties. This application.yml must
contain the Plain Java Enabler API ML service configuration under the apiml.service prefix. The API ML configuration under this

prefix is necessary to synchronize the configuration of apiml.service with the spring server configuration.

Configuration properties belong to two categories:

Service related properties which include endpoints, relative paths, or API documentation definitions.

Environment related properties which include host names, ports, context etc.

Execution environment related properties should be provided by additional configuration mechanisms that are specific to the target
execution environment. Execution environment related properties for development deployments on a local machine differ with those
properties on a mainframe system.

In a development environment, provide execution environment related properties in an additional YAML file with the system

property in the following format:

On the mainframe system, provide additional configuration properties and values for existing configuration properties through
Java system properties.

Execution environments for local development deployments and mainframe deployment are described in detail later in this
article.

Follow these steps:

1. Provide a configuration section for onboarding with API ML in the application.yml file.

If you have already onboarded your service with API ML, copy and paste the contents of your existing API ML onboarding
configuration file. The default of the API ML onboarding configuration file is the service-configuration.yml in the

application.yml file under the apiml.service prefix.

If you have not yet onboarded your REST service with API ML, use the Sample API Onboarding Configuration to get started.

2. If you are reusing your existing API ML onboarding configuration, modify the API ML related properties of the application.yml
file.

a) Remove certain properties under the apiml.service section, which must be externalized. Properties for removal are described

in the following sample of API ML onboarding configuration.

b) Provide the following additional properties under the apiml section:

These additional properties are contained in the following sample.

Sample API ML Onboarding Configuration

In the following sample API ML onboarding configuration, properties prefixed with ### (3 hashtags) indicate that their value must be

provided as -Dsystem.property.key=PROPERTY_VALUE defined in the mainframe execution environment. The -

Dsystem.property.key must be the same as the flattened path of the YAML property which is commented out with ### . These

properties must not be defined (uncommented) in your default service YAML configuration file.

Example:

In this example from the YAML configuration file, when the application service is run on the mainframe, provide your mainframe
hostname value on the Java execution command line in the following format:

Since this value is provided in the Java execution command line, leave the property commented out in the application.yml .

For development purposes, you can replace or add any property by providing the same configuration structure in an external YAML
configuration file. When running your application, provide the name of the external/additional configuration file on the command line
in the following format:

A property notation provided in the format -Dproperty.key=PROPERTY_VALUE can be used for two purposes:

To provide a runtime value for any YAML property if ${property.key} is used as its value (after :) in the YAML configuration file

Example:

To add a property to configuration if the property does not already exist

Example:

NOTE

System properties provided with -D notation on the command line will not replace properties defined in any of the YAML

configuration files.

Authentication properties

These parameters are not required. If a parameter is not specified, a default value is used. See Authentication Parameters for
Onboarding REST API Services for more details.

API ML Onboarding Configuration Sample

Some parameters which are specific for your service deployment are written in ${fill.your.parameterValue} format. For your

service configuration file, provide actual values or externalize your configuration using -D java commandline parameters.

TIP

To determine if your configuration is complete, set the logging level to debug and run your application. Setting the logging level

to 'debug' enables you to troubleshoot issues with certificates for HTTPS and connections with other services.

3. Provide the suitable parameter corresponding to your runtime environment:

For a local machine runtime environment, provide the following parameter on your command line:

At runtime, Spring will merge the two YAML configuration files, whereby the properties in the external file have higher priority.

https://docs.zowe.org/stable/extend/extend-apiml/authentication-for-apiml-services#authentication-parameters

For a mainframe execution environment, provide environment specific configuration properties. Define these configuration
properties and provide them using Java System Properties on the application execution command line.

Important! Ensure that the default configuration contains only properties which are not dependent on the deployment
environment. Do not include security sensitive data in the default configuration.

Note: For details about the configuration properties, see Configuring your service in the article Onboarding a REST API service
with the Plain Java Enabler (PJE).

SAF Keyring configuration

You can choose to use a SAF keyring instead of keystore and truststore for storing certificates. For information about required
certificates, see Zowe API ML TLS requirements. For information about running Java on z/OS with a keyring, see SAF Keyring. Make
sure that the enabler can access and read the keyring. Please refer to documentation of your security system for details.

The following example shows enabler configuration with keyrings:

Custom Metadata

For information about customizing metadata to add to the instance information registered in the Discovery Service, see Customizing
Metadata.

Registering and unregistering your service with API ML
Onboarding a REST service to the API ML means registering the service with the API ML Discovery Service. The registration is triggered
automatically by Spring after the service application context is fully initialized by firing a ContextRefreshed event.

To register your REST service with API ML using a Spring Boot enabler, annotate your application main class with

@EnableApiDiscovery .

Unregistering your service with API ML

Unregistering a service onboarded with API ML is done automatically at the end of the service application shutdown process in which
Spring fires a ContextClosed event. The Spring onboarding enabler listens for this event and issues an unregister REST call to the

API ML Discovery Service.

Basic routing

For information about basic routing in the API ML, see API ML Basic Routing

Adding API documentation
Use the following procedure to add Swagger API documentation to your project.

Follow these steps:

1. Add a SpringFox Swagger dependency.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-plain-java-enabler#configuring-your-service
https://docs.zowe.org/stable/extend/extend-apiml/zowe-api-mediation-layer-security-overview#zowe-api-ml-tls-requirements
https://docs.zowe.org/stable/extend/extend-apiml/certificate-management-in-zowe-apiml
https://docs.zowe.org/stable/extend/extend-apiml/custom-metadata
https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-routing

For Gradle, add the following dependency in build.gradle :

For Maven, add the following dependency in pom.xml :

2. Add a Spring configuration class to your project.

Example:

3. Customize this configuration according to your specifications. For more information about customization properties, see
Springfox documentation.

NOTE

The current SpringFox Version 2.9.2 does not support OpenAPI 3.0. For more information about the open feature request see this
issue.

Validating the discoverability of your API service by the Discovery Service
Once you build and start your service successfully, you can use the option of validating that your service is registered correctly with
the API ML Discovery Service.

Follow these steps:

1. Validate successful onboarding

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target runtime environment.

NOTE

If you are working with local installation of API ML and you are using our dummy identity provider, enter user for both

username and password . If API ML was installed by system administrators, ask them to provide you with actual addresses of API

ML components and the respective user credentials.

TIP

Wait for the Discovery Service to fully register your service. This process may take a few minutes after your service was
successfully started.

Troubleshooting

Log messages during registration problems

When an Enabler connects to the Discovery Service and fails, an error message prints to the Enabler log. The default setting does not
suppress these messages as they are useful to resolve problems during the Enabler registration. Possible reasons for failure include

https://springfox.github.io/springfox/docs/snapshot/#configuring-springfox
https://github.com/springfox/springfox/issues/2022
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

the location of Discovery Service is not correct, the Discovery Service is down, or the TLS certificate is invalid. These messages continue
to print to the Enabler log, while the Enabler retries to connect to the Discovery Service.

To fully suppress these messages in your logging framework, set the log levels to OFF on the following loggers:

Some logging frameworks provide other tools to suppress repeated messages. Consult the documentation of the logging framework
you use to find out what tools are available. The following example demonstrates how the Logback framework can be used to
suppress repeated messages.

Example:

Add the following code to your configuration file if you use XML configuration:

NOTE

For more information, see the full configuration used in the Core Services in GitHub.

https://github.com/zowe/api-layer/blob/master/apiml-common/src/main/resources/logback.xml

Version: v2.17.x LTS

Onboarding a Micronaut based REST API service
As an API developer, you can onboard a REST service to the Zowe API Mediation Layer using the Micronaut framework. While using
the Spring framework to develop a JVM-based service to register to the API ML is the recommended method, you can use the
procedure described in this article to onboard a service using the Micronaut framework.

NOTE

For more information about onboarding API services with the API ML, see the Onboarding Overview.

For Micronaut-related documentation, see the Micronaut website.

Set up your build automation system
Specify the main class

Define the output jar file

(Optional) Create a shadow jar

Start the application

Configure the Micronaut application
Add API ML configuration

Add Micronaut configuration

Set up logging configuration

Validate successful registration

Set up your build automation system
Currently, the only build automation system for use with onboarding a Micronaut based service is Gradle.

1. Create a gradle.properties file in the root of your project if one does not already exist.

2. In the gradle.properties file, set the URL of the specific Artifactory containing the SpringEnabler artifact.

3. Add the following Gradle code block to the repositories section of your build.gradle file:

4. In the build.gradle file, add the micronaut enabler as a dependency:

5. (Optional) Add a shadow plug-in to create a runnable jar file. Update the gradle.build file with a plugin:

6. Specify the main class with the following script:

7. Define the output jar file.

Add the following script to define the output of the jar file:

The following example shows a sample gradle.build file:

Example:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.micronaut.io/latest/guide/index#introduction

8. (Optional) Create a shadow jar.

To create a shadow jar, execute the gradle shadowJar task. For this sample, the plugin produces the jar micronaut-enabler-

1.0.jar in build/libs directory.

You can now run your application with the command java -jar micronaut-enabler-1.0.jar .

9. Start the application.

From the root directory of your project, start the application with the gradle run command.

Configure the Micronaut application

Use a yaml file to configure your Micronaut application. Create the following two sections in your yaml file:

apiml for API ML configuration

micronaut for micronaut configuration

Add API ML configuration

Use the following procedure to add API ML configuration to the application.yaml.

Follow these steps:

1. Add the following configuration to the apiml section in the yaml file:

fill.your.service

Specifies the ID of your service

2. Add SSL-resolving properties as shown in the following example. Ensure that you structure the nested objects within
apiml.service as arrays. Be sure to include - (hyphen) before enabled thereby indicating the first element of the array.

Example:

NOTE

For a sample of this configuration, see API ML Onboarding Configuration Sample.

The yaml now contains configuration to register to the API Mediation Layer.

Add Micronaut configuration

Once you complete API ML configuration, add configuration to provide correct mapping between API ML and micronaut parameters.

1. Add the following yaml snippet with the micronaut configuration parameters:

apiml.service.serviceId

Specifies the ID of your service

https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler#api-ml-onboarding-configuration-sample

apiml.service.port

Specifies the port on which the service listens

apiml.service.ssl[0].keyPassword

Specifies the password that protects the key in keystore

apiml.service.ssl[0].keyStoreType

Specifies the type of the keystore, (Example: PKCS12)

apiml.service.ssl[0].keyStore

Specifies the location of the keystore

apiml.service.ssl[0].keyAlias

Specifies the alias under which the key is stored in the keystore

apiml.service.ssl[0].trustStorePassword

Specifies the password that protects the certificates in the truststore

apiml.service.ssl[0].trustStore

Specifies the location of the truststore

apiml.service.ssl[0].trustStoreType

Specifies the type of the truststore, (Example: PKCS12)

apiml.service.ssl[0].ciphers

Specifies the list of ciphers that user wants to enable for TLS communication

apiml.service.ssl[0].protocol

Specifies the type of SSL/TLS protocol (Example: TLSv1.2)

(Optional) Set up logging configuration

Set up custom logging configuration to have more structured output and better control of logs.

Create a logback.xml file in the resources folder and include the application.yml . Update the logback.xml file with the

following configuration:

Validate successful registration

After you complete the configuration, ensure that your application is visible within Zowe API ML. For more information, see Validating
the discoverability of your API service by the Discovery Service, which describes the validation procedure common for all enablers.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-spring-boot-enabler#validating-the-discoverability-of-your-api-service-by-the-discovery-service

Version: v2.17.x LTS

Onboarding a Node.js based REST API service
This article is part of a series of onboarding articles, which outline the process of onboarding REST API services to the Zowe API
Mediation Layer (API ML). As a service developer, you can onboard a REST service based on NodeJS with the API ML with the Zowe
API Mediation Layer using our Node.js Enabler.

NOTE

For more information about onboarding API services with the API ML, see the Onboarding Overview.

Introduction

The API ML onboarding Node.js enabler is an NPM package which helps to simplify the process of onboarding a REST service written
in Node.js with the API ML.

For more information about how to utilize another API ML enablers, see the Onboarding Overview.

Onboarding your Node.js service with API ML
The following steps outline the overall process to onboard a REST service with the API ML using the onboarding Node.js enabler. Each
step is described in further detail in this article.

1. Prerequisites

2. Install the npm dependency

3. Configure your service

4. Register your service with API ML

5. (Optional) Validate the discoverability of your API service by the Discovery Service

Prerequisites
Ensure that you meet the following prerequisites:

You satisfy the prerequisites from the Onboarding Overview.

The REST API service to onboard is written in Node.js.

The service is enabled to communicate with API ML Discovery Service over a TLS v1.2 secured connection.

Installing the npm dependency
Install the onboarding Node.js enabler package as a dependency of your service. Run the following npm command from your project
directory:

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://www.npmjs.com/package/@zowe/apiml-onboarding-enabler-nodejs
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview

NOTE

If you have a multi-module project, you have to run the npm command from the submodule where your Node.js project is
located.

Configuring your service
Create a yaml file named service-configuration.yml inside a /config directory at the same level of your index.js , and add the

following configuration properties.

The following example shows a sample configuration.

Example:

Registering your service with API ML

To register your service with API ML, use the following procedure.

1. Inside your Node.js service index.js , add the following code block to register your service with Eureka:

2. Start your Node.js service and verify that the service is registered to the Zowe API Mediation Layer.

Validating the discoverability of your API service by the Discovery Service
Once you build and start your service successfully, you can use the option of validating that your service is registered correctly with
the API ML Discovery Service.

1. Validate successful onboarding

2. Check that you can access your API service endpoints through the Gateway.

3. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target runtime environment.

NOTES:

If you are working with a local installation of API ML, and you are using our dummy identity provider, enter user for both

username and password . If API ML was installed by system administrators, ask them to provide you with actual addresses

of API ML components and the respective user credentials.

Wait for the Discovery Service to fully register your service. This process may take a few minutes after your service starts
successfully.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

Version: v2.17.x LTS

Onboarding a REST API without code changes required
As a user of Zowe™, onboard an existing REST API service to the Zowe™ API Mediation Layer without changing the code of the API
service. This form of onboarding is also refered to as, "static onboarding".

NOTE

When developing a new service, it is not recommended to onboard a REST service using this method, as this method is non-
native to the API Mediation Layer. For a complete list of methods to onboard a REST service natively to the API Mediation Layer,
see the Onboarding Overview.

The following procedure outlines the steps to onboard an API service through the API Gateway in the API Mediation Layer without
requiring code changes.

Identify the API that you want to expose

Define your service and API in YAML format

Route your API

Customize configuration parameters

Add and validate the definition in the API Mediation Layer running on your machine

Add a definition in the API Mediation Layer in the Zowe runtime

(Optional) Check the log of the API Mediation Layer

(Optional) Reload the services definition after the update when the API Mediation Layer is already started

TIP

For more information about the structure of APIs and which APIs to expose in the Zowe API Mediation Layer, see the
Onboarding Overview.

Identify the APIs that you want to expose

The first step in API service onboarding is to identify the APIs that you want to expose.

Follow these steps:

1. Identify the following parameters of your API service:

Hostname

Port

(Optional) base path where the service is available. This URL is called the base URL of the service.

Example:

In the sample service described in the Onboarding Overview, the URL of the service is: http://localhost:8080 .

2. Identify the API of the service that you want to expose through the API Gateway.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#service-onboarding-guides
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#sample-rest-api-service

Example:

The API provided by the sample service is a second version of the Pet Store API. All the endpoints to be onboarded are available
through http://localhost:8080/v2/ URL. This REST API is therefore available at the path /v2 relative to base URL of the

service. There is no version 1 in this case.

3. Choose the service ID of your service. The service ID identifies the service uniquely in the API Gateway. The service ID is

an alphanumeric string in lowercase ASCII.

Example:

In the sample service, the service ID is petstore .

4. Decide which URL to use to make this API available in the API Gateway. This URL is referred to as the gateway URL and is
composed of the API type and the major version. The usually used types are: api , ui and ws but you can use any valid URL

element you want.

Example:

In the sample service, we provide a REST API. The first segment is /api as the service provides only one REST API. To indicate that

this is version 2, the second segment is /v2 . This version is required by the Gateway. If your service does not have a version, use

v1 on the Gateway.

Define your service and API in YAML format

After you identify the APIs you want to expose, you need to define your service and API in YAML format as presented in the following
sample petstore service example.

Example:

To define your service in YAML format, provide the following definition in a YAML file as in the following sample petstore service.

This configuration is the minimal configuration necessary for the Gateway to properly route the requests to the application and to
show the Service in the Catalog UI.

NOTE

For more details about configuration, see Customize configuration parameters.

In this example, a suitable name for the file is petstore.yml .

NOTES:

The filename does not need to follow specific naming conventions but it requires the .yml extension.

The file can contain one or more services defined under the services: node.

Each service has a service ID. In this example, the service ID is petstore . The service id is used as a part of the request URL
towards the Gateway. It is removed by the Gateway when forwarding the request to the service.

The service can have one or more instances. In this case, only one instance http://localhost:8080 is used.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-static-definition#customize-configuration-parameters

One API is provided and the requests with the relative base path api/v2 at the API Gateway (full gateway URL:

https://gateway:port/serviceId/api/v2/...) are routed to the relative base path /v2 at the full URL of the service

(http://localhost:8080/v2/...).

The file on USS should be encoded in ASCII to be read correctly by the API Mediation Layer.

TIPS:

There are more examples of API definitions at this link.

For more details about how to use YAML format, see this link.

Route your API
Routing is the process of sending requests from the API Gateway to a specific API service. Route your API by using the same format as
in the following petstore example. The configuration parameters are explained in Customize configuration parameters. Gateway URL
format:

NOTE

The API Gateway differentiates major versions of an API.

Example:

When the configuration parameters are:

To access API version 2 of the service petstore , gateway URL will be:

It will be routed to:

To access resource pets of the petstore version 2 API, gateway URL will be:

It will be routed to:

NOTE

This method enables you to access the service through a stable URL, and move the service to another machine without changing
the gateway URL. Accessing a service through the API Gateway also enables you to have multiple instances of the service
running on different machines to achieve high-availability.

Customize configuration parameters

This part contains a more complex example of the configuration and an explanation of all the possible parameters:

serviceId

This parameter specifies the service instance identifier that is registered in the API Mediation Layer installation. The service ID is
used in the URL for routing to the API service through the Gateway. The service ID uniquely identifies the service in the API

https://github.com/zowe/api-layer/tree/master/config/local/api-defs
https://learnxinyminutes.com/docs/yaml/

Mediation Layer. The system administrator at the customer site defines this parameter.

CAUTION

Ensure that the service ID is set properly with the following considerations:

When two API services use the same service ID, the API Gateway considers the services to be clones (i.e. two instances for the
same service). An incoming API request can be routed to either of them.

The same service ID should be set only for multiple API service instances for API scalability.

The service ID value must contain only lowercase alphanumeric characters.

The service ID cannot contain more than 40 characters.

The service ID is linked to security resources. Changes to the service ID require an update of security resources.

Examples:

If the customer system administrator sets the service ID to monitoringpr1 , the API URL in the API Gateway appears as the
following URL:

https://gateway:port/monitoringpr1/api/v1/...

If customer system administrator sets the service ID to authenticationprod1 , the API URL in the API Gateway appears as

the following URL:

http://gateway:port/authenticationprod1/api/v1/...

title

This parameter specifies the human readable name of the API service instance (for example, Monitoring Prod or systemInfo
LPAR1). This value is displayed in the API catalog when a specific API service instance is selected. This parameter is externalized

and set by the customer system administrator.

Tip: We recommend that you provide a specific default value of the title . Use a title that describes the service instance so that

the end user knows the specific purpose of the service instance.

description

This parameter specifies a short description of the API service.

Examples:

Monitoring Service - Production Instance

System Info Service running on LPAR1

This value is displayed in the API Catalog when a specific API service instance is selected. This parameter is externalized and set by
the customer system administrator.

TIP

Describe the service so that the end user knows the function of the service.

instanceBaseUrls

This parameter specifies a list of base URLs to your service's REST resource. It will be the prefix for the following URLs:

homePageRelativeUrl

statusPageRelativeUrl

healthCheckRelativeUrl

Examples:

- http://host:port/ftpservice for an HTTP service

- https://host:port/source-code-mngmnt for an HTTPS service

You can provide one URL if your service has one instance. If your service provides multiple instances for the high-availability then
you can provide URLs to these instances.

Examples:

- https://host1:port1/source-code-mngmnt

- https://host2:port2/source-code-mngmnt

homePageRelativeUrl

This parameter specifies the relative path to the homepage of your service. The path should start with / . If your service has no

homepage, omit this parameter. The path is relative to the instanceBaseUrls.

Examples:

homePageRelativeUrl: / The service has homepage with URL ${baseUrl}/

homePageRelativeUrl: /ui/ The service has homepage with URL ${baseUrl}/ui/

homePageRelativeUrl: The service has homepage with URL ${baseUrl}

statusPageRelativeUrl

This parameter specifies the relative path to the status page of your service. Start this path with / . If you service doesn't have a

status page, omit this parameter. The path is relative to the instanceBaseUrls.

Example:

statusPageRelativeUrl: /application/info

the result URL will be:

${baseUrl}/application/info

healthCheckRelativeUrl

This parameter specifies the relative path to the health check endpoint of your service. Start this URL with / . If your service does

not have a health check endpoint, omit this parameter. The path is relative to the instanceBaseUrls.

Example:

healthCheckRelativeUrl: /application/health

This results in the URL:

${baseUrl}/application/health

routes

The following parameters specify the routing rules between the Gateway service and your service. Both specify how the API
endpoints are mapped to the API Gateway endpoints.

routes.gatewayUrl

The gatewayUrl parameter sets the target endpoint on the Gateway. This is the portion of the final URL that is Gateway
specific.

Example:

For the petstore example, the full Gateway URL would be:

https://gatewayUrl:1345/petstore/api/v2/pets/1

In this case, the URL that will be called on the service is:

http://localhost:8080/v2/pets/1

routes.serviceRelativeUrl

The serviceRelativeUrl parameter points to the target endpoint on the service. This is the base path on the service called
through the Gateway.

authentication

The information about the possible ways to integrate authentication are available in Single Sign On Integration for Extenders
article.

apiInfo

This section defines APIs that are provided by the service. Currently, only one API is supported.

apiInfo.apiId

This parameter specifies the API identifier that is registered in the API Mediation Layer installation. The API ID uniquely
identifies the API in the API Mediation Layer. The same API can be provided by multiple services. The API ID can be used to
locate the same APIs that are provided by different services.

The creator of the API defines this ID. The API ID needs to be a string of up to 64 characters that uses lowercase
alphanumeric characters and a dot: . .

Tip: We recommend that you use your organization as the prefix.

https://docs.zowe.org/stable/extend/extend-apiml/api-medation-sso-integration-extenders

Examples:

zowe.file

ca.sysview

ibm.zosmf

apiInfo.gatewayUrl

This parameter specifies the base path at the API Gateway where the API is available. Ensure that this path is the same as the
gatewayUrl value in the routes sections.

apiInfo.swaggerUrl

(Optional) This parameter specifies the HTTP or HTTPS address where the Swagger JSON document is available.

apiInfo.documentationUrl

(Optional) This parameter specifies a URL to a website where external documentation is provided. This can be used when
swaggerUrl is not provided.

apiInfo.version

(Optional) This parameter specifies the actual version of the API in semantic versioning format. This can be used when
swaggerUrl is not provided.

apiInfo.defaultApi

(Optional) This parameter specifics that the API is the default one to show in the API Catalog. If this not set to true for any
API, or multiple APIs have it set to true, then the default API becomes the API with the highest major version as seen in
apiInfo.version .

apiInfo.codeSnippet (Optional)

specifies the customized code snippet for a specific endpoint (API operation). The snippet is displayed in the API Catalog
under the specified operation, after executing the request using the Try it out functionality. When specifying this
configuration, you need to provide the following parameters:

endpoint

The endpoint that represents the API operation of the customized snippet

language

The language of the snippet

codeBlock

The content of the snippet to be displayed in the API Catalog

customMetadata

Custom metadata are described here.

catalogUiTileId

https://semver.org/
https://docs.zowe.org/stable/extend/extend-apiml/custom-metadata

This parameter specifies the unique identifier for the API services group. This is the grouping value used by the API Mediation
Layer to group multiple API services together into "tiles". Each unique identifier represents a single API Catalog UI dashboard tile.
Specify the value based on the ID of the defined tile.

catalogUiTile

This section contains definitions of tiles. Each tile is defined in a section that has its tile ID as a key. A tile can be used by multiple
services.

catalogUiTile.{tileId}.title

This parameter specifies the title of the API services product family. This value is displayed in the API Catalog UI dashboard as
the tile title.

catalogUiTile.{tileId}.description

This parameter specifies the detailed description of the API Catalog UI dashboard tile. This value is displayed in the API
Catalog UI dashboard as the tile description.

additionalServiceMetadata

This section contains a list of changes that allows adding or modifying metadata parameters for the corresponding service.

additionalServiceMetadata.serviceId

This parameter specifies the service identifier for which metadata is updated.

additionalServiceMetadata.mode

This parameter specifies how the metadata are updated. The following modes are available:

UPDATE

Only missing parameters are added. Already existing parameters are ignored.

FORCE_UPDATE

All changes are applied. Existing parameters are overwritten.

additionalServiceMetadata.{updatedParameter}

This parameter specifies any metadata parameters that are updated.

Add and validate the definition in the API Mediation Layer running on your
machine
After you define the service in YAML format, you are ready to add your service definition to the API Mediation Layer ecosystem.

The following procedure describes how to add your service to the API Mediation Layer on your local machine.

Follow these steps:

1. Copy or move your YAML file to the config/local/api-defs directory in the directory with API Mediation Layer.

2. Start the API Mediation Layer services.

Tip: For more information about how to run the API Mediation Layer locally, see Running the API Mediation Layer on Local
Machine.

3. Run your Java application.

Tip: Wait for the services to be ready. This process may take a few minutes.

4. Validate successful onboarding

You successfully defined your Java application if your service is running and you can access the service endpoints. The following
example is the service endpoint for the sample application:

https://localhost:10010/petstore/api/v2/pets/1

Add a definition in the API Mediation Layer in the Zowe runtime
After you define and validate the service in YAML format, you are ready to add your service definition to the API Mediation Layer
running as part of the Zowe runtime installation on z/OS.

Follow these steps:

1. Locate the Zowe instance directory. The Zowe instance directory is the directory from which Zowe was launched, or else was
passed as an argument to the SDSF command used to start Zowe. If you are unsure which instance directory a particular Zowe job
is using, open the JESJCL spool file and navigate to the line that contains STARTING EXEC ZWESLSTC,INSTANCE= . This is the fully

qualified path to the instance directory.

NOTE

The ${zoweInstanceDir} symbol is used in following instructions.

2. Add the fully qualified zFS path of your YAML file to ZWE_STATIC_DEFINITIONS_DIR in zowe.yaml .

To hold your YAML file outside of the instance directory, add ZWE_STATIC_DEFINITIONS_DIR variable to the

zowe.environments section of zowe.yaml . Append the fully qualified zFS path of the YAML file to the

ZWE_STATIC_DEFINITIONS_DIR variable. You may specify multiple zFS paths, separating each path by a semicolon.

To place your YAML file within the instance directory, copy your YAML file to the ${zoweInstanceDir}/workspace/api-

mediation/api-defs directory.

NOTES:

The ${zoweInstanceDir}/workspace/api-mediation/api-defs directory is created the first time that Zowe starts. If
you have not yet started Zowe, this directory might be missing.

The user ID ZWESVUSR that runs the Zowe started task must have permission to read the YAML file.

https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

3. Ensure that your application that provides the endpoints described in the YAML file is running.

4. Restart Zowe runtime or follow steps in section (Optional) Reload the services definition after the update when the API Mediation
Layer is already started which allows you to add your static API service to an already running Zowe.

5. Validate successful onboarding

You successfully defined your Java application if your service is running and you can access its endpoints. The endpoint displayed for
the sample application is:

(Optional) Check the log of the API Mediation Layer

The API Mediation Layer log can contain messages based on the API ML configuration. The API ML prints the following messages to
its log when the API definitions are processed:

NOTE

If these messages are not displayed in the log, ensure that the API ML debug mode is active.

(Optional) Reload the services definition after the update when the API
Mediation Layer is already started
The following procedure enables you to refresh the API definitions after you change the definitions when the API Mediation Layer is
already running.

Follow these steps:

1. Use a REST API client to issue a POST request to the Discovery Service (port 10011):

http://localhost:10011/discovery/api/v1/staticApi

The Discovery Service requires authentication by a client certificate. If the API Mediation Layer is running on your local machine,
the certificate is stored at keystore/localhost/localhost.pem .

This example uses the HTTPie command-line HTTP client and is run with Python 3 installed:

Alternatively, it is possible to use curl to issue the POST call if it is installed on your system:

2. Check if your updated definition is effective.

NOTE

It can take up to 30 seconds for the API Gateway to pick up the new routing.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml#enable-api-ml-debug-mode
https://httpie.org/

Version: v2.17.x LTS

Customizing Metadata (optional)
Additional metadata can be added to the instance information that is registered in the Discovery Service in the customMetadata
section. This information is propagated from the Discovery Service to the onboarded services (clients). In general, additional metadata
do not change the behavior of the client. Some specific metadata can configure the functionality of the API Mediation Layer. Such
metadata are generally prefixed with the apiml. qualifier. We recommend you define your own qualifier, and group all metadata you
wish to publish under this qualifier. If you use the Spring enabler, ensure that you include the prefix apiml.service before the

parameter name.

customMetadata.apiml.enableUrlEncodedCharacters
When this parameter is set to true , the Gateway allows encoded characters to be part of URL requests redirected through the

Gateway. The default setting of false is the recommended setting. Change this setting to true only if you expect certain

encoded characters in your application's requests.

IMPORTANT

When the expected encoded character is an encoded slash or backslash (%2F , %5C), make sure the Gateway is also

configured to allow encoded slashes. For more information, see Zowe runtime in Zowe server-side installation overview.

NOTE

If you use the Spring enabler, use the following parameter name:
apiml.service.customMetadata.apiml.enableUrlEncodedCharacters

customMetadata.apiml.connectTimeout
The value in milliseconds that specifies a period in which API ML should establish a single, non-managed connection with this
service. If omitted, the default value specified in the API ML Gateway service configuration is used.

NOTE

If you use the Spring enabler, use the following parameter name: apiml.service.customMetadata.apiml.connectTimeout

customMetadata.apiml.readTimeout
The value in milliseconds that specifies the time of inactivity between two packets in response from this service to API ML. If
omitted, the default value specified in the API MLGateway service configuration is used.

NOTE

If you use the Spring enabler, use the following parameter name:
apiml.service.customMetadata.apiml.readTimeout

customMetadata.apiml.connectionManagerTimeout
HttpClient employs a special entity to manage access to HTTP connections called by the HTTP connection manager. The purpose
of an HTTP connection manager is to serve as a factory for new HTTP connections, to manage the life cycle of persistent
connections, and to synchronize access to persistent connections. Internally, it works with managed connections which serve as

https://docs.zowe.org/stable/user-guide/install-zos#zowe-runtime

proxies for real connections. connectionManagerTimeout specifies a period in which managed connections with API ML should

be established. The value is in milliseconds. If omitted, the default value specified in the API ML Gateway service configuration is
used.

NOTE

If you use the Spring enabler, use the following parameter name:
apiml.service.customMetadata.apiml.connectionManagerTimeout

customMetadata.apiml.okToRetryOnAllOperations
Specifies whether all operations can be retried for this service. The default value is false . The false value allows retries for only

GET requests if a response code of 503 is returned. Setting this value to true enables retry requests for all methods, which

return a 503 response code. Enabling retry can impact server resources resulting from buffering of the request body.

NOTE

If you use the Spring enabler, use the following parameter name:
apiml.service.customMetadata.apiml.okToRetryOnAllOperations

customMetadata.apiml.corsEnabled
When this parameter is set to true , CORS handling by the Gateway is enabled on the service level for all service routes.

For more information, refer to enabling CORS with Custom Metadata on the Gateway: Customizing Cross-Origin Resource Sharing
(CORS). Additional information can be found in this article about Cross-Origin Resource Sharing (CORS).

NOTE

If you use the Spring enabler, use the following parameter name: apiml.service.customMetadata.apiml.corsEnabled

customMetadata.apiml.gatewayAuthEndpoint
Specifies the Gateway authentication endpoint used by the ZAAS Client configuration. The default value is
/api/v1/gateway/auth . For more information about ZAAS Client, see ZAAS Client.

NOTE

If you use the Spring enabler, use the following parameter name:
apiml.service.customMetadata.apiml.gatewayAuthEndpoint

customMetadata.apiml.gatewayPort
Specifies the Gateway port used by the ZAAS Client configuration. The default value is 10010 . For more information about ZAAS

Client, see ZAAS Client.

NOTE

If you use the Spring enabler, use the following parameter name: apiml.service.customMetadata.apiml.gatewayPort

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://docs.zowe.org/stable/extend/extend-apiml/zaas-client
https://docs.zowe.org/stable/extend/extend-apiml/zaas-client

customMetadata.apiml.corsAllowedOrigins
Optionally, service can specify which origins will be accepted by Gateway during the CORS handling. When this parameter is not
set, the accepted origins are * by default. You can provide a coma separated list of values to explicitly limit the accepted origins.

NOTE

If you use the Spring enabler, use the following parameter name:
apiml.service.customMetadata.apiml.corsAllowedOrigins

For more information, refer to enabling CORS with Custom Metadata on the Gateway: Customizing Cross-Origin Resource Sharing
(CORS).

customMetadata.apiml.lb.type
This parameter is part of the load balancing configuration for the Deterministic Routing capability. Through this parameter, the
service can specify which load balancing schema the service requires. If this parameter is not specified, the service is routed using
the basic round robin schema. This parameter can be set to the following values:

headerRequest

This value applies the Header Request load balancing schema. Clients can call the API Gateway and provide a special header with
the value of the requested instanceId. The Gateway understands this as a request from the client for routing to a specific instance.
Clients have several possibilities for understanding the topology of service instances, such as via the /eureka/apps endpoint on

the Discovery service, or the /gateway/services endpoint on the Gateway. In either case, the information is provided. The client
can then request a specific instance by using the special header described below.

The header name is X-InstanceId , and the sample value is discoverable-client:discoverableclient:10012 . This is identical to

instanceId property in the registration of the Discovery service.

In combination with enabling Routed instance header, the client can achieve sticky session functionality. (The term, 'sticky session'
refers to the feature of many load balancing solutions to route the requests for a particular session to the same physical machine that
serviced the first request for that session). The benefit of this approach is that there is no session on the Gateway, and the client
ultimately decides whether or not to go to a specific instance. This method uses the following sequence:

1. The client calls API Gateway and gets routed to a service.

2. The client reads the X-InstanceId header value from the response to understand the service was routed to.

3. For all subsequent requests, the client provides the X-InstanceId header with previously read value to get routed to the same

instance of the service.

authentication

This value applies the Authentication load balancing schema. This is a sticky session functionality based on the ID of the user. The
user ID is understood from the Zowe SSO token on the client's request. Requests without the token are routed in a round robin
fashion. The user is first routed in a round robin fashion, and then the routed instance Id is cached. The instance information is
used for subsequent requests to route the client to the cached target service instance. This session's default expiration time is 8
hours. After the session expires, the process initiates again.

In default configuration, this cache is stored on each Gateway instance. You can choose to distribute this cache between the Gateway's
instances. To do so, follow the steps described in Distributing the load balancer cache.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-cors
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-access-specific-instance-of-service
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-distributed-load-balancer-cache

customMetadata.apiml.lb.cacheRecordExpirationTimeInHours
When the property customMetadata.apiml.lb.type is set to authentication , the user can also define the expiration time for

the selected instance information that is cached. This property aims to prevent any discrepancy which might occur if the required
target server is no longer available. The default value is 8 hours.

customMetadata.apiml.response.compress
When this parameter is set to true , API ML compresses content for all responses from this services using GZIP. API ML also adds

the Content-Encoding header with value gzip to responses.

customMetadata.apiml.response.compressRoutes
When the customMetadata.apiml.response.compress parameter is set to true , this parameter allows services to further limit

the compressed routes. The parameter accepts ant style routes deliminated by , . The expectation is to provide the absolute

paths.

If relative paths are provided, the starting / is added. If the beginning of the pattern does not need to be specifically defined, use

**/{pathYouAreInterestedIn}

Examples:

/service/**

Compresses all paths starting with /service/

/service/api/v1/compress,/service/api/v1/custom-compress

Compresses the specific two routes

/**/compress/**

Compresses all paths that contain compress as a specific path

customMetadata.apiml.response.headers
(Optional) A service can specify headers that are added to the response by the Gateway. When this parameter is not set or is
empty, no headers are added. Header names and header values are separated by : . Multiple headers can be added, delimited by

, . If a header with the same name already exists in the response, the Gateway overwrites the value of the header.

Examples:

Strict-Transport-Security:max-age=1234; includeSubDomains

Sets a header with name Strict-Transport-Security and value max-age=1234; includeSubDomains .

Strict-Transport-Security:max-age=1234; includeSubDomains, X-Frame-Options:SAMEORIGIN

Sets two headers:

a. Header with name Strict-Transport-Security and value max-age=1234; includeSubDomains .

b. Header with name X-Frame-Options and value `SAMEORIGIN.

customMetadata.apiml.headersToIgnore
(Optional) A service can specify headers that are removed from the request to the southbound service by the Gateway. When this
parameter is not set or is empty, no headers are removed. Multiple headers can be removed, delimited by , .

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/AntPathMatcher.html

Version: v2.17.x LTS

API ML Routing Overview
The API Mediation Layer (API ML) in Zowe acts as a Level 7 Load Balancer, using the API Gateway to route requests to backend
services. The routing feature supports both single and multiple API ML instances.

The following diagram shows a request for a specific job from a customer and the services involved in the delivery of the request.

Key Concepts

Service

A service provides one or more APIs and is identified by a service ID. Note that sometimes the term "service name" refers to the
service ID.

The default service ID is provided by the service developer in the service configuration file.

A system administrator can replace the service ID with a specific name of the deployment environment using additional
configuration that is external to the service deployment unit. Typically, this name is configured in a JAR or WAR file. Ensure that
you detail how to specify the name in your service documentation.

Services are deployed using one or more service instances, which share the same service ID and implementation.

Instance
Refers to the instance of a specific service providing one or more APIs

Service ID
The unique identifier for each service

Instance Routing
Routes requests based on service instances

Versioning
Supports routing to specific service versions

Basic Routing
In basic routing, requests are routed using the service ID and optionally, the service version:

Example: https://gateway-url/api/v1/service-id

Routing Mechanism Routing can be configured for either single or multiple API ML instances

Single API ML Instance
Uses Eureka metadata for direct routing to a service based on the service ID

Multiple API ML Instances
Uses Eureka metadata for service discovery and load balancing

Implementation Details
Routing configuration is defined in Eureka metadata. Ensure proper setup for accurate routing. The following yaml file is an example
of Eureka metadata configuration:

This part of the service metadata configuration defines how the request coming from the upstream (northbound) service will be
accepted and then passed to the downstream (southbound) service.

The following shows service URL tansformations if the downstream (southbound) service has the contextPath zosmf:

The request https://apiml/zosmf/ui/v1/desktop from the user is transformed to https://service/zosmf/desktop

The request https://apiml/zosmf/api/v1/desktop from the user is transformed to https://service/zosmf/api/v1/desktop

The request https://apiml/zosmf/ws/v1/desktop from the user is transformed to https://service/zosmf/ws/desktop

Instance Routing
API ML supports routing to multiple instances of the same service, thereby distributing requests based on load balancing policies.
Ensure each service instance registers with a unique instance ID in Eureka.

Versioning
API ML makes it possible to specify the version of a service in the route. If a version is not specified, the latest version is used by
default. Version specified routing provides flexibility in deploying and updating services without affecting existing clients.

Example Usage
The following URL is an example of routing to a specific version of a service:

Note that if no version is specified, as in the following example, the request defaults to the latest service version:

Deployments

Deployment can be for single or multiple instances.

A single instance of the API Mediation Layer with one or more instances of the services onboarded

Multiple instances of the API Mediation Layer in High Availability setup with one or more instances of the services onboarded

The onboarded services may be onboarded in one or more instances and the APIs that the services provide may be versioned. API
Mediation Layer supports distinction on the major version boundary.

Making a GET call to a service through single instance of API ML

When there is one instance of the API Mediation Layer in the system, the API ML is expected to be the entry point to the system. The
following diagrams show the process of making a GET call to a service available on a single instance.

A GET call to a service with a single version on a single instance

The following diagram shows the flow of a GET request through different involved components to the z/OSMF service deployed on
one LPAR with one instance. z/OSMF in this case does not version the API.

A GET call to a service with multiple versions on a single instance

The following diagram shows the flow of a GET request through different involved components to the z/OSMF service deployed on
one LPAR with one instance. In this case, z/OSMF versions the API and the request is intended for a specific major version.

GET calls to multiple instances of a service

The following diagram shows the flow of a GET request through different involved components to the z/OSMF service deployed on

one LPAR with multiple instances. In this case, z/OSMF versions the API and the request is intended for a specific major version.

A GET call to a service through multiple API Mediation Layer Instances

When there are multiple API Mediation Layer Instances in the system, DVIPA is expected as the load balancer which distributes
requests to API Mediation Layer instances. API Mediation Layer subsequently distributes the requests to the running instances of the
specific service. The following diagrams shows the flow of a single request.

Same LPAR Multiple API Mediation Layer Instances

The following diagram shows the flow of the GET request through different involved components to the z/OSMF service deployed on

multiple LPARs with multiple instances on one LPAR, and one instance on another LPAR. In this case, z/OSMF versions the API and the
request is intended for a specific major version. DVIPA randomly selects one of the available API Mediation Layer instances, which then
randomly selects one of the available service instances (in this case on the same LPAR).

Different LPAR Multiple API Mediation Layer Instances

The following diagram shows the flow of the GET request through different involved components to the z/OSMF service deployed on

multiple LPARs with multiple instances on one LPAR, and one instance on another LPAR. In this case, z/OSMF versions the API and the
request is intended for a specific major version. DVIPA randomly selects one of the available API Mediation Layer instances, which
subsequently randomly selects one of the available service instances regardless whether the instance resides on the same LPAR. In this
case the selected instance is on another LPAR.

Advanced Configuration
Advanced routing configurations can include custom load balancing rules, fallback options, and route-specific policies. Refer to the
detailed configuration guide for more advanced settings and examples.

By default, routing through the API Mediation Layer selects the instance to route to in Round-robin fashion for each specific request. It
is possible to change this behavior to assign a specific user to a specific instance or to change the behavior by providing the option to
go to a specific instance of a service.

Version: v2.17.x LTS

Implementing routing to the API Gateway
Service instances provide information about routing to the API Gateway via Eureka metadata.

Example:

routes:

gatewayUrl: "ui/v1" serviceUrl: "/helloworld"

gatewayUrl: "api/v1" serviceUrl: "/helloworld/v1"

gatewayUrl: "api/v2" serviceUrl: "/helloworld/v2"

In this example, the service has a service ID of helloworldservice that exposes the following endpoints:

UI - https://gateway/helloworldservice/ui/v1 routed to https://hwServiceHost:port/helloworld/

API major version 1 - https://gateway/helloworldservice/api/v1 routed to

https://hwServiceHost:port/helloworld/v1

API major version 2 - https://gateway/helloworldservice/api/v2 routed to

https://hwServiceHost:port/helloworld/v2

where:

The gatewayUrl is matched against the prefix of the URL path used at the Gateway https://gateway/urlPath , where urlPath

is serviceId/prefix/resourcePath .

The service ID is used to find the service host and port.

The serviceUrl is used to prefix the resourcePath at the service host.

NOTE

The service ID is not included in the routing metadata, but the service ID is in the basic Eureka metadata.

Basic Routing using only the service ID

This method of routing is similar to the previous method, but does not use the version part of the URL. This approach is useful for
services that handle versioning themselves with different granularity.

One example that only uses a service ID is z/OSMF.

Example:

z/OSMF URL through the Gateway has the following format:

https://gateway:10010/ibmzosmf/api/restjobs/jobs/...

where:

ibmzosmf

Specifies the service ID.

/restjobs/1.0/...

Specifies the rest of the endpoint segment.

Note that no version is specified in this URL.

Version: v2.17.x LTS

API Versioning
The API Catalog is the catalog of published API services and their associated documentation that have been discovered or might get
available if provisioned from the service catalog.

Application program interface (API) is a set of functions and procedures that allow the creation of applications which access the
features or data of other applications, service, or systems.

Our API Catalog contains APIs of services provided by implementations of mainframe products. Service can be implemented by one or
more service instances (that provide exactly the same service for high-availability or scalability).

Versioning

APIs are versioned. Users of the API specify the major version (v1 , v2). Backward incompatible changes can be introduced only with

changing major version. The service can provide multiple versions of the API (it should provide v{n} and previous v{n-1} versions).

REST

In our case, we are speaking about REST APIs, which is a way how to access and manipulate textual representations of Web resources
using uniform and a predefined set of stateless operations. Usually via HTTP(S) protocol and using JSON format. Resources are
identified by their Uniform Resource Identifier (URIs). The services are accessed via APIML gateway. Example of a URI:
https://host:10010/endevormfno/api/v1/ENWSQA01/packages/PACKAGETST (https://{gatewayHost}:

{port}/{serviceName}/api/v{majorVersion}/{resource}) See Components of URL for more information about the URL

components of REST APIs.

Data Model
The following data model describes the model behind data about APIs and API services in the API Catalog. The most of the data are
provided during service registration. In case of the dynamic registration they are provided by the service. Some of them are
determined by the service developer (API-related), system administrator (service-related), and some of them can be altered by user
(catalog tiles - in future).

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-components-of-URL

(this a UML class diagram)

Catalog Tile
The API Catalog UI groups API services into tiles. An API service can be in multiple tiles. The purpose of titles is to organize API
services on the dashboard of the API Catalog. Default catalog tiles are constructed from the definitions provided by the services.
In future, it will be possible for the user to modify the tiles.

API
An Api object represents a collection of specific versions of the same API which share the same apiId.

https://en.wikipedia.org/wiki/Class_diagram

API Version
Specifies the version of the API. This version can be documented by an external documentation or by a Swagger document. This
information is set by the developer of the API.

Swagger
The Swagger specification instance for a specific API version. See https://swagger.io/docs/specification/ for more details.

API Association
Information how a specific API version is provided by a specific service. Different services can use different basePath. The full path
to access endpoints is: scheme://host:port/basePath/endpointPath . This information is set by the service developer.

Service
Represents a collection of all service instances. The description and title are taken from the service with highest version, in case if
this is not clear then the latest registered wins. API clients are using a service and the API gateway chooses what service instance
will be accessed. The same API version can be implemented by multiple services. Such services are not interchangeable because
they contain or access different data.

Service instance
The implementation of a service. It contains the information about where service is running. The information are provided by the
system programmer. The default title and description is provided by service developer. Instances are interchangeable and they
are used to achieve high availability.

Route
Specifies how service URLs are mapped to the gateway. The Gateway translates a URL based on the start of the base path on the
gateway, and translates it to a base path that is used in the URL to access the service. The purpose is to make possible to access
services via the gateway with a consistent URL format no matter what is the format at the service.

Version
Type follows semantic versioning (http://semver.org/) and is used on multiple places.

Service and instance

Service and instance are overloaded words that have a different meaning in different contexts. This document uses similar meaning as
in (Netflix) Eureka discovery service. Service (or application) is a logical entity that is comprised of functionality to access and
manipulate specific resources. Instances are real processes (servers) that provide that functionality to clients. Eureka is used in
distributed software world where a service is implemented by many instances. But z/OSMF software services registry defines software
service instance and software service templates in the context of the provisioning where "instances" are provisioned from "templates".
z/OSMF service instance does not need to correspond exactly to Eureka service. z/OSMF service instance does need to provide REST
API. z/OSMF service instance can be anything that can be provisioned (e.g. multiple services that provide REST API, one API service,
additional instance for a service, just a container for other services, a database server, a database, a table...).

API Versioning
Service instances provide one or more different API versions (we take only one assumption: one service instance will not provide two
versions with the same major version, no other assumptions which versions will be provided and how - e.g. an instance can provide
only one version and another version will be provided by different instance, other services can have instances that provide multiple
versions).

https://swagger.io/docs/specification/
http://semver.org/

The API user specifies only the major version in the URI. The API catalog needs to differentiate between different full versions internally
and able to return a specific full version or return documentation for the highest version of the specified major version that is
supported by all running services.

Guidelines:

The version of the API, not dependent on the product release

Two last versions are supported

Major version - specified by the user of the API in the URI - increased only when backward incompatible change is introduced (it
is rare because the REST APIs should be designed to allow extensibility)

Minor version - not specified in the URI but the user should know what is it, important to display the correct level of
documentation. Increased when the API is extended with a new feature (if you use a new resource available in v1.2, the service
has to provide at least v1.2, the request fails on v1.1). If there are multiple instances of the services that have different minor
versions, the service together will say that has the lowest minor version (e.g instance A provide v1.3 and v2.2, instance B was not
yet upgraded and provides v1.2 and v2.1, then the service provides v1.2 and v2.1)

Patch version - not specified in the URI, no difference in the API, used only when the API documentation is patched or a bug was
fixed, there is no change in the API

Version: v2.17.x LTS

Routing Websocket based APIs
It is possible to route WebSocket APIs through the API Mediation Layer. For details about Websocket routing from the client side, see
Routing with websockets.

To accept Websockets, it is necessary that the API Mediation Layer know that a Websocket connection is required. This is done when
the issuer of the call adds the (/ws/...) prefix in the URL of the called API.

Example: The following is an example of a valid URL for a Websocket API.

https://gatewayUrl/exampleService/ws/v1/communicate

Configuring the service for Websockets
The configuration relevant for Websockets is contained within the routes section in the configuration. A complete example using a
WebSocket that is statically onboarded is available in the API ML repo.

Example:

The ws in the beginning of the Gateway URL provides the notification that it is a WebSocket connection, and will be treated as such.

NOTE

The serviceRelativeUrl is customizable and does not have to contain ws .

Example: It is possible to access via the URL https://gatewayUrl/exampleService/ws/v1/communicate on the actual server
that would appear as the URL https://serverUrl/exampleService/ui/communicate .

https://docs.zowe.org/stable/user-guide/routing-with-websockets
https://github.com/zowe/api-layer/blob/567c261bbe3e8702b62cdbc73afcdf0afa847a8b/config/docker/api-defs/staticclient.yml#L66

Version: v2.17.x LTS

Creating an Extension for API ML
Zowe allows extenders to define their own extension for API ML. Follow the steps in this article to create your extension and add it to
the API Gateway classpath.

NOTE

The api-sample-extension-package contains a sample manifest.yml and the apiml-sample-extension JAR that contains

the extension.

Follow these steps:

1. Create a JAR file from your extension. See the API ML sample extension to model the format of the JAR.

2. Create a manifest.yml with the following structure. See the sample manifest.yml to model the format of the yaml file.

For more information, see Packaging z/OS extensions.

Example:

The extension directory <instance>/workspace/gateway/sharedLibs/ is then added to the API Gateway class path as part of the

Zowe instance preparation.

NOTE

The paths defined under gatewaySharedLibs can either be a path to the directory where the extensions JARs are located, or a
path to the files.

Example:

After the JAR file and manifest.yml are customized according to your application, the extension is extracted, scanned and added to

the extension directory during the Zowe instance preparation. When the API Gateway starts, the the API Gateway consumes the
sample extension.

The extension should now be correctly added to the API Gateway classpath.

Call the REST endpoint for validation

Follow these steps to validate that you can call the REST endpoint defined in the controller via the API Gateway:

1. Call the https://<hostname>:<gatewayPort>/api/v1/greeting endpoint though Gateway.

2. Verify that you receive the message, Hello, I'm a sample extension! as the response.

https://github.com/zowe/api-layer/blob/master/apiml-sample-extension
https://github.com/zowe/api-layer/blob/master/apiml-sample-extension-package/src/main/resources/manifest.yaml
https://docs.zowe.org/stable/extend/packaging-zos-extensions

Version: v2.17.x LTS

Implementing a new SAF IDT provider
As a Zowe API ML user, you can use the API Gateway to apply your own SAF Identity Token (IDT) provider by implementing an existing
interface.

How to create a SAF IDT provider

How to integrate your extension with API ML

How to use an existing SAF IDT provider

How to use the SAF IDT provider

To configure SAF IDT on z/OS, see Configure signed SAF Identity tokens (IDT).

How to create a SAF IDT provider
To create your own implementation of the SAF IDT provider, follow these steps:

1. Implement the existing org.zowe.apiml.gateway.security.service.saf.SafIdtProvider interface.

The SafIdtProvider interface contains the generate and verify methods. The generate method can be overridden by your SAF

IDT implementation to generate the SAF token on behalf of the specified user. The verify method can be overridden to verify that

the provided SAF token is valid.

2. Register a bean in order to use the implemented SAF IDT provider.

Example:

You created a SAF IDT provider.

How to integrate your extension with API ML
To use your SAF IDT provider as an extension of API ML, see Create an extension for API ML.

How to use the SAF IDT provider
To use the newly created SAF IDT provider, it is necessary to set the parameter apiml.authentication.scheme to safIdt in your

service configuration. Your application then properly recognizes the SAF IDT scheme and fills the X-SAF-Token header with the token

produced by your SAF IDT provider.

How to use an existing SAF IDT provider
You can generate and verify an existing SAF token by using an implementation of the SAF IDT provider that utilizes a ZSS solution.

SafRestAuthenticationService is an example of the SAF IDT provider implementation which uses REST as a method of communication.

https://docs.zowe.org/stable/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://docs.zowe.org/stable/extend/extend-apiml/create-apiml-extension
https://github.com/zowe/api-layer/blob/master/gateway-service/src/main/java/org/zowe/apiml/gateway/security/service/saf/SafRestAuthenticationService.java

To use SafRestAuthenticationService ensure that ZWE_configs_apiml_security_saf_provider is set to rest . (This is the

default value) Set the following environment parameters in zowe.yaml :

ZWE_configs_apiml_security_saf_urls_authenticate=https://${ZWE_haInstance_hostname}:${GATEWAY_PORT}/zss/api/v

1/saf/authenticate

ZWE_configs_apiml_security_saf_urls_verify=https://${ZWE_haInstance_hostname}:${GATEWAY_PORT}/zss/api/v1/saf/

verify

These ZSS endpoints are used by the SafRestAuthenticationService to generate and validate the SAF token.

The following diagram illustrates how communication using the SAF IDT provider works:

Version: v2.17.x LTS

Single Sign On Integration for Extenders

ROLE: INFRASTRUCTURE APPLICATION DEVELOPER

As an infrastructure application developer, review the ways a service can integrate with API Mediation Layer (API ML) and participate in
the Single Sign On for REST APIs on the z/OS platform.

NOTE

This article does not cover the client methods to call API ML and authenticate. For more information about API ML
authentication, see the Single Sign On Overview in the User Guide.

To integrate with API Mediation Layer and leverage Single Sign On, choose from the following three possible methods:

Accepting JWT token (recommended)

Accepting SAF IDT token

Accepting PassTicket

Two additional possibilities can potentially be leveraged to enable Single Sign On but are not properly integrated with the standard
API ML:

Bypassing the authentication for the service

Asking for details about the x509 certificate used for authentication
Note: Asking for details about the x509 certificate does not properly participate in SSO as this method cannot accept all
authentication methods that are supported upstream of API Mediation Layer.

Service configuration is generally provided in the yaml file when using one of the enablers outlined in this section. Key to general
configuration is the authentication object. The scheme property under the authentication object states what type of

authentication the service expects and is shared across all types of authentication.

Example:

authentication.scheme
Specifies a service authentication scheme. The following schemes participate in single sign on are supported by the API Gateway:
zoweJwt , safIdt , httpBasicPassTicket . Two additional schemes that do not properly participate but may be relevant are

bypass , and x509 .

In the event that there is an issue with authentication, API Mediation Layer sets X-Zowe-Auth-Failure error headers which are

passed to downstream services. In addition, any X-Zowe-Auth-Failure error headers coming from an upstream service are also

passed to the downstream services without setting valid headers. The X-Zowe-Auth-Failure error header contains details about the

error and suggests potential actions.

Accepting JWT
Accepting JWT is the recommended method for integrating. No configuration is needed on the user's side.

https://docs.zowe.org/stable/user-guide/api-mediation-sso

When a Zowe JWT is provided, this scheme value specifies that the service accepts the Zowe JWT. No additional processing is
done by the API Gateway.

When a client certificate is provided, the certificate is transformed into a Zowe JWT, and the downstream service performs the
authentication.

If the downstream service needs to consume the JWT token from a custom HTTP request header to participate in the Zowe SSO,
it is possible to provide a header in the Gateway configuration.

The HTTP header is then added to each request towards the downstream service and contains the Zowe JWT to be consumed by
the service. For more information, see Enabling single sign on for extending services via JWT token configuration.

Accepting SAF IDT
Using the scheme value safIdt specifies that the service accepts SAF IDT, and expects that the token produced by the SAF IDT

provider implementation is in the X-SAF-Token header. It is necessary to provide a service APPLID in the authentication.applid
parameter.

<applid>

Specifies the APPLID value that is used by the API service for PassTicket support (e.g. OMVSAPPL).

For more information, see Implement a SAF IDT provider.

Accepting PassTickets

Using the scheme value httpBasicPassTicket specifies that a service accepts PassTickets in the Authorization header of the HTTP

requests using the basic authentication scheme. It is necessary to provide a service APPLID in the authentication.applid parameter
to prevent PassTicket generation errors and to make sure API Mediation Layer can generate PassTickets with the given APPLID.

When a JWT is provided, the service validates the Zowe JWT to use for PassTicket generation.

When a client certificate is provided, the service validates the certificate by mapping the certificate to a mainframe user to use for
PassTicket generation.

If the downstream service needs to consume the user ID and the PassTicket from custom HTTP request headers (i.e. to participate
in the Zowe SSO), it is possible to provide the headers in the Gateway configuration.

The HTTP headers are then added to each request towards the downstream service. The headers contain the user ID and the
PassTicket to be consumed by the service. For more information about the custom HTTP request headers, see Adding a custom
HTTP Auth header to store Zowe JWT token.

<applid>

Specifies the APPLID value that is used by the API service for PassTicket support (e.g. OMVSAPPL).

For more information, see Enabling single sign on for extending services via PassTicket configuration.

Bypassing authentication
Using the scheme value bypass specifies that the token is passed unchanged to the service.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt
https://docs.zowe.org/stable/extend/extend-apiml/implement-new-saf-provider
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-jwt#adding-a-custom-http-auth-header-to-store-zowe-jwt-token
https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets

NOTE

This is the default scheme when no authentication parameters are specified.

Custom way to accept client certificates

While it is possible to integrate with client certificates by setting the scheme with the value x509 , this approach is not recommended.

We recommned that you use any of the previously described methods, whereby API ML will validate the certificate for you and ideally
provide a Zowe JWT.

The x509 scheme value specifies that a service accepts client certificates forwarded in the HTTP header only. The Gateway service

extracts information from a valid client certificate. For validation, the certificate needs to be trusted by API Mediation Layer. Extended
Key Usage must either be empty or needs to contain a Client Authentication (1.3.6.1.5.5.7.3.2) entry. To use this scheme, it is also
necessary to specify which headers to include. Specify these parameters in headers . This scheme does not relate to the certificate

used in the TLS handshake between API ML and the downstream service, but rather the certificate that is forwarded in the header that
authenticates the user.

authentication.headers
When the x509 scheme is specified, use the headers parameter to select which values to send to a service. Use one of the

following values:

X-Certificate-Public

The public part of client certificate base64 encoded

X-Certificate-DistinguishedName

The distinguished name from client certificate

X-Certificate-CommonName

The common name from the client certificate

Accepting z/OSMF LTPA token
Using the scheme value zosmf specifies that a service accepts z/OSMF LTPA (Lightweight Third-Party Authentication). This scheme

should only be used for a z/OSMF service used by the API Gateway Authentication Service, and other z/OSMF services that are using
the same LTPA key.

TIP

For more information about z/OSMF Single Sign-on, see Establishing a single sign-on environment.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zosmfcore.multisysplex.help.doc/izuG00hpManageSecurityCredentials.html

Version: v2.17.x LTS

ZAAS Client
The ZAAS client is a plain Java library that provides authentication through a simple unified interface without the need for detailed
knowledge of the REST API calls presented in this section. The Client function has only a few dependencies including Apache HTTP
Client, Lombok, and their associated dependencies. The client contains methods to perform the following actions:

To obtain a JWT token

To validate and get details from a JWT token

To invalidate the JWT token

To obtain a PassTicket

This article contains the following topics:

Pre-requisites

API Documentation
Obtain a JWT token (login)

Validate and get details from the token (query)

Invalidate a JWT token (logout)

Obtain a PassTicket (passTicket)

Getting Started (Step by Step Instructions)

Pre-requisites
Java SDK version 1.8.

An active instance of the API ML Gateway Service.

A property file which defines the keystore or truststore certificates.

API Documentation
The plain java library provides the ZaasClient interface with following public methods:

This Java code enables your application to add the following functions:

Obtain a JWT token (login)

Validate and get details from the token (query)

Invalidate a JWT token (logout)

Obtain a PassTicket (passTicket)

Obtain a JWT token (login)

To integrate login, call one of the following methods for login in the ZaasClient interface:

If the user provides credentials in the request body, call the following method from your API:

If the user provides credentials as Basic Auth, use the following method:

These methods return the JWT token as a String. This token can then be used to authenticate the user in subsequent APIs.

NOTE

Both methods automatically use the truststore file to add a security layer, which requires configuration in the ConfigProperties
class.

Validate and get details from the token (query)

Use the query method to get the details embedded in the token. These details include creation time of the token, expiration time of

the token, and the user who the token is issued to.

Call the query method from your API in the following format:

In return, you receive the ZaasToken Object in JSON format.

This method automatically uses the truststore file to add a security layer, which you configured in the ConfigProperties class.

The query method is overloaded, so you can provide the HttpServletRequest object that contains the token in the

apimlAuthenticationToken cookie or in an Authorization header. You then receive the ZaasToken Object in JSON format.

Invalidate a JWT token (logout)

The logout method is used to invalidate the JWT token. The token must be provided in the Cookie header and must follow the

format accepted by the API ML.

Call the logout method from your API in the following format:

If the token is successfully invalidated, you receive a 204 HTTP status code in return.

Obtain a PassTicket (passTicket)

The passTicket method has an added layer of protection. To use this method, call the method of the interface, and provide a valid

APPLID of the application and JWT token as input.

The APPLID is the name of the application (up to 8 characters) that is used by security products to differentiate certain security
operations (like PassTickets) between applications.

This method has an added layer of security, whereby you do not have to provide an input to the method since you already initialized
the ConfigProperties class. As such, this method automatically fetches the truststore and keystore files as an input.

In return, this method provides a valid pass ticket as a String to the authorized user.

TIP

For additional information about PassTickets in API ML see Enabling single sign on for extending services via PassTicket
configuration.

Getting Started (Step by Step Instructions)
To use this library, use the procedure described in this section.

Follow these steps:

1. Add zaas-client as a dependency in your project.
You will need to specify the version of the zaas-client you want. zaas-client versioning following the semantic versioning

format of major.minor.patch . For example, 1.22.0 .

Gradle:

i. Create a gradle.properties file in the root of your project if one does not already exist.

ii. In the gradle.properties file, set the URL of the specific Artifactory containing the SpringEnabler artifact.

iii. Add the following Gradle code block to the repositories section of your build.gradle file:

iv. Add the following Gradle dependency:

Maven:

i. Add the following XML tags within the newly created pom.xml file:

Tip: If you want to use snapshot version, replace libs-release with libs-snapshot in the repository url and change snapshots-
>enabled to true.

ii. Then add the following Maven dependency:

2. In your application, create your Java class which will be used to create an instance of ZaasClient , which enables you to use its

method to login, query, and to issue a PassTicket.

3. To use zaas-client , provide a property file for configuration.

Tip: Check org.zowe.apiml.zaasclient.config.ConfigProperites to see which properties are required in the property file.

Configuration Properties:

Note: If httpOnly property is set to true, the ZAAS Client will access the API ML via HTTP protocol without TLS. This meant for
z/OS configuration with AT-TLS that will ensure that TLS and the required client certificates are used.

4. Create an instance of ZaasClient in your class and provide the configProperties object.

Example:

You can now use any method from ZaasClient in your class.

https://docs.zowe.org/stable/user-guide/api-mediation/configuration-extender-passtickets

Example:

For login, use the following code snippet:

The following codeblock is an example of a SampleZaasClientImplementation .

Example:

Version: v2.17.x LTS

Zowe Application Framework overview
You can create application plug-ins to extend the capabilities of the Zowe™ Application Framework. An application plug-in is an
installable set of files that present resources in a web-based user interface, as a set of RESTful services, or in a web-based user
interface and as a set of RESTful services.

Read the following topics to get started with extending the Zowe Application Framework.

How Zowe Application Framework works
Read the following topics to learn how Zowe Application Framework works:

Creating application plug-ins

Plug-ins definition and structure

Dataservices

Zowe Desktop and window management

Configuration Dataservice

URI Broker

Application-to-application communication

Error reporting UI

Logging utility

Tutorials
The following tutorials are available in Github.

Stand up a local version of the Example Zowe Application Server

GITHUB REPO:

zlux-app-server

Internationalization in Angular Templates in Zowe Application Server

GITHUB SAMPLE REPO:

sample-angular-app (Internationalization)

App to app communication

GITHUB SAMPLE REPO :

sample-angular-app (App to app communication)

https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct
https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices
https://docs.zowe.org/stable/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/stable/extend/extend-desktop/mvd-uribroker
https://docs.zowe.org/stable/extend/extend-desktop/mvd-apptoappcommunication
https://docs.zowe.org/stable/extend/extend-desktop/mvd-errorreportingui
https://docs.zowe.org/stable/extend/extend-desktop/mvd-logutility
https://github.com/zowe/zlux-app-server/tree/staging/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-3-app2app-complete/README.md

Using the Widgets Library

GITHUB SAMPLE REPO:

sample-angular-app (Widgets)

Configuring user preferences (configuration dataservice)

GITHUB SAMPLE REPO:

sample-angular-app (configuration dataservice)

Samples
Zowe allows extensions to be written in any UI framework through the use of an Iframe, or Angular and React natively. In this section,
code samples of various use-cases will be provided with install instructions.

TROUBLESHOOTING SUGGESTIONS:

If you are running into issues, try these suggestions:

Restart the Zowe Server/ VM.

Double check that the name in the plugins folder matches your identifier in pluginDefinition.json located in the Zowe

root.

After logging into the Zowe desktop, use the Chrome or Firefox developer tools and navigate to the "network" tab to see
what errors you are getting.

Check each file with cat <filename> to be sure it wasn't corrupted while uploading. If files were corrupted, try uploading

using a different method like SCP or SFTP.

Sample Iframe App

GITHUB SAMPLE REPO:

sample-iframe-app

Sample Angular App

GITHUB SAMPLE REPO:

sample-angular-app

Sample React App

GITHUB SAMPLE REPO:

https://github.com/zowe/sample-angular-app/blob/lab/step-4-widgets-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-5-config-complete/README.md
https://github.com/zowe/sample-iframe-app
https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md

sample-react-app

User Browser Workshop Starter App

GITHUB SAMPLE REPO:

workshop-starter-app

This sample is included as the first part of a tutorial detailing communication between separate Zowe apps.

It should be installed on your system before starting the User Browser Workshop App Tutorial

The App's scenario is that it has been opened to submit a task report to a set of users who can handle the task. In this case, it is a bug
report. We want to find engineers who can fix this bug, but this App does not contain a directory listing for engineers in the company,
so we need to communicate with some App that does provide this information. In this tutorial, you must build an App which is called
by this App in order to list engineers, is able to be filtered by the office that they work from, and is able to submit a list of engineers
which would be able to handle the task.

After installing this app on your system, follow directions in the User Browser Workshop App Tutorial to enable app-to-app
communication.

https://github.com/zowe/sample-react-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/workshop-starter-app
https://github.com/zowe/workshop-user-browser-app/blob/master/README.md
https://github.com/zowe/workshop-user-browser-app/blob/master/README.md

Version: v2.17.x LTS

Plug-ins definition and structure
The Zowe™ Application Server (zlux-app-server) enables extensiblity with application Plugins. Application Plugins are a subcategory
of the unit of extensibility in the server called a plugin.

The files that define a Plugin are located in the pluginsDir directory.

pluginDefinition.json

This file describes an application Plugin to the Zowe Application Server. (A Plugin is the unit of extensibility for the Zowe Application
Server. An application Plugin is a Plugin of the type "Application", the most common and visible type of Plugin.) A definition file
informs the server whether the application Plugin has server-side dataservices, client-side web content, or both. The attributes of this
file are defined within the pluginDefinition json-schema document

Application Plugin filesystem structure
An application Plugin can be loaded from a filesystem that is accessible to the Zowe Application Server, or it can be loaded
dynamically at runtime. When accessed from a filesystem, there are important considerations for the developer and the user as to
where to place the files for proper build, packaging, and operation.

Root files and directories

The root of an application Plugin directory contains the pluginDefinition.json file, and the following other files and directories.

Dev and source content

Aside from demonstration or open source application Plugins, the following directories should not be visible on a deployed server
because the directories are used to build content and are not read by the server.

nodeServer

When an application Plugin has router-type dataservices, they are interpreted by the Zowe Application Server by attaching them as
ExpressJS routers. It is recommended that you write application Plugins using Typescript, because it facilitates well-structured code.
Use of Typescript results in build steps because the pre-transpilation Typescript content is not to be consumed by NodeJS. Therefore,
keep server-side source code in the nodeServer directory. At runtime, the server loads router dataservices from the lib directory.

webClient

When an application Plugin has the webContent attribute in its definition, the server serves static content for a client. To optimize
loading of the application Plugin to the user, use Typescript to write the application Plugin and then package it using Webpack. Use of
Typescript and Webpack result in build steps because the pre-transpilation Typescript and the pre-webpack content are not to be
consumed by the browser. Therefore, separate the source code from the served content by placing source code in the webClient
directory.

Runtime content

https://github.com/zowe/zlux/blob/v2.x/staging/schemas/plugindefinition-schema.json
http://www.typescriptlang.org/
https://webpack.js.org/

At runtime, the following set of directories are used by the server and client.

lib

The lib directory is where router-type dataservices are loaded by use in the Zowe Application Server. If the JS files that are loaded

from the lib directory require NodeJS modules, which are not provided by the server base (the modules zlux-server-framework

requires are added to NODE_PATH at runtime), then you must include these modules in lib/node_modules for local directory lookup

or ensure that they are found on the NODE_PATH environment variable. nodeServer/node_modules is not automatically accessed at
runtime because it is a dev and build directory.

web

The web directory is where the server serves static content for an application Plugin that includes the webContent attribute in its

definition. Typically, this directory contains the output of a webpack build. Anything you place in this directory can be accessed by a
client, so only include content that is intended to be consumed by clients.

Packaging applications as compressed files

Application Plugin files can be served to browsers as compressed files in brotli (.br) or gzip (.gz) format. The file must be below the
application's /web directory, and the browser must support the compression method. If there are multiple compressed files in the

/web directory, the Zowe Application Server and browser perform runtime negotiation to decide which file to use.

Default user configuration

Configuration Dataservice default settings for users can be packaged within a Plugin.
This is done by putting content within the /config/storageDefaults folder, and more on that subject can be found here

App-to-App Communication

App-to-App communication behaviors can be statically defined or dynamically created at runtime. Static definitions help as a form of
documentation and to be able to depend upon them, so it is recommended that these be packaged with a Plugin if you wish other's
to be able to use App-to-App communication on your App.
This page describes the subject in more detail.
In summary, App-to-App Actions and Recognizers can be stored within an App's /config/actions and /config/recognizers
folders, respectively, where the filenames much match the identifiers of Apps.

Documentation

In order for Zowe servers to pick up documentation to present to UIs, they must be in a uniform place.

The /doc folder of any Plugin can contain at its root any READMEs or documents that an administrator or developer may care about
when working with a Plugin for the first time.

The /doc/swagger folder on the other hand, will be used to store .yaml extension Swagger 2.0 files that document the APIs of a
Plugin's dataservices if they exist.

Other folders may exist, such as /doc/ui to document help behavior that may be shown in a UI, but is not implemented at this time.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct/mvd-configdataservice
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice#packaging-defaults
https://docs.zowe.org/stable/extend/extend-desktop/mvd-apptoappcommunication#saved-on-system

Location of Plugin files
The files that define a Plugin are located in the plugins directory.

pluginsDir directory

At startup, the server reads from the plugins directory. The server loads the valid Plugins that are found by the information that is

provided in the JSON files.

Within the pluginsDir directory are a collection of JSON files. Each file has two attributes, which serve to locate a Plugin on disk:

location: This is a directory path that is relative to the server's executable (such as zlux-app-server/bin/start.sh) at which a

pluginDefinition.json file is expected to be found.

identifier: The unique string (commonly styled as a Java resource) of a Plugin, which must match what is in the
pluginDefinition.json file.

Application Dataservices
See Dataservices

Application Configuration Data
The App server has a component for managing an App's configuration & user data, organized by scope such as user, group, and
server instance. For more information, see Configuration Dataservice Documentation.

https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices
https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice

Version: v2.17.x LTS

Building plugin apps
You can build a plugin app by using the following steps as a model. Alternatively, you can follow the Sample Angular App tutorial.

Plugins can have any build process desired as long as it doesn't conflict with the packaging structure. The basic requirement for a
plugin app is that static web content must be in a /web directory, and server and other backend files must be in a /lib directory.

Before you can build a plugin app you must install all prerequisites.

Building web content
1. On the computer where the virtual desktop is installed, use the the following command to specify a value for the

MVD_DESKTOP_DIR environment variable:

Where <path> is the install location of the virtual desktop.

2. Navigate to /<plugin_dir>/webClient . If there is no /webClient directory, proceed to the Building server content section

below.

3. Run the npm install command to install any application dependencies. Check for successful return code.

4. Run one of the following commands to build the application code:

Run the npm run build command to generate static content in the /web directory. (You can ignore warnings as long as the

build is successful.)

Run the npm run start command to compile in real-time. Until you stop the script, it compiles code changes as you make

them.

Building app server content
1. Navigate to the plugin directory. If there is no /nodeServer directory in the plugin directory, proceed to the Building Javascript

content (*.js files) section below.

2. Run the npm install command to install any application dependencies. Check for successful return code.

3. Run one of the following commands to build the application code:

Run the npm run build command to generate static content in the /lib directory.

Run the npm run start command to compile in real-time. Until you stop the script, it compiles code changes as you make

them.

Building zss server content
1. Clone the zss repository and its submodule zowe-common-c.

https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/zlux-app-server#0-install-prerequisites
https://github.com/zowe/zss

2. Make a build script that compiles your C code with -Wc,dll and -Wl,dll, and other flags as seen in this zowe example

3. Include a ZSS .x file to link zss server APIs to your plugin, as seen in this zowe example

4. Ensure that the build output ends up in the /lib folder as a .so file that has the z/OS program control (+p) extended attribute.

Tagging plugin files on z/OS
When Zowe App Framework is installed on z/OS developers should tag their plugin files according to the file content. Tagging files
helps programs on z/OS understand how to interpret those files, most importantly to know whether a file is encoded using EBCDIC
(Extended Binary Coded Decimal Interchange Code). If you are unsure if a plugin you are using is tagged, it can be checked and set
using the chtag command. If you want to set the tags, it can be done in bulk with the help of these programs:

Autotag: This free, open-source application is not part of Zowe. You can download the binary from here for example
https://anaconda.org/izoda/autotag. Source: https://github.com/RocketSoftware/autotag

The Zowe tagging script: This script tags by file extension. It might not work for all cases, but can be altered to suit your needs.
Source: https://github.com/zowe/zowe-install-packaging/blob/master/scripts/tag-files.sh

Building Javascript content (*.js files)
Unlike Typescript, Javascript is an interpreted language and does not need to be built. In most cases, reloading the page should build
new code changes. For Iframes or other JS-based apps, close and open the app.

Installing
Follow the steps described in Installing plugins to add your built plugin to the Zowe desktop.

Packaging
For more information on how to package your Zowe app, developers can see Plugins definition and structure.

https://github.com/zowe/explorer-ip/blob/master/dataService/build/build.sh
https://github.com/zowe/explorer-ip/blob/master/dataService/build/pluginAPI.x
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/chtag.htm
https://anaconda.org/izoda/autotag
https://github.com/RocketSoftware/autotag
https://github.com/zowe/zowe-install-packaging/blob/master/scripts/tag-files.sh
https://docs.zowe.org/stable/extend/extend-desktop/mvd-installplugins
https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct

Version: v2.17.x LTS

Installing Plugins
Plugins can be added or removed from the Zowe App Server, as well as upgraded. There are two ways to do these actions: By REST
API or by filesystem. The instructions below assume you have administrative permissions either to access the correct REST APIs or to
have the necessary permissions to update server directories & files.

NOTE: Plugins must be pre-built, and follow the directory structure, and have all dependencies met to be successfully
installed. Read the appServer or install-app log files within the Zowe instance's <logDirectory> directory, (ex

~/.zowe/log/install-app.log) if a plugin does not show in the Zowe desktop, but has been installed successfully.

By filesystem
The App server uses directories of JSON files, described in the server configuration document. Defaults are located in the folder zlux-
app-server/defaults/plugins , but the server reads the list of plugins instead from the instance directory, at

<workspaceDirectory>/app-server/plugins (for example, ~/.zowe/workspace/app-server/plugins which includes JSON files
describing where to find a plugin. Adding or removing JSONs from this folder will add or remove plugins upon server restart, or you
can use REST APIs and cluster mode to add or remove plugins without restarting).

Adding/Installing

Plugins must be packaged as Components. You can install a plugin by running the component installer, zwe components install .

For more information, try the help command zwe components install --help .

Removing

Plugins are hidden from the Desktop when a component is disabled. If a component is removed, the plugins from the component will
be removed too.

Upgrading

Currently, only one version of a plugin can exist per server. So, to upgrade, you either upgrade the plugin within its pre-existing
directory by rebuilding it (with more up to date code), or you alter the locator JSON of that app to point to the content of the
upgraded version.

Modifying without server restart (Exercise to the reader)

The server's reading of the locator JSONs and initializing of plugins only happens during bootstrapping at startup. However, in cluster
mode the bootstrapping happens once per worker process. Therefore, it is possible to manage plugins without a server restart by
killing & respawning all worker processes without killing the cluster master process. This is what the REST API does, internally. To do
this without the REST API, it may be possible to script knowing the parent process ID, and running a kill command on all child
processes of the App server cluster process.

By REST API

https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct
https://docs.zowe.org/stable/extend/extend-desktop/mvd-server-config#deploy-configuration

The server REST APIs allow plugin management without restarting the server - you can add, remove, and upgrade plugins in real-time.
However, removal or upgrade must be done carefully as it can disrupt users of those plugins.

This swagger file documents the REST API for plugin management

The API only works when RBAC is configured, and an RBAC-compatible security plugin is being used. An example of this is zss-auth,
and use of RBAC is described in this documentation and in the wiki.

NOTE: If you do not see your plugin in the Zowe desktop check the appServer and install-app log files within the Zowe instance's
<logDirectory> directory to troubleshoot the problem. If you are building your own desktop extension then you need to pre-build
your plugin with the correct directory structure, and meet all dependencies.

Plugin management during development

Below are some tasks developers can do to work with plugins. These should not be done in production, as plugins are managed
automatically at the component level.

Installing

When running the app-server without zowe server infrastructure and tooling, it's still possible to install plugins directly. To add or
install a plugin, run the script zlux-app-server/bin/install-app.sh providing the location to a plugin folder. For example:

./install-app.sh /home/john/zowe/sample-angular-app

This will generate a JSON file <workspaceDirectory>/app-server/plugins/org.zowe.zlux.sample.angular.json that contains the
plugin's ID and its location on disk. These JSON files tell the Desktop where to find apps and are the glue between the Zowe instance's
desktop and the plugin code itself held in its directory.

. For example, if we were to install the sample angular-app in the folder /home/john/zowe/sample-angular-app , then the JSON
would be:

Removing

To remove a plugin, locate the server's instance plugin directory <workspaceDirectory>/app-server/plugins (for example,

~/.zowe/workspace/app-server/plugins) and remove the locator JSON that is associated with that plugin. Remove the plugin's

content by deleting it from the file system if applicable.

https://github.com/zowe/zlux-app-server/blob/master/doc/swagger/server-plugins-api.yaml
https://github.com/zowe/zlux-server-framework/tree/v2.x/staging/plugins/sso-auth
https://docs.zowe.org/stable/user-guide/mvd-configuration#enabling-rbac
https://github.com/zowe/zlux/wiki/Auth-Plugin-Configuration
https://docs.zowe.org/stable/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/stable/extend/extend-desktop/mvd-plugindefandstruct
https://github.com/zowe/sample-angular-app

Version: v2.17.x LTS

Embedding plugins
Add these imports to a component where you want to embed another plugin:

Inject Angular2PluginEmbedActions into your component constructor:

In the component template prepare a container where you want to embed the plugin:

In the component class add a reference to the container:

In the component class add a reference to the embedded instance:

Everything is ready to start embedding, you just need to know the pluginId that you want to embed:

How to interact with embedded plugin

If the main component of embedded plugin declares Input and Output properties then you can interact with it. ApplicationManager
provides methods to set Input properties and get Output properties of the embedded plugin. Suppose, that the embedded plugin
declares Input and Output properties like this:

Obtain a reference to ApplicationManager in your component constructor:

Note: We are unable to inject ApplicationManager with @Inject() until an AoT-compiler issue with namespaces is resolved:

angular/angular#15613

Now you can set sampleInput property, obtain sampleOutput property and subscribe to it:

How to destroy embedded plugin
There is no special API to destroy embedded plugin. If you want to destroy the embedded plugin just clear the container for the
embedded plugin and set embeddedInstance to null:

How to style a container for the embedded plugin
It is hard to give a universal recipe for a container style. At least, the container needs position: "relative" because the embedded
plugin may have absolutely positioned elements. Here is sample styles you can start with if your component utilizes flexbox layout:

Applications that use embedding
Workflow app demonstrates advanced usage.

https://github.com/angular/angular/issues/15613
https://github.com/zowe/zlux-workflow/blob/master/webClient/src/app/workflow-step-wizard/workflow-step-wizard.component.ts

Version: v2.17.x LTS

Dataservices
Dataservices are dynamic backend components of Zowe™ plug-in applications. You can optionally add them to your applications to
make the application do more than receive static content from the proxy server. Each dataservice defines a URL space that the server
can use to run extensible code from the application. Dataservices are mainly intended to create REST APIs and WebSocket channels.

Defining dataservices
You define dataservices in the application's pluginDefinition.json file. Each application requires a definition file to specify how the

server registers and uses the application's backend. You can see an example of a pluginDefinition.json file in the top directory of

the sample-angular-app.

In the definition file is a top level attribute called dataServices , for example:

To define your dataservice, create a set of keys and values for your dataservice in the dataservices array.

Schema
The documentation on dataservice types and parameters for each are specified within the pluginDefinition.json json-schema
document

Defining Java dataservices
In addition to other types of dataservice, you can use Java (also called java-war) dataservices in your applications. Java dataservices are
powered by Java Servlets.

To use a Java dataservice you must meet the prerequisites, define the dataservice in your plug-in definition, and define the Java
Application Server library to the Zowe Application Server.

Prerequisites

Install a Java Application Server library. In this release, Tomcat is the only supported library.

Make sure your plug-in's compiled Java program is in the application's /lib directory, in either a .war archive file or a directory

extracted from a .war archive file. Extracting your file is recommended for faster start-up time.

Defining Java dataservices

To define the dataservice in the pluginDefinition.json file, specify the type as java-war , for example:

To access the service at runtime, the plug-in can use the Zowe dataservice URL standard:
/ZLUX/plugins/[PLUGINID]/services/[SERVICENAME]/[VERSIONNUMBER]

Using the example above, a request to get users might be: /ZLUX/plugins/[PLUGINID]/services/javaservlet/1.0.0/users

https://github.com/zowe/sample-angular-app
https://github.com/zowe/zlux/blob/v2.x/staging/schemas/plugindefinition-schema.json

Note: If you extracted your servlet contents from a .war file to a directory, the directory must have the same name as the file would

have had. Using the example above, javaservlet.war must be extracted to a directory named \javaservlet .

Defining Java Application Server libraries

In the zlux-app-server/zluxserver.json file, use the example below to specify Java Application Server library parameters:

Specify the following parameters in the languages.java object:

runtimes (object) - The name and location of a Java runtime that can be used by one or more services. Used to load a Tomcat

instance.
name (object) - The name of the runtime.

home (string) - The path to the runtime root. Must include /bin and /lib directories.

ports (array <number>)(Optional) - An array of port numbers that can be used by instances of Java Application Servers or

microservices. Must contain as many ports as distinct servers that will be spawned, which is defined by other configuration values
within languages.java . Either ports or portRange is required, but portRange has a higher priority.

portRange (array <number>)(Optional) - An array of length 2, which contains a start number and end number to define a range of

ports to be used by instances of application servers or microservices. You will need as many ports as distinct servers that will be
spawned, which is defined by other configuration values within languages.java . Either ports or portRange is required, but

portRange has a higher priority.

war (object) - Defines how the Zowe Application Server should handle java-war dataservices.
defaultGrouping (string)(Optional) - Defines how services should be grouped into instances of Java Application Servers.
Valid values: appserver or microservice . Default: appserver . appserver means 1 server instance for all services.

microservice means one server instance per service.

pluginGrouping (array <object>)(Optional) - Defines groups of plug-ins to have their java-war services put within a single

Java Application Server instance.
plugins (Array <string>) - Lists the plugins by identifier which should be put into this group. Plug-ins with no java-

war services are skipped. Being in a group excludes a plugin from being handled by defaultGrouping .

runtime (string)(Optional) - States the runtime to be used by the Tomcat server instance, as defined in
languages.java.runtimes .

javaAppServer (object) - Java Application Server properties.
type (string) - Type of server. In this release, tomcat is the only valid value.

path (string) - Path of the server root, relative to zlux-app-server/lib . Must include /bin and /lib directories.

config (string) - Path of the server configuration file, relative to zlux-app-server/lib .

https (object) - HTTPS parameters.
key (string) - Path of a private key, relative to zlux-app-server/lib .

certificate (string) - Path of an HTTPS certificate, relative to zlux-app-server/lib .

Java dataservice logging

The Zowe Application Server creates the Java Application Server instances required for the java-war dataservices, so it logs the

stdout and stderr streams for those processes in its log file. Java Application Server logging is not managed by Zowe at this time.

Java dataservice limitations

Using Java dataservices with a Zowe Application Server installed on a Windows computer, the source and Java dataservice code must
be located on the same storage volume.

To create multiple instances of Tomcat on non-Windows computers, the Zowe Application Server establishes symbolic links to the
service logic. On Windows computers, symbolic links require administrative privilege, so the server establishes junctions instead.
Junctions only work when the source and destination reside on the same volume.

Using dataservices with RBAC
If your administrator configures the Zowe Application Framework to use role-based access control (RBAC), then when you create a
dataservice you must consider the length of its paths.

To control access to dataservices, administrators can enable RBAC, then use a z/OS security product such as RACF to map roles and
authorities to a System Authorization Facility (SAF) profile. For information on RBAC, see Applying role-based access control to
dataservices.

SAF profiles have the following format:

<product>.<instance id>.SVC.<pluginid_with_underscores>.<service>.<HTTP method>.<dataservice path with forward

slashes '/' replaced by periods '.'>

For example, to access this dataservice endpoint:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Users must have READ access to the following profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

Profiles cannot contain more than 246 characters. If the path section of an endpoint URL makes the profile name exceed limit, the
path is trimmed to only include elements that do not exceed the limit. For example, imagine that each path section in this endpoint
URL contains 64 characters:

/ZLUX/plugins/org.zowe.zossystem.subsystems/services/data/_current/aa..a/bb..b/cc..c/dd..d

So aa..a is 64 "a" characters, bb..b is 64 "b" characters, and so on. The URL could then map to the following example profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_ZOSSYSTEM_SUBSYSTEMS.DATA.GET.AA..A.BB..B

The profile ends at the BB..B section because adding CC..C would put it over 246 characters. So in this example, all dataservice

endpoints with paths that start with AA..A.BB..B are controlled by this one profile.

To avoid this issue, we recommend that you maintain relatively short endpoint URL paths.

Dataservice APIs
Dataservice APIs can be categorized as Router-based or ZSS-based, and either WebSocket or not.

https://docs.zowe.org/stable/user-guide/mvd-configuration#applying-role-based-access-control-to-dataservices

Router-based dataservices

Each Router dataservice can safely import Express, express-ws, and bluebird without requiring the modules to be present, because
these modules exist in the proxy server's directory and the NODE_MODULES environment variable can include this directory.

HTTP/REST Router dataservices

Router-based dataservices must return a (bluebird) Promise that resolves to an ExpressJS router upon success. For more information,
see the ExpressJS guide on use of Router middleware: Using Router Middleware.

Because of the nature of Router middleware, the dataservice need only specify URLs that stem from a root '/' path, as the paths
specified in the router are later prepended with the unique URL space of the dataservice.

The Promise for the Router can be within a Factory export function, as mentioned in the pluginDefinition specification for
routerFactory above, or by the module constructor.

An example is available in the Sample Angular App.

WebSocket Router dataservices

ExpressJS routers are fairly flexible, so the contract to create the Router for WebSockets is not significantly different.

Here, the express-ws package is used, which adds WebSockets through the ws package to ExpressJS. The two changes between a
WebSocket-based router and a normal router are that the method is 'ws', as in router.ws(<url>,<callback>) , and the callback

provides the WebSocket on which you must define event listeners.

See the ws and express-ws topics on www.npmjs.com for more information about how they work, as the API for WebSocket router
dataservices is primarily provided in these packages.

An example is available in zlux-server-framework/plugins/terminal-proxy/lib/terminalProxy.js

Router dataservice context

Every router-based dataservice is provided with a Context object upon creation that provides definitions of its surroundings and the

functions that are helpful. The following items are present in the Context object:

serviceDefinition

The dataservice definition, originally from the pluginDefinition.json file within a plug-in.

serviceConfiguration

An object that contains the contents of configuration files, if present.

logger

An instance of a Zowe Logger, which has its component name as the unique name of the dataservice within a plug-in.

makeSublogger

A function to create a Zowe Logger with a new name, which is appended to the unique name of the dataservice.

http://expressjs.com/en/guide/using-middleware.html#middleware.router
https://github.com/zowe/sample-angular-app/blob/master/nodeServer/ts/helloWorld.ts
https://www.npmjs.com/

addBodyParseMiddleware

A function that provides common body parsers for HTTP bodies, such as JSON and plaintext.

plugin

An object that contains more context from the plug-in scope, including:

pluginDef: The contents of the pluginDefinition.json file that contains this dataservice.

server: An object that contains information about the server's configuration such as:

app: Information about the product, which includes the productCode (for example: ZLUX).

user: Configuration information of the server, such as the port on which it is listening.

Router storage API

ZSS based dataservices

ZSS dataservices much like zlux router services can be used to implement REST or websocket APIs. Each service is associated with a
URL which when requested will call a function to handle the request or websocket message event.

HTTP/REST ZSS dataservices

ZSS REST dataservices are registered into ZSS with a service installer function, where initializerName is the function name located

in the dll libraryName . The methods list what HTTP methods are expected of this dataservice. Example:

The service installer is given DataService , which includes context such as the above definition plus a loggingIdentifier . The

service is also given HttpServer , a reference to ZSS and its configuration. To register the dataservice, you must make an

HttpService object like

Then you must assign properties to the dataservice, such as

authType: What type of authentication and authorization checks should be done before calling this service. values such as
SERVICE_AUTH_NONE when the service does not need securty or SERVICE_AUTH_NATIVE_WITH_SESSION_TOKEN when the service

should be protected by ZSS's cookie are valid.

serviceFunction: The function within this dataservice that will be called whenever a request is received.

runInSubtask: (TRUE/FALSE) Whether to run the service function in a subtask or not whenever a request is received.

doImpersonation: (TRUE/FALSE) When true, the service function will be ran as the authenticated user, rather than the server user.
This is recommended whenever possible to keep permissions management in line with the users own permissions.

Example of service installer:

When a request is received, the service function is called with the HttpService and HttpResponse objects. HttpService is used to

store and retrieve cached data and access the storage API. HttpRequest is a pointer within the response object, and utilities exist to
help with parsing it.

Example of request handling:

ZSS dataservice context and structs

Headers to important dataservice structs include

HttpResponse

HttpRequest

HttpService

HttpServer

Json handling

DataService context

Utilities

Data structures

ZSS storage API

The DataService struct contains two Storage structs, localStorage and remoteStorage . They implement the same API for getting,

setting, and removing data, but manage the data in different locations. localStorage stores data within the ZSS server, for high

speed access. remoteStorage stores data in the Caching Service, for high availability state storage.

Usage example: Sample angular app storage test api: https://github.com/zowe/sample-angular-app/blob/v1.23.0-
RC1/zssServer/src/storage.c

Documenting dataservices
It is recommended that you document your RESTful application dataservices in OpenAPI (Swagger) specification documents. The Zowe
Application Server hosts Swagger files for users to view at runtime.

To document a dataservice, take the following steps:

1. Create a .yaml or .json file that describes the dataservice in valid Swagger 2.0 format. Zowe validates the file at runtime.

2. Name the file with the same name as the dataservice. Optionally, you can include the dataservice version number in the format:
<name>_<number> . For example, a Swagger file for a dataservice named user must be named either users.yaml or

users_1.1.0.yaml .

3. Place the Swagger file in the /doc/swagger directory below your application plug-in directory, for example:

/sample-angular-app/doc/swagger/hello.yaml

At runtime, the Zowe Application Server does the following:

Dynamically substitutes known values in the files, such as the hostname and whether the endpoint is accessible using HTTP or
HTTPS.

Builds documentation for each dataservice and for each application plug-in, in the following locations:

Dataservice documentation: /ZLUX/plugins/<app_name>/catalogs/swagger/servicename

Application plug-in documentation: /ZLUX/plugins/<app_name>/catalogs/swagger

https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L117
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/http.h#L124
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L173
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L223
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/json.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/dataservice.h#L57
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/utils.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/collections.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/dataservice.h#L57
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/storage.h#L22
https://github.com/zowe/sample-angular-app/blob/v1.23.0-RC1/zssServer/src/storage.c
https://swagger.io/specification/v2/

In application plug-in documentation, displays only stubs for undocumented dataservices, stating that the dataservice exists but
showing no details. Undocumented dataservices include non-REST dataservices such as WebSocket services.

Version: v2.17.x LTS

Authentication API
This topic describes the web service API for user authentication.

The authentication mechanism of the ZLUX server allows for an administrator to gate access to services by a given auth handler, while
on the user side the authentication structure allows for a user to login to one or more endpoints at once provided they share the same
credentials given.

Handlers
The auth handlers are a type of zlux server plugin (type=nodeAuthentication) which are categorized by which kind of authentication
they can provide. Whether it's to z/OS via type=saf or theoretical authentication such as Facebook or Amazon cloud, the handler API
is abstract to handle different types of security needs.

Handler installation

Auth handler plugins are installed like any other plugin.

Handler configuration

The server top-level configuration attribute dataserviceAuthentication states properties about which plugins to use and how to
use them.

For example,

The dataserviceAuthentication attribute has the following properties:

defaultAuthentication: Which authentication category to choose by default, in case multiple are installed.

rbac: Whether or not the server should do authority checks in addition to authentication checks when requesting a dataservice.

Handler context

These plugins are given an object, context , in the constructor. Context has attributes to help the plugin know about the server

configuration, provide a named logger, and more. The parameters include:

pluginDefinition: The object describing the plugin's definition file

pluginConf: An object that gives the plugin its configuration from the Config Service internal storage

serverConfiguration: The object describing the server's current configuration

context: An object holding contextual objects
logger: A logger with the name of the plugin's ID

Handler capabilities

A handler's constructor should return a capabilities object that states which capabilities the plugin has. If a capabilities object is not
returned, it is assumed that only the authenticate and authorize functions are implemented, for backward compatibility support. The

https://docs.zowe.org/stable/extend/extend-desktop/mvd-configdataservice#internal--bootstrapping-use

capabilities object should include:

canGetCategories: (true/false) If the getCategories() function exists, which returns a string array of categories of auth the plugin
can support given the server context. This is useful if the plugin can support multiple categories conditionally.

canLogout: (true/false) If the logout(request, sessionState) function exists. Used to clear state and cookies when a session should
be ended.

canGetStatus: (true/false) If the getStatus(sessionState) function exists

canRefresh: (true/false) If the refreshStatus(request, sessionState) function exists, which is used to renew a session that has an
expiration limit.

canAuthenticate: (true/false) If the authenticate(request, sessionState):Promise function exists (Required, assumed)

canAuthorized: (true/false) If the *authorized(request, sessionState, options) function exists (Required, assumed)

haCompatible: (true/false) Used to be sure that a plugin has no state that would be lost in a high availibility environment.

canGenerateHaSessionId: (true/false) If generateHaSessionId(request) exists, which is used to set the value used for an app-server
session for a user. When not in a high availability environment, the app-server generates its own session ID.

canResetPassword: (true/false) If passwordRest(request, sessionState) exists

proxyAuthorizations: (true/false) If the addProxyAuthorizations(req1, req2Options, sessionState) function exists

Examples

sso-auth, which conditionally implements the saf, zss, and apiml security types: https://github.com/zowe/zlux-server-
framework/tree/v2.x/master/plugins/sso-auth

High availability (HA)

Some auth handlers are not capable of working in a high availability environment. In these environments, there can be multiple zlux
servers and there may not be a safe and secure way to share session state data. This extends to the zlux server cookie as well, which is
not sharable between multiple servers by default. Therefore, high availability has the following two requirements from an auth handler
plugin:

1. The plugin must state that it is HA capable by setting the capability flag haCompatible=true , usually indicating that the plugin

has no state data.

2. A plugin must have capability canGenerateHaSessionId=true so that the zlux server cookie is sharable between multiple zlux

servers.

REST API

Check status

Returns the current authentication status of the user to the caller.

Response example:

Every key in the response object is a registered auth type. The value object is guaranteed to have a Boolean field named
"authenticated" which indicates that at least one plugin in the category was able to authenticate the user.

Each item also has a field called "plugins", where every property value is a plugin-specific object.

https://github.com/zowe/zlux-server-framework/tree/v2.x/master/plugins/sso-auth

Authenticate
Authenticates the user against authentication back-ends.

Request body example:

The categories parameter is optional. If omitted, all auth plugins are invoked with the username and password Response example:

First-level keys are authentication categories or types. "success" means that all of the types requested have been successful. For
example typeA successful AND typeB successful AND ...

Second-level keys are auth plugin IDs. "success" on this level means that there's at least one successful result in that auth type. For
example, pluginA successful OR pluginB successful OR ...

User not authenticated or not authorized

The response received by the browser when calling any service, when the user is either not authenticated or not allowed to access the
service.

Not authenticated

The client is supposed to address this by showing the user a login form which will later invoke the login service for the plugin
mentioned and repeat the request.

Not authorized

There's no general way for the client to address this, except than show the user an error message.

Refresh status

If you have an active session, some auth plugins may be able to renew the session. Not all plugins support this action, so while the call
may return successful, if there is an associated expiration time you may notice that the expiration time has not changed or been reset.

Response example:

Logout

When you have an active session, you can terminate it early with a logout. This should remove cookies and tell the server to clear any
cache it had about a session.

Password changes

Some auth plugins will allow you to change your password. Depending on the backing security (such as SAF), you may need to
provide your current password to change it.

Version: v2.17.x LTS

Internationalizing applications
You can internationalize Zowe™ application plug-ins using Angular and React frameworks. Internationalized applications display in
translated languages and include structures for ongoing translation updates.

The steps below use the Zowe Sample Angular Application and Zowe Sample React Application as examples. Your applications might
have slightly different requirements, for example the React Sample Application requires the react-i18next library, but your application
might require a different React library.

For detailed information on Angular or React, see their documentation. For detailed information on specific internationalization
libraries, see their documentation. You can also reference the Sample Angular Application internationalization tutorial, and watch a
video on how to internationalize your Angular application.

After you internationalize your application, you can view it by following steps in Changing the desktop language.

Internationalizing Angular applications
Zowe applications that use the Angular framework depend on .xlf formatted files to store static translated content and .json files

to store dynamic translated content. These files must be in the application's web/assets/i18n folder at runtime. Each translated

language will have its own file.

To internationalize an application, you must install Angular-compatible internationalization libraries. Be aware that libraries can be
better suited to either static or dynamic HTML elements. The examples in this task use the ngx-i18nsupport library for static content
and angular-l10n for dynamic content.

To internationalize Zowe Angular applications, take the following steps:

1. To install internationalization libraries, use the npm command, for example:

Note --save-dev commits the library to the application's required libraries list for future use.

2. To support the CLI tools and to control output, create a webClient/tsconfig.i18n.json typescript file and add the following

content:

For example, see this file in the Sample Angular Application.

3. In the static elements in your HTML files, tag translatable content with the i18n attribute within an Angular template, for example:

The attribute should include a message ID, for example the @@welcome above.

4. To configure static translation builds, take the following steps:

a. In the webClient/package.json script, add the following line:

b. In the in webClient directory, create a xliffmerge.json file, add the following content, and specify the codes for each
language you will translate in the languages parameter:

https://github.com/zowe/sample-angular-app/
https://github.com/zowe/sample-react-app
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://www.youtube.com/watch?v=kkCC2u1NQy4&feature=youtu.be
https://docs.zowe.org/stable/user-guide/mvd-using#changing-the-desktop-language
https://github.com/zowe/sample-angular-app/blob/master/webClient/tsconfig.i18n.json

When you run the i18n script, it reads this file and generates a messages.[lang].xlf file in the src/assets/i18n directory
for each language specified in the languages parameter. Each file contains the untranslated text from the i18n-tagged HTML

elements.

5. Run the following command to run the i18n script and extract i18n tagged HTML elements to .xlf files:

Note If you change static translated content, you must run the npm run build command to build the application, and then re-

run the npm run i18n command to extract the tagged content again.

6. In each .xlf file, replace target element strings with translated versions of the source element strings. For example:

7. Run the following command to rebuild the application:

When you switch the Zowe Desktop to one of the application's translated languages, the application displays the translated
strings.

8. For dynamic translated content, follow these steps:

a. Import and utilize angular-l10n objects within an Angular component, for example:

b. In the related Angular template, you can implement myDynamicMessage as an ordinary substitutable string, for example:

9. Create logic to copy the translation files to the web/assets directory during the webpack process, for example in the sample

application, the following JavaScript in the copy-webpack-plugin file copies the files:

Note: Do not edit files in the web/assets/i18n directory. They are overwritten by each build.

Internationalizing React applications
To internationalize Zowe applications using the React framework, take the following steps:

Note: These examples use the recommended react-i18next library, which does not differentiate between dynamic and static content,
and unlike the Angular steps above does not require a separate build process.

1. To install the React library, run the following command:

npm install --save-dev react-i18next

2. In the directory that contains your index.js file, create an i18n.js file and add the translated content, for example:

3. Import the i18n file from the previous step into index.js file so that you can use it elsewhere, for example:

4. To internationalize a component, include the useTranslation hook and reference it to substitute translation keys with their

translated values. For example:

Internationalizing application desktop titles
To display the translated application name and description in the Desktop, take the following steps:

https://docs.zowe.org/stable/user-guide/mvd-using#changing-the-desktop-language

1. For each language, create a pluginDefinition.i18n.<lang_code>.json file. For example, for German create a

pluginDefinition.i18n.de.json file.

2. Place the .json files in the web/assets/i18n directory.

3. Translate the pluginShortNameKey and descriptionKey values in the application's pluginDefinition.json file. For example,

for the file below you would translate the values "sampleangular" and "sampleangulardescription" :

4. Add the translated values to the translation file. For example, the German translation file example,
pluginDefinition.i18n.de.json , would look like this:

5. Create logic to copy the translation files to the web/assets directory during the webpack process. For example, in the Sample

Angular Application the following JavaScript in the webClient/webpack.config.js file copies files to the web/assets directory:

https://github.com/zowe/sample-angular-app/blob/v2.x/master/webClient/webpack.config.js

Version: v2.17.x LTS

Zowe Desktop and window management
The Zowe™ Desktop is a web component of Zowe, which is an implementation of MVDWindowManagement , the interface that is used to
create a window manager.

The code for this software is in the zlux-app-manager repository.

The interface for building an alternative window manager is in the zlux-platform repository.

Window Management acts upon Windows, which are visualizations of an instance of an application plug-in. Application plug-ins are
plug-ins of the type "application", and therefore the Zowe Desktop operates around a collection of plug-ins.

Note: Other objects and frameworks that can be utilized by application plug-ins, but not related to window management, such as
application-to-application communication, Logging, URI lookup, and Auth are not described here.

Loading and presenting application plug-ins
Upon loading the Zowe Desktop, a GET call is made to /plugins?type=application . The GET call returns a JSON list of all

application plug-ins that are on the server, which can be accessed by the user. Application plug-ins can be composed of dataservices,
web content, or both. Application plug-ins that have web content are presented in the Zowe Desktop UI.

The Zowe Desktop has a taskbar at the bottom of the page, where it displays each application plug-in as an icon with a description.
The icon that is used, and the description that is presented are based on the application plug-in's PluginDefinition 's webContent
attributes.

Plug-in management
Application plug-ins can gain insight into the environment in which they were spawned through the Plugin Manager. Use the Plugin
Manager to determine whether a plug-in is present before you act upon the existence of that plug-in. When the Zowe Desktop is
running, you can access the Plugin Manager through ZoweZLUX.PluginManager

The following are the functions you can use on the Plugin Manager:

getPlugin(pluginID: string)
Accepts a string of a unique plug-in ID, and returns the Plugin Definition Object (DesktopPluginDefinition) that is associated
with it, if found.

Application management
Application plug-ins within a Window Manager are created and acted upon in part by an Application Manager. The Application
Manager can facilitate communication between application plug-ins, but formal application-to-application communication should be
performed by calls to the Dispatcher. The Application Manager is not normally directly accessible by application plug-ins, instead used
by the Window Manager.

The following are functions of an Application Manager:

Function Description

spawnApplication(plugin: DesktopPluginDefinition,

launchMetadata: any): Promise<MVDHosting.InstanceId>;

Opens an application instance into the Window
Manager, with or without context on what actions it
should perform after creation.

killApplication(plugin:ZLUX.Plugin,

appId:MVDHosting.InstanceId): void;

Removes an application instance from the Window
Manager.

showApplicationWindow(plugin: DesktopPluginDefinitionImpl):

void;

Makes an open application instance visible within the
Window Manager.

isApplicationRunning(plugin: DesktopPluginDefinitionImpl):

boolean;

Determines if any instances of the application are open
in the Window Manager.

Windows and Viewports

When a user clicks an application plug-in's icon on the taskbar, an instance of the application plug-in is started and presented within a
Viewport, which is encapsulated in a Window within the Zowe Desktop. Every instance of an application plug-in's web content within
Zowe is given context and can listen on events about the Viewport and Window it exists within, regardless of whether the Window
Manager implementation utilizes these constructs visually. It is possible to create a Window Manager that only displays one
application plug-in at a time, or to have a drawer-and-panel UI rather than a true windowed UI.

When the Window is created, the application plug-in's web content is encapsulated dependent upon its framework type. The
following are valid framework types:

"angular2": The web content is written in Angular, and packaged with Webpack. Application plug-in framework objects are given
through @injectables and imports.

"iframe": The web content can be written using any framework, but is included through an iframe tag. Application plug-ins within
an iframe can access framework objects through parent.RocketMVD and callbacks.

"react": The web content is written in React, Typescript, and packaged with Webpack. App framework objects are provided via the
ReactMVDResources object

In the case of the Zowe Desktop, this framework-specific wrapping is handled by the Plugin Manager.

Viewport Manager
Viewports encapsulate an instance of an application plug-in's web content, but otherwise do not add to the UI (they do not present
Chrome as a Window does). Each instance of an application plug-in is associated with a viewport, and operations to act upon a
particular application plug-in instance should be done by specifying a viewport for an application plug-in, to differentiate which
instance is the target of an action. Actions performed against viewports should be performed through the Viewport Manager.

The following are functions of the Viewport Manager:

https://github.com/zowe/zlux-app-manager/blob/v2.x/master/virtual-desktop/src/pluginlib/react-inject-resources.ts

Function Description

createViewport(providers: ResolvedReflectiveProvider[]):

MVDHosting.ViewportId;

Creates a viewport into which an application plug-
in's webcontent can be embedded.

registerViewport(viewportId: MVDHosting.ViewportId, instanceId:

MVDHosting.InstanceId): void;

Registers a previously created viewport to an
application plug-in instance.

destroyViewport(viewportId: MVDHosting.ViewportId): void; Removes a viewport from the Window Manager.

`getApplicationInstanceId(viewportId: MVDHosting.ViewportId):
MVDHosting.InstanceId

null;`

Injection Manager
When you create Angular application plug-ins, they can use injectables to be informed of when an action occurs. iframe application
plug-ins indirectly benefit from some of these hooks due to the wrapper acting upon them, but Angular application plug-ins have
direct access.

The following topics describe injectables that application plug-ins can use.

Plug-in definition

Provides the plug-in definition that is associated with this application plug-in. This injectable can be used to gain context about the
application plug-in. It can also be used by the application plug-in with other application plug-in framework objects to perform a
contextual action.

Logger

Provides a logger that is named after the application plug-in's plugin definition ID.

Launch Metadata

If present, this variable requests the application plug-in instance to initialize with some context, rather than the default view.

Viewport Events

Presents hooks that can be subscribed to for event listening. Events include:

resized: Subject<{width: number, height: number}>

Fires when the viewport's size has changed.

Window Events

Presents hooks that can be subscribed to for event listening. The events include:

Event Description

maximized: Subject<void> Fires when the Window is maximized.

minimized: Subject<void> Fires when the Window is minimized.

restored: Subject<void> Fires when the Window is restored from a minimized state.

moved: Subject<{top: number, left: number}> Fires when the Window is moved.

resized: Subject<{width: number, height: number}> Fires when the Window is resized.

titleChanged: Subject<string> Fires when the Window's title changes.

Window Actions

An application plug-in can request actions to be performed on the Window through the following:

Item Description

close(): void Closes the Window of the application plug-in instance.

maximize(): void Maximizes the Window of the application plug-in instance.

minimize(): void Minimizes the Window of the application plug-in instance.

restore(): void
Restores the Window of the application plug-in instance
from a minimized state.

setTitle(title: string):void Sets the title of the Window.

setPosition(pos: {top: number, left: number, width:

number, height: number}): void

Sets the position of the Window on the page and the size
of the window.

spawnContextMenu(xPos: number, yPos: number, items:

ContextMenuItem[]): void

Opens a context menu on the application plug-in instance,
which uses the Context Menu framework.

registerCloseHandler(handler: () => Promise<void>): void
Registers a handler, which is called when the Window and
application plug-in instance are closed.

Framework API examples
The following are examples of how you would access the Window Actions API to begin an App in maximized mode upon start-up.

Angular

1. Import Angular2InjectionTokens from 'pluginlib/inject-resources'

2. Within the constructor of your App, in the arguments, do @Optional() @Inject(Angular2InjectionTokens.WINDOW_ACTIONS)
private windowActions: Angular2PluginWindowActions

3. Then inside the constructor, check that window actions exist and then execute the action

4. Depending on your App layout, certain UI elements may not have loaded so to wait for them to load, one may want to use
something like Angular's NgOnInit directive.

React

1. Similar to how we do things in Angular, except the Window Actions (& other Zowe resources) are located in the resources
object. So if we were using a React.Component, we could have a constructor with constructor(props){ super(props); ... }

2. Then accessing Window Actions would be as simple as this.props.resources.windowActions

IFrames

1. Iframes are similar to Angular & React, but require a different import step. Instead to use Window Actions (& other Zowe
resources), we have to import the Iframe adapter. The Iframe adapter is located in zlux-app-manager/bootstrap/web/iframe-

adapter.js so something like a relative path in my JS code will suffice,

<script type="text/javascript" src="../../../org.zowe.zlux.bootstrap/web/iframe-adapter.js"></script>

2. Then to use Window Actions would be as simple as await windowActions.minimize();

NOTE: The Iframe adapter is not yet feature-complete. If you are attempting to use an event supported by Angular or React, but not
yet supported in Iframes, try to use the window.parent.ZoweZLUX object instead.

Version: v2.17.x LTS

Configuration Dataservice
The Configuration Dataservice is an essential component of the Zowe™ Application Framework, which acts as a JSON resource storage
service, and is accessible externally by REST API and internally to the server by dataservices.

The Configuration Dataservice allows for saving preferences of applications, management of defaults and privileges within a Zowe
ecosystem, and bootstrapping configuration of the server's dataservices.

The fundamental element of extensibility of the Zowe Application Framework is a plug-in. The Configuration Dataservice works with
data for plug-ins. Every resource that is stored in the Configuration Service is stored for a particular plug-in, and valid resources to be
accessed are determined by the definition of each plug-in in how it uses the Configuration Dataservice.

The behavior of the Configuration Dataservice is dependent upon the Resource structure for a plug-in. Each plug-in lists the valid
resources, and the administrators can set permissions for the users who can view or modify these resources.

1. Resource Scope

2. REST API
i. REST Query Parameters

ii. REST HTTP Methods
a. GET

b. PUT

c. DELETE

iii. Administrative Access & Group

3. App API

4. Internal and Bootstrapping

5. Packaging Defaults

6. Plugin Definition

7. Aggregation Policies

8. Examples

Resource Scope

Data is stored within the Configuration Dataservice according to the selected Scope. The intent of Scope within the Dataservice is to
facilitate company-wide administration and privilege management of Zowe data.

When a user requests a resource, the resource that is retrieved is an override or an aggregation of the broader scopes that encompass
the Scope from which they are viewing the data.

When a user stores a resource, the resource is stored within a Scope but only if the user has access privilege to update within that
Scope.

Scope is one of the following:

Plugin

Configuration defaults that come with a plugin. Cannot be modified.

Product

Configuration defaults that come with the product. Cannot be modified.

Site

Data that can be used between multiple instances of the Zowe Application Server.

Instance

Data within an individual Zowe Application Server.

Group

Data that is shared between multiple users in a group.(Pending)

User

Data for an individual user.(Pending)

Note: While Authorization tuning can allow for settings such as GET from Instance to work without login, User and Group scope
queries will be rejected if not logged in due to the requirement to pull resources from a specific user. Because of this, User and Group
scopes will not be functional until the Security Framework is merged into the mainline.

Where Plugin is the broadest scope and User is the narrowest scope.

When you specify Scope User, the service manages configuration for your particular username, using the authentication of the session.
This way, the User scope is always mapped to your current username.

Consider a case where a user wants to access preferences for their text editor. One way they could do this is to use the REST API to
retrieve the settings resource from the Instance scope.

The Instance scope might contain editor defaults set by the administrator. But, if there are no defaults in Instance, then the data in
Group and User would be checked.

Therefore, the data the user receives would be no broader than what is stored in the Instance scope, but might have only been the
settings they saved within their own User scope (if the broader scopes do not have data for the resource).

Later, the user might want to save changes, and they try to save them in the Instance scope. Most likely, this action will be rejected
because of the preferences set by the administrator to disallow changes to the Instance scope by ordinary users.

REST API
When you reach the Configuration Service through a REST API, HTTP methods are used to perform the desired operation.

The HTTP URL scheme for the configuration dataservice is:

<Server>/plugins/com.rs.configjs/services/data/<plugin ID>/<Scope>/<resource>/<optional subresources>?<query>

Where the resources are one or more levels deep, using as many layers of subresources as needed.

Think of a resource as a collection of elements, or a directory. To access a single element, you must use the query parameter "name="

REST query parameters

Name (string)

Get or put a single element rather than a collection.

Recursive (boolean)

When performing a DELETE, specifies whether to delete subresources too.

Listing (boolean)

When performing a GET against a resource with content subresources, listing=true will provide the names of the subresources

rather than both the names and contents.

REST HTTP methods

Below is an explanation of each type of REST call.

Each API call includes an example request and response against a hypothetical application called the "code editor".

GET

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=<element>

This returns JSON with the attribute "content" being a JSON resource that is the entire configuration that was requested. For
example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/sessions/default?name=tabs

The parts of the URL are:

Plugin: org.openmainframe.zowe.codeeditor

Scope: user

Resource: sessions

Subresource: default

Element = tabs

The response body is a JSON config:

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

This returns JSON with the attribute content being a JSON object that has each attribute being another JSON object, which is a

single configuration element.

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

(When subresources exist.)

This returns a listing of subresources that can, in turn, be queried.

PUT

PUT /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=<element>

Stores a single element (must be a JSON object {...}) within the requested scope, ignoring aggregation policies, depending on the

user privilege. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/sessions/default?name=tabs

Body:

Response:

DELETE

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?recursive=true

Deletes all files in all leaf resources below the resource specified.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=<element>

Deletes a single file in a leaf resource.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

Deletes all files in a leaf resource.

Does not delete the directory on disk.

Administrative access and group

By means not discussed here, but instead handled by the server's authentication and authorization code, a user might be privileged to
access or modify items that they do not own.

In the simplest case, it might mean that the user is able to do a PUT, POST, or DELETE to a level above User, such as Instance.

The more interesting case is in accessing another user's contents. In this case, the shape of the URL is different. Compare the following
two commands:

GET /plugins/com.rs.configjs/services/data/<plugin>/user/<resource>

Gets the content for the current user.

GET /plugins/com.rs.configjs/services/data/<plugin>/users/<username>/<resource>

Gets the content for a specific user if authorized.

This is the same structure that is used for the Group scope. When requesting content from the Group scope, the user is checked to see
if they are authorized to make the request for the specific group. For example:

GET /plugins/com.rs.configjs/services/data/<plugin>/group/<groupname>/<resource>

Gets the content for the given group, if the user is authorized.

Application API
Retrieves and stores configuration information from specific scopes.

Note: This API should only be used for configuration administration user interfaces.

ZLUX.UriBroker.pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope: string, resourcePath:string,

resourceName:string): string;

A shortcut for the preceding method, and the preferred method when you are retrieving configuration information, is simply to
"consume" it. It "asks" for configurations using the User scope, and allows the configuration service to decide which configuration
information to retrieve and how to aggregate it. (See below on how the configuration service evaluates what to return for this type of
request).

ZLUX.UriBroker.pluginConfigUri(pluginDefinition: ZLUX.Plugin, resourcePath:string, resourceName:string): string;

Internal and bootstrapping
Some dataservices within plug-ins can take configuration that affects their behavior. This configuration is stored within the
Configuration Dataservice structure, but it is not accessible through the REST API.

Within the instance configuration directory of a zLUX installation, each plugin may optionally have an _internal directory. An

example of such a path would be:

~/.zowe/workspace/app-server/ZLUX/pluginStorage/<pluginName>/_internal

Within each _internal directory, the following directories might exist:

services/<servicename> : Configuration resources for the specific service.

plugin : Configuration resources that are visible to all services in the plug-in.

The JSON contents within these directories are provided as Objects to dataservices through the dataservice context Object.

Packaging Defaults
The best way to provide default settings for a plugin is to include it as part of the plugin's package.
It's easy to distribute to users, requires no configuration steps, and is read-only from the server.
To package, all content must be stored within the /config/storageDefaults directory of your plugin.

Within, non-leaf resources are folders, and leaf resources are files, regardless of JSON or binary.
The _internal folder and content is also permitted.

Plug-in definition
Because the Configuration Dataservices stores data on a per-plug-in basis, each plug-in must define their resource structure to make
use of the Configuration Dataservice. The resource structure definition is included in the plug-in's pluginDefinition.json file.

For each resource and subresource, you can define an aggregationPolicy to control how the data of a broader scope alters the

resource data that is returned to a user when requesting a resource from a narrower Scope.

For example:

Aggregation policies
Aggregation policies determine how the Configuration Dataservice aggregates JSON objects from different Scopes together when a
user requests a resource. If the user requests a resource from the User scope, the data from the User scope might replace or be
merged with the data from a broader scope such as Instance, to make a combined resource object that is returned to the user.

Aggregation policies are defined by a plug-in developer in the plug-in's definition for the Configuration Service, as the attribute
aggregationPolicy within a resource.

The following policies are currently implemented:

NONE: If the Configuration Dataservice is called for Scope User, only user-saved settings are sent, unless there are no user-saved
settings for the query, in which case the dataservice attempts to send data that is found at a broader scope.

OVERRIDE: The Configuration Dataservice obtains data for the resource that is requested at the broadest level found, and joins
the resource's properties from narrower scopes, overriding broader attributes with narrower ones, when found.

Examples
zlux-app-manager VT Terminal App

https://github.com/zowe/zlux-app-manager/tree/v2.x/master/bootstrap/src/uri/mvd-uri.ts
https://github.com/zowe/vt-ng2/blob/v2.x/master/webClient/src/app/app.component.ts

Version: v2.17.x LTS

URI Broker
The URI Broker is an object in the application plug-in web framework, which facilitates calls to the Zowe™ Application Server by
constructing URIs that use the context from the calling application plug-in.

1. Accessing the URI Broker
i. Natively

ii. In an iframe

2. Functions
i. Accessing an application plug-in's dataservices

a. HTTP dataservice URI

b. Websocket dataservice URI

ii. Accessing the application plug-in's configuration resources
a. Standard configuration access

b. Scoped configuration access

iii. Accessing static content

iv. Accessing the application plug-in's root

v. Server queries
a. Accessing list of plugins

Accessing the URI Broker
The URI Broker is accessible independent of other frameworks involved such as Angular, and is also accessible through iframe. This is
because it is attached to a global when within the Zowe Desktop. For more information, see Zowe Desktop and window management.
Access the URI Broker through one of two locations:

Natively:

window.ZoweZLUX.uriBroker

In an iframe:

window.parent.ZoweZLUX.uriBroker

Functions
The URI Broker builds the following categories of URIs depending upon what the application plug-in is designed to call.

Accessing an application plug-in's dataservices

Dataservices can be based on HTTP (REST) or Websocket. For more information, see Dataservices.

HTTP Dataservice URI

https://docs.zowe.org/stable/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices

pluginRESTUri(plugin:ZLUX.Plugin, serviceName: string, relativePath:string): string

Returns: A URI for making an HTTP service request.

Websocket Dataservice URI

pluginWSUri(plugin: ZLUX.Plugin, serviceName:string, relativePath:string): string

Returns: A URI for making a Websocket connection to the service.

Accessing application plug-in's configuration resources

Defaults and user storage might exist for an application plug-in such that they can be retrieved through the Configuration Dataservice.

There are different scopes and actions to take with this service, and therefore there are a few URIs that can be built:

Standard configuration access

pluginConfigUri(pluginDefinition: ZLUX.Plugin, resourcePath:string, resourceName?:string): string

Returns: A URI for accessing the requested resource under the user's storage.

Scoped configuration access

pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope: string, resourcePath:string, resourceName?:string):

string

Returns: A URI for accessing a specific scope for a given resource.

Accessing static content

Content under an application plug-in's web directory is static content accessible by a browser. This can be accessed through:

pluginResourceUri(pluginDefinition: ZLUX.Plugin, relativePath: string): string

Returns: A URI for getting static content.

For more information about the web directory, see Application plug-in filesystem structure.

Accessing the application plug-in's root

Static content and services are accessed off of the root URI of an application plug-in. If there are other points that you must access on
that application plug-in, you can get the root:

pluginRootUri(pluginDefinition: ZLUX.Plugin): string

Returns: A URI to the root of the application plug-in.

Server queries

https://docs.zowe.org/stable/extend/extend-desktop/mvd-uribroker/mvd-plugindefandstruct#application-plug-in-filesystem-structure

A client can find different information about a server's configuration or the configuration as seen by the current user by accessing
specific APIs.

Accessing a list of plug-ins

pluginListUri(pluginType: ZLUX.PluginType): string

Returns: A URI, which when accessed returns the list of existing plug-ins on the server by type, such as "Application" or "all".

Version: v2.17.x LTS

Application-to-application communication
Zowe™ application plug-ins can opt-in to various application framework abilities, such as the ability to have a Logger, the ability to
use a URI builder utility, and more.

The ability for one appliccation plug-in to communicate with another is an ability that is unique to Zowe environments with multiple
application plug-ins. The application framework provides constructs that facilitate this ability.

The constructs are: the Dispatcher, Actions, Recognizers, Registry, and the features that utilize them such as the framework's Context
menu.

1. Why use application-to-application communication?

2. Actions

3. Recognizers

4. Dispatcher

5. URI Parameters

Why use application-to-application communication?
When working with computers, people often use multiple applications to accomplish a task. For example, a person might check their
email before opening a bank statement in a browser. In many environments, the relationship between one application and another is
not well defined. For example, you may open one program to learn of a situation, which is then resolved by opening a different
program and typing in content. The application framework attempts to solve this problem by creating structured messages that can
be sent from one application plug-in to another.

An application plug-in has a context of the information that it contains. This context can be used to invoke an action on another
application plug-in that is better suited to handle some of the information discovered in the first application plug-in. Well-structured
messages facilitate the process of determining which application plug-in is best suited to handle a given situation, while also
explaining, in detail, what that application plug-in should do.

This way, rather than finding out that an attachment with the extension ".dat" was not meant for a text editor, but rather for an email
client, one application plug-in may be able to invoke an action on an application plug-in that is capable of opening of an email.

Actions
To manage communication from one application plug-in to another, a specific structure is needed. In the application framework, the
unit of application-to-application communication is an Action. The typescript definition of an Action is as follows:

An Action has a specific structure of data that is passed, to be filled in with the context at runtime, and a specific target to receive the
data.

The Action is dispatched to the target in one of several modes, for example: to target a specific instance of an application plug-in, an
instance, or to create a new instance.

The Action can be less detailed than a message. It can be a request to minimize, maximize, close, launch, and more. Finally, all of this
information is related to a unique ID and localization string such that it can be managed by the framework.

Action target modes

When you request an Action on an application plug-in, the behavior is dependent on the instance of the application plug-in you are
targeting. You can instruct the framework to target the application plug-in with a target mode from the ActionTargetMode enum :

Action types

The application framework performs different operations on application plug-ins depending on the type of an Action. The behavior
can be quite different, from simple messaging to requesting that an application plug-in be minimized. The types are defined by an
enum :

Loading actions

Actions can be created dynamically at runtime, or saved and loaded by the system at login.

App2App via URL

Another way the Zowe Application Framework invokes Actions is via URL Query Parameters, with parameters formatted in JSON. This
feature enables users to bookmark a set of application-to-application communication actions (in the form of a URL) that will be
executed when opening the webpage. Developers creating separate web apps can build a link that will open the Zowe Desktop and
do specific actions in Apps, for example, opening a file in the Editor.

The App2App via URL feature allows you to:

1. Specify one or more actions that will be executed upon login, allowing you to bookmark a series of actions that you can share
with someone else.

2. Specify actions that are declared by plugins (when formatter is equal to a known action ID) or actions that you have custom-made
(when formatter = 'data').

3. Customize the action type, mode, and target plugin (when the formatter is equal to an existing action ID).

Samples

Query parameter format:

?app2app={pluginId}:{actionType}:{actionMode}:{formatter}:{contextData}&app2app={pluginId}:{actionType}:

{actionMode}:{formatter}:{contextData}

pluginId - application identifier, e.g. 'org.zowe.zlux.ng2desktop.webbrowser'

actionType - 'launch' | 'message'

actionMode - 'create' | 'system'

formatter - 'data' | actionId

contextData - context data in form of JSON

windowManager - 'MVD' | undefined : (Optional) While in standalone mode, controls whether to use the Zowe (MVD) window

manager or the deprecated simple window manager. Default is MVD.

showLogin - true | false : (Optional) While in standalone mode, controls whether to show Zowe's login page if credentials are

not retrieved from a previous Desktop session, or if to disable it and load the application anyway (ideal solution for apps with
their own login experiences). Default is true.

Note that some of these parameters are shared with single app mode, therefore, you may need to adjust pluginId and app2app
parameters as follows

(desktop mode)

(single app mode)

Dynamically

You can create Actions by calling the following Dispatcher method: makeAction(id: string, defaultName: string, targetMode:

ActionTargetMode, type: ActionType, targetPluginID: string, primaryArgument: any):Action

Saved on system

Actions can be stored in JSON files that are loaded at login. The JSON structure is as follows:

Recognizers
Actions are meant to be invoked when certain conditions are met. For example, you do not need to open a messaging window if you
have no one to message. Recognizers are objects within the application framework that use the context that the application plug-in
provides to determine if there is a condition for which it makes sense to execute an Action. Each recognizer has statements about
what condition to recognize, and when that statement is met, which Action can be executed at that time. The invocation of the Action
is not handled by the Recognizer; it simply detects that an Action can be taken.

Recognition clauses

Recognizers associate a clause of recognition with an action, as you can see from the following class:

A clause, in turn, is associated with an operation, and the subclauses upon which the operation acts. The following operations are
supported:

Loading Recognizers at runtime

You can add a Recognizer to the application plug-in environment in one of two ways: by loading from Recognizers saved on the
system, or by adding them dynamically.

Dynamically

You can call the Dispatcher method, addRecognizer(predicate:RecognitionClause, actionID:string):void

Saved on system

Recognizers can be stored in JSON files that are loaded at login. The JSON structure is as follows:

clause can take on one of two shapes:

Or,

Where this one can again, have subclauses.

Recognizer example

Recognizers can be as simple or complex as you write them to be, but here is an example to illustrate the mechanism:

In this case, the Recognizer detects whether it is possible to run the org.zowe.explorer.openmember Action when the TN3270
Terminal application plug-in is on the screen ISRUDSM (an ISPF panel for browsing PDS members).

Dispatcher
The dispatcher is a core component of the application framework that is accessible through the Global ZLUX Object at runtime. The

Dispatcher interprets Recognizers and Actions that are added to it at runtime. You can register Actions and Recognizers on it, and
later, invoke an Action through it. The dispatcher handles how the Action's effects should be carried out, acting in combination with
the Window Manager and application plug-ins to provide a channel of communication.

Registry
The Registry is a core component of the application framework, which is accessible through the Global ZLUX Object at runtime. It

contains information about which application plug-ins are present in the environment, and the abilities of each application plug-in.
This is important to application-to-application communication, because a target might not be a specific application plug-in, but rather
an application plug-in of a specific category, or with a specific featureset, capable of responding to the type of Action requested.

Pulling it all together in an example
The standard way to make use of application-to-application communication is by having Actions and Recognizers that are saved on
the system. Actions and Recognizers are loaded at login, and then later, through a form of automation or by a user action,
Recognizers can be polled to determine if there is an Action that can be executed. All of this is handled by the Dispatcher, but the
description of the behavior lies in the Action and Recognizer that are used. In the Action and Recognizer descriptions above, there are
two JSON definitions: One is a Recognizer that recognizes when the Terminal application plug-in is in a certain state, and another is an
Action that instructs the MVS Explorer to load a PDS member for editing. When you put the two together, a practical application is
that you can launch the MVS Explorer to edit a PDS member that you have selected within the Terminal application plug-in.

Version: v2.17.x LTS

Configuring IFrame communication
The Zowe Application Framework provides the following shared resource functions through a ZoweZLUX object: pluginManager ,

uriBroker , dispatcher , logger , registry , notificationManager , and globalization

Like REACT and Angular apps, IFrame apps can use the ZoweZLUX object to communicate with the framework and other apps. To
enable communication in an IFrame app, you must add the following javascript to your app, for example in your index.html file:

logger.js is the javascript version of logger.ts and is capable of the same functions, including access to the Logger and

ComponentLogger classes. The Logger class determines the behavior of all the ComponentLoggers created from it.

ComponentLoggers are what the user implements to perform logging.

Iframe-adapter.js is designed to mimic the ZoweZLUX object that is available to apps within the virtual-desktop, and serves as the
middle-man for communication between IFrame apps and the Zowe desktop.

You can see an implementation of this functionality in the sample IFrame app.

The version of ZoweZLUX adapted for IFrame apps is not complete and only implements the functions needed to allow the Sample
IFrame App to function. The notificationManager , logger , globalization , dispatcher , windowActions , windowEvents , and

viewportEvents are fully implemented. The pluginManager and uriBroker are only partially implemented. The registry is not
implemented.

Unlike REACT and Angular apps, in IFrame apps the ZoweZLUX and initialization objects communicate with Zowe using the browser's
onmessage and postmessage APIs. That means that communication operations are asynchronous, and you must account for this in
your app, for example by using Promise objects and await or then functions.

https://github.com/zowe/zlux-platform/blob/v2.x/master/interface/src/index.d.ts#L720
https://github.com/zowe/sample-iframe-app
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Version: v2.17.x LTS

Error reporting UI
The zLUX Widgets repository contains shared widget-like components of the Zowe™ Desktop, including Button, Checkbox, Paginator,
various pop-ups, and others. To maintain consistency in desktop styling across all applications, use, reuse, and customize existing
widgets to suit the purpose of the application's function and look.

Ideally, a program should have little to no logic errors. Once in a while a few occur, but more commonly an error occurs from
misconfigured user settings. A user might request an action or command that requires certain prerequisites, for example: a proper
ZSS-Server configuration. If the program or method fails, the program should notify the user through the UI about the error and how
to fix it. For the purposes of this discussion, we will use the Workflow application plug-in in the zlux-workflow repository.

ZluxPopupManagerService
The ZluxPopupManagerService is a standard popup widget that can, through its reportError() method, be used to display errors

with attributes that specify the title or error code, severity, text, whether it should block the user from proceeding, whether it should
output to the logger, and other options you want to add to the error dialog. ZluxPopupManagerService uses both

ZluxErrorSeverity and ErrorReportStruct .

ZluxErrorSeverity

ZluxErrorSeverity classifies the type of report. Under the popup-manager, there are the following types: error, warning, and

information. Each type has its own visual style. To accurately indicate the type of issue to the user, the error or pop-up should be
classified accordingly.

ErrorReportStruct

ErrorReportStruct contains the main interface that brings the specified parameters of reportError() together.

Implementation

Import ZluxPopupManagerService and ZluxErrorSeverity from widgets. If you are using additional services with your error

prompt, import those too (for example, LoggerService to print to the logger or GlobalVeilService to create a visible semi-
transparent gray veil over the program and pause background tasks). Here, widgets is imported from node_modules\@zlux\ so you

must ensure zLUX widgets is used in your package-lock.json or package.json and you have run npm install .

import { ZluxPopupManagerService, ZluxErrorSeverity } from '@zlux/widgets';

Declaration

Create a member variable within the constructor of the class you want to use it for. For example, in the Workflow application plug-in
under \zlux-workflow\src\app\app\zosmf-server-config.component.ts is a ZosmfServerConfigComponent class with the pop-

up manager service variable. To automatically report the error to the console, you must set a logger.

Usage

Now that you have declared your variable within the scope of your program's class, you are ready to use the method. The following
example describes an instance of the reload() method in Workflow that catches an error when the program attempts to retrieve a

configuration from a configService and set it to the program's this.config . This method fails when the user has a faulty zss-

Server configuration and the error is caught and then sent to the class' popupManager variable from the constructor above.

Here, the errorMessage clearly describes the error with a small degree of ambiguity as to account for all types of errors that might
occur from that method. The specifics of the error are then generated dynamically and are printed with the err.toString() , which

contains the more specific information that is used to pinpoint the problem. The this.popupManager.report() method triggers the

error prompt to display. The error severity is set with ZluxErrorSeverity.ERROR and the err.status.toString() describes the

status of the error (often classified by a code, for example: 404). The optional parameters in options specify that this error will block

the user from interacting with the application plug-in until the error is closed or it until goes away on its own. globalVeilService is
optional and is used to create a gray veil on the outside of the program when the error is caused. You must import
globalVeilService separately (see the zlux-workflow repository for more information).

HTML

The final step is to have the recently created error dialog display in the application plug-in. If you do this.popupManager.report()
without adding the component to your template, the error will not be displayed. Navigate to your component's .html file. On the

Workflow application plug-in, this file will be in \zlux-workflow\src\app\app\zosmf-server-config.component.html and the only

item left is to add the popup manager component alongside your other classes.

<zlux-popup-manager></zlux-popup-manager>

So now when the error is called, the new UI element should resemble the following:

The order in which you place the pop-up manager determines how the error dialog will overlap in your UI. If you want the error dialog
to overlap other UI elements, place it at the end of the .html file. You can also create custom styling through a CSS template, and

add it within the scope of your application plug-in.

Version: v2.17.x LTS

Logging utility
The zlux-shared repository provides a logging utility for use by dataservices and web content for an application plug-in.

1. Logging Objects

2. Logger IDs

3. Accessing Logger Objects
i. Logger

a. App Server

b. Web

ii. Component Logger
a. App Server

b. Web

4. Logger API

5. Component Logger API

6. Log Levels

7. Logging Verbosity
i. Configuring Logging Verbosity

a. Server Startup Logging Configuration

8. Using log message IDs

Logging objects
The logging utility is based on the following objects:

Component Loggers: Objects that log messages for an individual component of the environment, such as a REST API for an
application plug-in or to log user access.

Destinations: Objects that are called when a component logger requests a message to be logged. Destinations determine how
something is logged, for example, to a file or to a console, and what formatting is applied.

Logger: Central logging object, which can spawn component loggers and attach destinations.

Logger IDs

Because Zowe™ application plug-ins have unique identifiers, both dataservices and an application plug-in's web content are provided
with a component logger that knows this unique ID such that messages that are logged can be prefixed with the ID. With the
association of logging to IDs, you can control verbosity of logs by setting log verbosity by ID.

Accessing logger objects

Logger

The core logger object is attached as a global for low-level access.

App Server

NodeJS uses global as its global object, so the logger is attached to: global.COM_RS_COMMON_LOGGER

Web

(Angular App Instance Injectible). See Logger in Zowe Desktop and window management.

(others) Browsers use window as the global object, so the logger is attached to: window.COM_RS_COMMON_LOGGER

Component logger

Component loggers are created from the core logger object, but when working with an application plug-in, allow the application
plug-in framework to create these loggers for you. An application plug-in's component logger is presented to dataservices or web
content as follows.

App Server

See Router Dataservice Context in the topic Dataservices.

Logger API
The following constants and functions are available on the central logging object.

Attribute Type Description Arguments

makeComponentLogger function

Returns an existing logger of this name, or creates a
new component logger if no logger of the specified
name exists - Automatically done by the application
framework for dataservices and web content

componentIDString

setLogLevelForComponentName function Sets the verbosity of an existing component logger
componentIDString ,

logLevel

Component Logger API
The following constants and functions are available to each component logger.

Attribute Type Description Arguments

CRITICAL const Is a const for logLevel

SEVERE const Is a const for logLevel

WARN const Is a const for logLevel

https://docs.zowe.org/stable/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/stable/extend/extend-desktop/mvd-dataservices

Attribute Type Description Arguments

WARNING const Is a const for logLevel

INFO const Is a const for logLevel

DEBUG const Is a const for logLevel

FINE const Is a const for logLevel

FINER const Is a const for logLevel

TRACE const Is a const for logLevel

FINEST const Is a const for logLevel

log function Used to write a log, specifying the log level
logLevel ,

messageString

critical function Used to write a CRITICAL log. messageString

severe function Used to write a SEVERE log. messageString

warn function Used to write a WARNING log. messageString

info function Used to write an INFO log. messageString

debug function Used to write a FINE log. messageString

trace function Used to write a TRACE log. messageString

makeSublogger function
Creates a new component logger with an ID appended by the string
given

componentNameSuffix

Log Levels
An enum, LogLevel , exists for specifying the verbosity level of a logger. The mapping is:

Level Number

CRITICAL 0

WARNING 1

Level Number

INFO 2

DEBUG 3

FINER 4

TRACE 5

Note: The default log level for a logger is INFO.

Logging verbosity
Using the component logger API, loggers can dictate at which level of verbosity a log message should be visible. You can configure
the server or client to show more or less verbose messages by using the core logger's API objects.

Example: You want to set the verbosity of the org.zowe.foo application plug-in's dataservice, bar to show debugging information.

logger.setLogLevelForComponentName('org.zowe.foo.bar',LogLevel.DEBUG)

Configuring logging verbosity

The application plug-in framework provides ways to specify what component loggers you would like to set default verbosity for, such
that you can easily turn logging on or off.

Server startup logging configuration

The server configuration file allows for specification of default log levels, as a top-level attribute logLevel , which takes key-value
pairs where the key is a regex pattern for component IDs, and the value is an integer for the log levels.

For example:

For more information about the server configuration file, see Zowe Application Framework (zLUX) configuration.

Using log message IDs
To make technical support for your application easier, create IDs for common log messages and use substitution to generate them.
When you use IDs, people fielding support calls can identify and solve problems more quickly. IDs are particularly helpful if your
application is translated, because it avoids users having to explain problems using language that the tech support person might not
understand.

To use log message IDs, take the following steps:

1. Depending on how your application is structured, create message files in the following locations:

Web log messages: {plugin}/web/assets/i18n/log/messages_{language}.json

https://github.com/zowe/zlux/wiki/Configuration-for-zLUX-App-Server-&-ZSS
https://docs.zowe.org/stable/extend/user-guide/mvd-configuration#configuration-file

App server log messages: {plugin}/lib/assets/i18n/log/messages_{language}.json

2. In the files, create ID-message pairs using the following format:

Where "id#" is the message ID and "value#" is the text. For example:

3. Reference the IDs in your code, for example:

Which compiles to:

Or in another supported language, such as Russian:

Message ID logging examples

Server core: https://github.com/zowe/zlux-server-framework/blob/v2.x/master/plugins/config/lib/assets/i18n/log/messages_en.json

https://github.com/zowe/zlux-server-framework/blob/v2.x/master/plugins/config/lib/assets/i18n/log/messages_en.json

Version: v2.17.x LTS

Using Conda to make and manage packages of
Application Framework Plugins
As Zowe is composed of components which can be extended by Plugins, a standardized and simple way to find, install, upgrade, and
list Plugins in your Zowe environment is important to make it easy to get the most out of Zowe.

Package management as a concept generally provides a way to find packages such as plugins, check and possible co-install
dependencies the package has, and ultimately install the desired package. Post-install, management tasks such as upgrading and
uninstalling are common.

Conda is one such package manager, and if you are familiar with apt, yum, or npm, you will find that using Conda is very similar. But,
there are some important abilities that make Conda stand out:

Very cross platform: Conda is available, and acts very similar on z/OS, Windows, Linux, macOS, and various Unix. Packages can
state which platforms they support, so it easy to know what packages you can install.

Tagging: On z/OS, Conda packages can contain tagging information, to avoid issues around the difference between EBCDIC &
ASCII.

Software neutrality: Language-specific package managers are becoming popular, but Conda does not assume the purpose of the
package, so you can install almost anything.

Environments: If desired, every user can have a different set of packages, because Conda can install & manage packages in
personal folders instead of system ones. A user can even have multiple such environments, and switch between them rapidly to
work with different sets of related software without conflict.

Initial Conda setup
If you have not installed Conda yet, it can be downloaded as an all-in-one package that has no extra dependencies, known as
"miniconda". For Linux, Unix, macOS, and Windows, this can be downloaded at https://docs.conda.io/en/latest/miniconda.html For
z/OS, Conda can be downloaded from Rocket Software at https://www.rocketsoftware.com/zos-open-source

Conda will prompt during the install for certain setup options, and ultimately you'll want to put some Conda initialization content into
your startup script so that whenever you open your terminal, Conda will be ready for your use.

Once you have Conda downloaded and installed, you'll want to create your first Conda "environment" this can be done by providing a
path or a nickname

conda create --prefix PATH conda create --name ENVIRONMENT

Either will work, but path helps you better separate your content from content others use by placing it in a folder that you can have
stricter permissions on.

If you need to know more about certain commands, you can use the help command for any.

conda create --help

Or, check the official documentation: https://docs.conda.io/en/latest/index.html

https://docs.conda.io/en/latest/miniconda.html
https://www.rocketsoftware.com/zos-open-source
https://docs.conda.io/en/latest/index.html

Once you have an environment, you should activate it so that the actions you do are on that environment, as opposed to the base
one.

conda activate PATH_OR_NAME

Conda will detect whether the parameter is a path or a nickname, so this command works for both.

Finally, you can view the Conda environment and other information by checking "info"

conda info

Managing Conda channels
When downloading a package, such as a Zowe Plugin, the place that you download from is configurable. These are called "Channels",
but are very similar to "Repositories" seen in other package managers. With Conda, you can install from:

A network channel (Internet or company internal)

A local channel (Collection of plugins on your computer)

Just an individual package, without a channel

You can have multiple of each, and if a package is present in more than one location, you can specify which one to use.

Searching for packages
Conda has a search utility that searches for all Channels,

conda search anything_you_want

but it's important to note that because any type of software can be installed through Conda, you probably want to search through a
detailed view to help identify which ones are meant for Zowe, or use Channels that are distinctly for Zowe so that you can get
packages that are strictly for Zowe.

conda search --info anything_you_want

Using Conda with Zowe
Zowe is not yet available in the form of Conda packages yet, so it must be installed separately. If you have Zowe installed on the same
system as Conda, some Zowe Plugins installed through Conda will automatically register into Zowe. In order to do this, the Plugins
must be able to find Zowe. You should set environment variables before trying to install the Plugins:

Setting environment variables temporarily:

z/OS, Linux, Unix:

Windows cmd.exe:

INSTANCE_DIR and ROOT_DIR are also supported, but the ZOWE_ prefix helps distinguish its purpose.

Setting environment variables persistently

z/OS, Linux, Unix: You can put the export statements into the .profile file in your home directory to have them apply on login.

Windows: There is a UI to set variables, but it varies depending on Windows version. Try typing 'environment variable' into the
Windows search bar to get to the relevant menu.

Installing a Zowe plugin

A Conda package could contain one or more Zowe Plugins, and a Conda package could contain non-Zowe code alongside Zowe
Plugins. This is left up to the program vendor and regardless the install process is the same:

conda install package_name

If the Zowe environment variables are set, such a package may automatically register Plugins into the Zowe instance of your choice.

Zowe plugin configuration

Aside from possible automation during install and uninstall, Conda does not manage Zowe, its configuration, or configuration of the
Plugins. However, Conda does manage the package files, and therefore you can do additional Zowe tasks on the Plugins by going into
the Conda environment. Zowe Plugins are intended to be found in a standardized location in the Conda environment,

/opt/zowe/plugins

This folder contains Plugins, which in turn contain sub-folders that are the Zowe components that they utilize. If a plugin uses multiple
Zowe components, its contents could be found within multiple component folders.

/opt/zowe/plugins/my_plugin/app-server /opt/zowe/plugins/my_plugin/cli

Zowe package structure

Zowe Plugins packaged into Conda follow the structure outlined here: https://github.com/zowe/zowe-install-packaging/issues/1569
This structure allows for plugin to have content meant for one or more Zowe components. The Conda packages extend this by
allowing for more than one Plugin, or a mix of Zowe Plugins and other software to be within a single package.

Building Conda packages for Zowe
This document is intended to be provided with example scripts by the Zowe community, which shows you how you can build a simple
Zowe plugin into a Conda package. You can find the example scripts on the Zowe zlux-build github repository. This is not intended to
be a one-size-fits-all set of scripts. If you have more advanced needs, you can use these scripts as a basis for writing your own scripts.

To make a Conda package, you need conda-build, which you can install into a Conda environment:

conda install conda-build

Once you have it, you can build a package via

conda build path/to/build/scripts

https://github.com/zowe/zowe-install-packaging/issues/1569
https://github.com/zowe/zlux-build/tree/master/conda

However, first you must set up the build information.

Defining package properties

Conda needs a metadata file, meta.yaml to state information about the package, such as dependencies, what OS it supports, its name

and version. This information can be programmatically found, and Zowe provides examples of how to do this by reading Zowe's own
metadata files into this one.

Creating build step

It's recommended not to build your code from scratch to put into Conda. Rather, build your code however you want, and then just
copy the contents into a Conda package. This keeps the Conda scripting small and simple.

In the same folder as meta.yaml , Conda requires build.sh for building on Unix, Linux, or z/OS and build.bat for Windows. Except

for z/OS, this script does not determine where your package can be used, it's just about where you are building it. z/OS is the
exception because when you build on z/OS, unix file tagging information is preserved. So, it's highly recommended that you tag your
files so that users do not have to deal with encoding issues. For code that works equally well on all platforms, a simple way to build for
all is:

1. Build your code on Linux

2. Transfer the output to z/OS

3. Run a Conda build on the output on Linux

4. Run a Conda build on the output on z/OS

5. Deliver the Linux package as 'noarch' content, and the z/OS package as 'zos-z' content.

Lifecycle scripts

When a Conda package is installed or uninstalled, a script from the package can be run. For Zowe, the scripts post-link.sh and

pre-unlink.sh can be important, and you must put them into the same folder as meta.yaml for building.

Install automation

post-link.sh runs at install, after Conda has put the package content onto the system. At this time, registration into Zowe is
recommended if the Plugin does not require any information from the user for configuration. If the Plugin is okay to be automatically
installed, we recommend putting a script into the package folder named autoinstall.sh Zowe's provided Conda examples will

utilize autoinstall.sh to do any install steps your package needs, and provides Zowe information to make install simple. However,

it's possible to do what you want in your own post-link.sh script instead.

Uninstall automation

pre-unlink.sh is the opposite of post-link.sh . It allows you to do anything you need to before the package is removed from the

system. This is a good time to remove any package information from Zowe, but you should be careful because users may uninstall and
later re-install, so you should not remove configuration information without consent.

Adding configuration to Conda packages

As a package manager, Conda is not responsible for configuration. Your packages can include defaults to utilize, but if configuration is
needed you should alert the user to perform a post-install task. post-link.sh could be used to print such an alert.

Version: v2.17.x LTS

Developing for Zowe CLI
You can extend Zowe™ CLI by developing plug-ins and contributing code to the base Zowe CLI or existing plug-ins.

How to contribute
You can contribute to Zowe CLI in the following ways:

Add new commands, options, or other improvements to the base CLI.

Develop a Zowe CLI plug-in.

You might want to contribute to Zowe CLI to accomplish the following objectives:

Provide new scriptable functionality for yourself, your organization, or to a broader community.

Make use of Zowe CLI infrastructure (profiles and programmatic APIs).

Participate in the Zowe CLI community space.

Getting started
If you want to start working with the code immediately, review the Readme file in the Zowe CLI core repository and the Zowe
contribution guidelines. The zowe-cli-sample-plugin GitHub repository is a sample plug-in that adheres to the guidelines for
contributing to Zowe CLI projects.

Contribution guidelines

The Zowe CLI contribution guidelines contain standards and conventions for developing Zowe CLI plug-ins.

The guidelines contain critical information about working with the code, running/writing/maintaining automated tests, developing
consistent syntax in your plug-in, and ensuring that your plug-in integrates with Zowe CLI properly:

For more information about ... See:

General guidelines that apply to contributing to Zowe CLI and Plug-ins Contribution Guidelines

Conventions and best practices for creating packages and plug-ins for Zowe CLI Package and Plug-in Guidelines

Guidelines for running tests on Zowe CLI Testing Guidelines

Guidelines for running tests on the plug-ins that you build Plug-in Testing Guidelines

Versioning conventions for Zowe CLI and Plug-ins Versioning Guidelines

Tutorials

https://github.com/zowe/zowe-cli#zowe-cli--
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md#contribution-guidelines
https://github.com/zowe/zowe-cli-sample-plugin#zowe-cli-sample-plug-in
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PackagesAndPluginGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/TESTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PluginTESTINGGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md

Follow these tutorials to get started working with the sample plug-in:

1. Setting up: Clone the project and prepare your local environment.

2. Installing a plug-in: Install the sample plug-in to Zowe CLI and run as-is.

3. Extending a plug-in: Extend the sample plug-in with a new by creating a programmatic API, definition, and handler.

4. Creating a new plug-in: Create a new CLI plug-in that uses Zowe CLI programmatic APIs and a diff package to compare two data
sets.

5. Implementing user profiles: Implement user profiles with the plug-in.

Plug-in development overview

At a high level, a plug-in must have imperative-framework configuration (sample here). This configuration is discovered by

imperative-framework through the package.json imperative key.

A Zowe CLI plug-in will minimally contain the following:

1. Programmatic API: Node.js programmatic APIs to be called by your handler or other Node.js applications.

2. Command definition: The syntax definition for your command.

3. Handler implementation: To invoke your programmatic API to display information in the format that you defined in the definition.

The following guidelines and documentation will assist you during development:

Imperative CLI Framework documentation

Imperative CLI Framework documentation is a key source of information to learn about the features of Imperative CLI Framework (the
code framework that you use to build plug-ins for Zowe CLI). Refer to these supplementary documents during development to learn
about specific features such as:

Auto-generated help

JSON responses

User profiles

Logging, progress bars, experimental commands, and more!

Authentication mechanisms

Authentication mechanisms

As an extender, you can change the way Zowe CLI uses various mechanisms of authentication when communicating with the
mainframe.

Zowe CLI accepts various methods, or mechanisms, of authentication when communicating with the mainframe, and the method that
the CLI ultimately follows is based on the service it is communicating with.

However, some services can accept multiple methods of authentication. When multiple methods are provided (in a profile or
command) for a service, the CLI follows an order of precedence to determine which method to apply. Extenders can modify this order
for their plug-in.

To learn the authentication methods used for different services and their order of precedence, refer to the following table:

https://docs.zowe.org/stable/extend/extend-cli/cli-setting-up
https://docs.zowe.org/stable/extend/extend-cli/cli-installing-sample-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-extending-a-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin
https://docs.zowe.org/stable/extend/extend-cli/cli-implement-profiles
https://github.com/zowe/zowe-cli-sample-plugin/blob/master/src/pluginDef.ts
https://github.com/zowe/zowe-cli-sample-plugin/blob/master/package.json
https://github.com/zowe/imperative/wiki

service Zowe V1 order of precedence Zowe V2 order of precedence

API ML
1. username, password
2. API ML token

1. username, password
2. API ML token
3. PEM certificate

Db2,
FTP,
most other services

username, password username, password

SSH
1. SSH key
2. username, password

1. SSH key
2. username, password

ZOSMF
direct connection

username, password
1. username, password
2. PEM certificate

Version: v2.17.x LTS

Setting up your development environment
Before you follow the development tutorials for creating a Zowe™ CLI plug-in, follow these steps to set up your environment.

Prerequisites
Install Zowe CLI.

Initial setup
To create your development space, clone and build zowe-cli-sample-plugin from source.

Before you clone the repository, create a local development folder named zowe-tutorial . You will clone and build all projects in this

folder.

Branches
There are two branches in the repository that correspond to different Zowe CLI versions. You can develop two branches of your plug-
in so that users can install your plug-in into @latest or @zowe-v2-lts CLI. Developing for both versions will let you take advantage

of new core features quickly and expose your plug-in to a wider range of users.

The master branch of Sample Plug-in is compatible with the @zowe-v2-lts version of core CLI (Zowe LTS release).

The master branch of Sample Plug-in is also compatible with the @latest version of core CLI (Zowe Active Development release) at

this time.

For more information about the versioning scheme, see Maintainer Versioning in the Zowe CLI repository.

Clone zowe-cli-sample-plugin and build from source

Clone the repository into your development folder to match the following structure:

Follow these steps:

1. cd to your zowe-tutorial folder.

2. git clone https://github.com/zowe/zowe-cli-sample-plugin

3. cd to your zowe-cli-sample-plugin folder.

4. git checkout master

5. npm install

6. npm run build

(Optional) Run the automated tests

We recommend running automated tests on all code changes. Follow these steps:

https://docs.zowe.org/stable/extend/user-guide/cli-installcli#methods-to-install-zowe-cli
https://github.com/zowe/zowe-cli-sample-plugin/#zowe-cli-sample-plug-in
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md

1. cd to the __tests__/__resources__/properties folder.

2. Copy example_properties.yaml to custom_properties.yaml .

3. Edit the properties within custom_properties.yaml to contain valid system information for your site.

4. cd to your zowe-cli-sample-plugin folder

5. npm run test

Next steps
After you complete your setup, follow the Installing the sample plug-in tutorial to install this sample plug-in to Zowe CLI.

https://docs.zowe.org/stable/extend/extend-cli/cli-installing-sample-plugin

Version: v2.17.x LTS

Creating plug-in lifecycle actions
As a developer, you may want your plug-in to perform certain tasks immediately after install and just before uninstall.

Many different types of tasks can make up these plug-in lifecycle actions, including the following examples:

Post-install actions:

A sanity check

Additional setup

Adding the plug-in as an override of Zowe CLI Credential Manager

Pre-uninstall actions:

Revert specialized setup

Removing the plug-in as an override of Zowe CLI Credential Manager

Creating and using lifecycle actions is optional, but they can be useful tools. Lifecycle actions can automate a manual process intended
for the plug-in user to carry out. They can also avoid the need to create commands with uses limited to post-install and pre-uninstall
tasks.

Note: When creating a plug-in to override Zowe CLI Credential Manager, it is necessary to implement a post-install action to
configure your plug-in as the credential manager.

Implenting lifeycyle actions
Add the pluginLifeCycle property to your plug-in definition file and include a plug-in class to implement lifecycle functions.

Follow these steps:

1. Navigate to the plug-in definition file.

This file is the value for the configurationModule property in the plug-in package.json file.

See this IImperativeConfig.ts file to view an example of the detailed format used in the plug-in definition file.

2. In the plug-in definition file, use the pluginLifeCycle property to add the path to the javascript file the plug-in uses to
implement the class containing lifecycle functions.

This plug-in lifecycle functions class extends the AbstractPluginLifeCycle class found in the Imperative package of utility

functions.

3. In the plug-in lifecycle functions class you created, add instructions for both the postInstall and preUninstall functions.

If implemented correctly, Zowe CLI calls the postInstall function of the plug-in immediately after the plug-in has been

installed. Similarly, the preUninstall function is called immediately before the Zowe CLI uninstalls the plug-in.

https://github.com/zowe/imperative/blob/master/packages/imperative/src/doc/IImperativeConfig.ts
https://github.com/zowe/imperative/blob/master/packages/imperative/src/plugins/AbstractPluginLifeCycle.ts

Note: If your plug-in needs to perform an operation at only post-install or pre-uninstall, implement the other action to simply return
to Zowe CLI without taking any action.

Version: v2.17.x LTS

Installing the sample plug-in
Before you begin, set up your local environment to install a plug-in.

Overview
This tutorial covers installing and running this bundled Zowe™ CLI plugin as-is (without modification), which adds a command to the
CLI that lists the contents of a directory on your computer.

Installing the sample plug-in to Zowe CLI

To begin, cd into your zowe-tutorial folder. (See Initial setup for instructions on creating the zowe-tutorial folder.)

Issue the following commands to install the sample plug-in to Zowe CLI:

zowe plugins install ./zowe-cli-sample-plugin

Viewing the installed plug-in
Issue zowe --help in the command line to return information for the installed zowe-cli-sample command group:

https://docs.zowe.org/stable/extend/extend-cli/cli-setting-up
https://docs.zowe.org/stable/extend/extend-cli/cli-setting-up#initial-setup

Using the installed plug-in
To use the plug-in functionality, issue: zowe zowe-cli-sample list directory-contents :

Testing the installed plug-in
To run automated tests against the plug-in, cd into your zowe-tutorial/zowe-cli-sample-plugin folder.

Issue the following command:

Next steps

You successfully installed a plug-in to Zowe CLI! Next, try the Extending a plug-in tutorial to learn about developing new commands
for this plug-in.

https://docs.zowe.org/stable/extend/extend-cli/cli-extending-a-plugin

Version: v2.17.x LTS

Extending a plug-in
Before you begin, be sure to complete the Installing the sample plug-in tutorial.

Overview
This tutorial demonstrates how to extend the plug-in that is bundled with this sample by:

1. Creating a Typescript interface for the Typicode response data

2. Creating a programmatic API

3. Creating a command definition

4. Creating a command handler

We'll do this by using @zowe/imperative infrastructure to surface REST API data on our Zowe™ CLI plug-in.

Specifically, we're going to show data from this URI by Typicode. Typicode serves sample REST JSON data for testing purposes.

At the end of this tutorial, you will be able to use a new command from the Zowe CLI interface: zowe zowe-cli-sample list

typicode-todos

Completed source for this tutorial can be found on the typicode-todos branch of the zowe-cli-sample-plugin repository.

Creating a Typescript interface for the Typicode response data

First, we'll create a Typescript interface to map the response data from a server.

Within zowe-cli-sample-plugin/src/api , create a folder named doc to contain our interface (sometimes referred to as a

"document" or "doc"). Within the doc folder, create a file named ITodo.ts .

The ITodo.ts file will contain the following:

Creating a programmatic API

Next, we'll create a Node.js API that our command handler uses. This API can also be used in any Node.js application, because these
Node.js APIs make use of REST APIs, Node.js APIs, other NPM packages, or custom logic to provide higher level functions than are
served by any single API.

Adjacent to the existing file named zowe-cli-sample-plugin/src/api/Files.ts , create a file Typicode.ts .

Typicode.ts should contain the following:

The Typicode class provides two programmatic APIs, getTodos and getTodo , to get an array of ITodo objects or a specific ITodo

respectively. The Node.js APIs use @zowe/imperative infrastructure to provide logging, parameter validation, and to call a REST API.
See the Imperative CLI Framework documentation for more information.

Exporting interface and programmatic API for other Node.js applications

https://docs.zowe.org/stable/extend/extend-cli/cli-installing-sample-plugin
https://jsonplaceholder.typicode.com/todos
https://jsonplaceholder.typicode.com/
https://github.com/zowe/imperative/wiki

Update zowe-cli-sample-plugin/src/index.ts to contain the following:

A sample invocation of your API might look similar to the following, if it were used by a separate, standalone Node.js application:

Checkpoint one

Issue npm run build to verify a clean compilation and confirm that no lint errors are present. At this point in this tutorial, you have a

programmatic API that will be used by your handler or another Node.js application. Next you'll define the command syntax for the
command that will use your programmatic Node.js APIs.

Creating a command definition

Within Zowe CLI, the full command that we want to create is zowe zowe-cli-sample list typicode-todos . Navigate to zowe-cli-

sample-plugin/src/cli/list and create a folder typicode-todos . Within this folder, create TypicodeTodos.definition.ts . Its

content should be as follows:

This describes the syntax of your command.

Defining command to list group

Within the file zowe-cli-sample-plugin/src/cli/list/List.definition.ts , add the following code below other import
statements near the top of the file:

Then add TypicodeTodosDefinition to the children array. For example:

Creating a command handler

Also within the typicode-todos folder, create TypicodeTodos.handler.ts . Add the following code to the new file:

The if statement checks if a user provides an --id flag. If yes, we call getTodo . Otherwise, we call getTodos . If the Typicode API
throws an error, the @zowe/imperative infrastructure will automatically surface this.

Checkpoint two

Issue npm run build to verify a clean compilation and confirm that no lint errors are present. You now have a handler, definition, and

your command has been defined to the list group of the command.

Using the installed plug-in
Issue the command: zowe zowe-cli-sample list typicode-todos

Refer to zowe zowe-cli-sample list typicode-todos --help for more information about your command and to see how text in

the command definition is presented to the end user. You can also see how to use your optional --id flag:

https://github.com/zowe/zowe-cli-sample-plugin/blob/master/src/index.ts

Summary
You extended an existing Zowe CLI plug-in by introducing a Node.js programmatic API, and you created a command definition with a
handler. For an official plugin, you would also add JSDoc to your code and create automated tests.

Next steps
Try the Developing a new plug-in tutorial next to create a new plug-in for Zowe CLI.

https://jsdoc.app/
https://docs.zowe.org/stable/extend/extend-cli/cli-developing-a-plugin

Version: v2.17.x LTS

Developing a new Zowe CLI plug-in
Before you begin this tutorial, complete the Extending an existing plug-in tutorial.

Overview
The advantage of Zowe CLI and of the CLI approach in mainframe development is that it allows for combining different developer
tools for new and interesting uses.

This tutorial demonstrates how to create a brand new Zowe CLI plug-in that uses Node.js to create a client-side API.

After following all the steps, you will have created a data set diff utility plug-in called Files Util Plug-in. This plug-in takes in any two
data sets, or files, and returns a plain text output in the terminal showing how they differ. This tutorial will also show you how you can
integrate your new plug-in with a third-party utility to make your output colorful and easier to read, as shown in the image at the
bottom of this page.

If you are ready to create your own unique Zowe CLI plug-in, refer to the notes at the end of each tutorial step for guidance.

If you are interested in creating a credential manager plug-in, see the Zowe CLI secrets for kubernetes plug-in repository.

Setting up the new sample plug-in project
Download the sample plug-in source and delete the irrelevant content to set up your plug-in project.

Follow these steps:

1. Open a terminal and run the command mkdir zowe-tutorial .

NOTE

All the files created through this tutorial are saved in this tutorial directory.

2. Enter cd zowe-tutorial to change directory into your zowe-tutorial folder.

3. Download the source code zip file from the Zowe CLI sample plug-in repository.

4. In your File Explorer, extract the zip file to the zowe-tutorial folder.

5. Rename the zowe-cli-sample-plugin-master directory to files-util .

This is the project directory used throughout the rest of this tutorial.

6. Delete all content within the following folders:

src/api

src/cli

https://docs.zowe.org/stable/extend/extend-cli/cli-extending-a-plugin
https://docs.zowe.org/stable/extend/extend-cli/extend-cli/cli-developing-a-plugin#bringing-together-new-tools
https://github.com/zowe/zowe-cli-secrets-for-kubernetes
https://github.com/zowe/zowe-cli-sample-plugin/archive/refs/heads/master.zip

docs folders

__tests__/__system__/api

__tests__/__system__/cli

__tests__/api

__tests__/cli

7. Return to your terminal and run cd files-util to enter the project directory.

8. Enter git init to set up a new Git repository.

9. Enter git add --all to stage (track) all files in the current directory with Git.

10. Enter git commit --message "Initial commit" to save a snapshot of the staged files in your repository.

11. Run npm install to install third-party dependencies defined in the package.json file of your Node.js project.

When successful, a progress bar displays. Once the plug-in is installed, a message displays the status of the packages in the
node_modules directory.

NOTE

If vulnerabilities are found in any of the installed dependencies, refer to npm Docs for how to fix them.

To create a unique plug-in: Change the files-util directory to a name applicable for your project.

Updating package.json

Change the name property in the package.json file to the plug-in name.

Open the package.json file in a text editor and replace the name field with the following information:

This tutorial uses @zowe/files-util as the tutorial plug-in name.

To create a unique plug-in: Replace @zowe/files-util with a unique plug-in name. This allows you to publish the plug-in under

that name to the npm registry in the future. For information regarding npm scoping, see the npm documentation.

Adjusting Imperative CLI Framework configuration
Define json configurations for the plug-in to Imperative.

Change the src/pluginDef.ts file to contain the following configurations:

When successful, the src/pluginDef.ts file contains the new configurations.

To create a unique plug-in: Change the plug-in name, display name, and description according to your project.

https://docs.npmjs.com/cli/v9/commands/npm-audit
https://docs.npmjs.com/cli/v9/using-npm/scope

Adding third-party packages
Install third-party packages as dependencies for the plug-in's client-side API.

Follow these steps:

1. Run npm install --save-exact diff to install the diff package (which includes methods for comparing text).

2. Run npm install --save-dev @types/diff to install the typescript type definitions for the diff package as a development

dependency.

When successful, the diff and @types/diff packages are added to the dependency list in the package.json file.

To create a unique plug-in: Instead of the diff package, install the package(s) that are required for your API, if any.

Creating a Node.js client-side API
Create a client-side API that compares the contents of two data sets on the mainframe.

Follow these steps:

1. In the src/api directory, create a file named DataSetDiff.ts .

2. Copy and paste the following code into the DataSetDiff.ts file:

3. In the src directory, replace the contents of the index.ts file with the following code in order to make the API available for

other developers to import:

When successful, the index.ts file contains the new code.

To create a unique plug-in: The file name and code in Step 2 may be entirely different if you want to implement an API to do
something else.

Building your plug-in source
To confirm that your project builds successfully:

1. Due to missing license headers, you will come across linting errors. Run npm run lint:fix to resolve the errors automatically.

When successful, no errors are returned, although an unrelated warning might display. Additionally, the lib directory contains
the built javascript files.

2. In the terminal, run npm run build to verify there are no errors.

This command builds your typescript files by looking at the configuration details in tsconfig.json and placing the output

javascript files in the lib directory.

The lib directory is configurable by modifying this value in the tsconfig.json file.

https://docs.npmjs.com/specifying-dependencies-and-devdependencies-in-a-package-json-file
https://github.com/zowe/zowe-cli-sample-plugin/blob/master/tsconfig.json#L12

To create a unique plug-in: Follow these same steps.

Creating a Zowe CLI command
To define the command that calls the client-side API:

1. In src/cli , create a folder named diff .

2. In the diff directory, create a file named Diff.definition.ts .

3. Copy and paste the following code into the Diff.definition.ts file:

4. In the diff folder, create a folder named data-sets .

5. In the data-sets folder, create the following two files:

DataSets.definition.ts

DataSets.handler.ts

6. Copy and paste the following code into the DataSets.definition.ts file:

7. Copy and paste the following code into the DataSets.handler.ts file:

When successful, the Diff.definition.ts , DataSets.definition.ts , and DataSets.handler.ts files contain the new code.

NOTE

If you are adding multiple commands to your CLI plug-in, consider moving the code that creates a session into a base handler
class that can be shared across multiple commands. See the sample plugin code for an example of how this can be done.

To create a unique plug-in: Refer to file names specific to your project. Your code likely follows the same structure, but command
name, handler, definition, and other information would differ.

Trying your command
Before you test your new command, confirm that you are able to connect to the mainframe.

In order for the client-side API to reach the mainframe (to fetch data sets), Zowe CLI needs a z/OSMF profile for access. See Using
profiles for information.

Once the connection between Zowe CLI and z/OSMF is confirmed, build and install the plug-in before running it for the first time.

Follow these steps:

1. Repeat the steps in Building your plug-in source.

As you make changes, repeat these steps to make sure the changes are reflected in the working plug-in.

2. Issue the following command to install Files Util Plug-in into Zowe CLI:

https://github.com/zowe/zowe-cli-sample-plugin/blob/master/src/cli/list/ListBaseHandler.ts
https://docs.zowe.org/stable/extend/user-guide/cli-using-using-team-profiles/
https://docs.zowe.org/stable/extend/extend-cli/extend-cli/cli-developing-a-plugin#building-your-plug-in-source

A success message displays if installed correctly.

NOTE

If you encounter installation errors due to conflicting profiles or command groups, uninstall the sample plug-in or modify
the profile definition in the src/pluginDef.ts file.

3. Replace the data set names with valid mainframe data set names on your system:

The raw diff output displays as a command response:

When successful, the output displays plain text diffs of the entered data sets.

To create a unique plug-in: Use Step 3 to run your new command. Note that the command is different based on the plug-in name in
the src/pluginDef.ts file.

Bringing together new tools!
You have created a simple CLI plug-in that provides plain text diffs of two data sets. But you may not want to end there.

Depending on the complexity of your changes, it can be difficult to identify data set differences with plain text.

To help fix this, you can extend Files Util Plug-in to create a more visual output. For this tutorial, use diff2html to generate side-by-
side diffs that make it easier to compare changes, as seen in the image below.

Diff to HTML by rtfpessoa

Follow these steps:

1. Run npm install --global diff2html-cli to install diff2html .

NOTE

https://diff2html.xyz/
https://github.com/rtfpessoa

Zowe is not associated with diff2html-cli .

2. To pipe your Zowe CLI plug-in output to diff2html , run the following command with your information:

When successful, this launches a web browser that displays side-by-side diffs using HTML.

For a unique plug-in, consider integrating with more modern tools that make outputs easier to read or manage, or that can use
outputs in scripts.

Next steps
Try the Implementing profiles in a plug-in tutorial to learn about defining new profiles with your plug-in.

https://docs.zowe.org/stable/extend/extend-cli/cli-implement-profiles

Version: v2.17.x LTS

Implementing profiles in a plug-in
You can use this profile template to create a profile for your product.

The profile definition is placed in the imperative.ts file.

The type: "someproduct" property represents the profile name that you might require on various commands to have credentials

loaded from a secure credential manager and retain the host/port information, so that you can easily swap to different servers from
the CLI.

By default, if your plug-in that is installed into Zowe™ CLI contains a profile definition that is similar to the following example, a profile
template is added automatically to team config JSON when you run the zowe config init command. Any properties for which

includeInTemplate is true are included in the template. Additionally, commands that manage V1 profiles are created automatically

under zowe profiles . For example, create , validate , set-default , list , and so on.

Next steps

If you completed all previous tutorials, you now understand the basics of extending and developing plug-ins for Zowe CLI. Next, we
recommend reviewing the project contribution guidelines and Imperative CLI Framework documentation to learn more.

https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#contribution-guidelines
https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#imperative-cli-framework-documentation

Version: v2.17.x LTS

Extending Zowe Explorer
You can extend the possibilities of Zowe Explorer by creating you own extensions. For more information on how to create your own
Zowe Explorer extension, see Extensions for Zowe Explorer.

https://github.com/zowe/zowe-explorer-vscode/wiki/Extending-Zowe-Explorer

Version: v2.17.x LTS

Information roadmap for Zowe Client SDKs
This roadmap outlines information resources that are applicable to the various user roles who are interested in Zowe Client Software
Development Kits (SDKs) which is a Zowe component still under development. These resources provide information about various
subject areas, such as learning basic skills, installation, developing, and troubleshooting for Zowe Client SDKs.

The following definition of skill levels about Zowe will help you gather most relevant resources for you.

Beginner: You are starting out and want to learn the fundamentals.

Intermediate: You have some experience but want to learn more in-depth skills.

Advanced: You have lots of experience and are looking to learn about specialized topics.

Fundamentals
Zowe skill level: Beginner

Zowe Client SDK overview

New to Zowe Client SDKs? This overview topic briefly introduces what the SDK is.

Blog: Zowe SDKs - Build z/OS Connected Applications Faster

This blog introduces Zowe SDKs and their benefits.

Installing
Zowe skill level: Beginner

System requirements

Review this topic to ensure that your system meets the requirements for installing Zowe Client SDKs.

Installing Zowe SDK

Follow the steps to install Zowe SDKs. You can pull the packages from an online registry, or download the packages from
Zowe.org to install locally.

Using Zowe Client SDKs
Zowe skill level: Intermediate

Zowe Node.js SDK

Using Zowe Node.js SDKs

This information provides links to different pakcage Readmes that describes how to use the Zowe Node SDK.

https://docs.zowe.org/stable/getting-started/overview#zowe-client-software-development-kits-sdks
https://medium.com/zowe/zowe-sdks-build-z-os-connected-applications-faster-b786ba7bb0d9
https://docs.zowe.org/stable/user-guide/sdks-using#software-requirements
https://docs.zowe.org/stable/user-guide/sdks-using#getting-started
https://docs.zowe.org/stable/user-guide/sdks-using#using-node-js

Docs: Node.js SDK reference guide

Refer to the following Zowe Client SDK reference guides for information about the API endpoints:

Browse Node SDK reference guide online

Download SDK reference guide in ZIP format

Zowe SDK Sample Scripts

This repository contains some sample scripts that utilize various components of the Zowe SDKs organized by use cases.

Zowe Python SDK

Using Zowe Python SDKs

This information provides links to different pakcage Readmes that describes how to use the Zowe Python SDK.

Docs: Python SDK reference guide

Refer to the following Zowe Client SDK reference guides for information about the API endpoints:

Browse Python SDK reference guide online

Download SDK reference guide in PDF format

Contributing to Zowe Client SDKs
Zowe skill level: Advanced

Contributing guidelines

This document is a summary of guidelines for development within Zowe SDKs. You can contribute to add features, enhancements,
and bug fixes to the source code.

Troubleshooting and support
Sumit an issue

If you have an issue that is specific to Zowe SDKs, you can submit an issue against the zowe-cli repo.

Community resources

Slack channel

Join the #zowe-cli Slack channel to ask questions about Zowe CLI and Zowe SDKs, propose new ideas, and interact with the Zowe
community.

Zowe CLI squad meetings

You can join one of the Zowe CLI squad meetings to discuss Zowe SDKs issues and contibute to Zowe SDKs.

https://docs.zowe.org/stable/typedoc/index.html
https://docs.zowe.org/stable/zowe-nodejs-sdk-typedoc.zip
https://github.com/zowe/zowe-sdk-sample-scripts/
https://zowe-client-python-sdk.readthedocs.io/en/latest/
https://zowe-client-python-sdk.readthedocs.io/en/latest/index.html
https://zowe-client-python-sdk.readthedocs.io/_/downloads/en/latest/pdf/
https://github.com/zowe/zowe-cli/blob/master/docs/SDKGuidelines.md
https://github.com/zowe/zowe-cli/issues/new
https://openmainframeproject.slack.com/
https://lists.openmainframeproject.org/g/zowe-dev/calendar

Zowe Blogs on Medium

Read a series of blogs about Zowe on Medium to explore use cases, best practices, and more.

Community Forums

Look for discussion on Zowe topics on the Open Mainframe Project Community Forums.

https://medium.com/zowe
https://community.openmainframeproject.org/c/zowe

Version: v2.17.x LTS

Developing for Zowe SDKs
The Zowe SDKs are open source. You can contribute to add features, enhancements, and bug fixes to the source code.

The functionality is currently limited to the interfaces provided by IBM z/OSMF. As a plug-in developer, you can enhance the SDK by
creating a packages that exposes programmatic APIs for your service.

For detailed contribution guidelines, see the following documents:

Node.js SDK guidelines

Coming soon! Python SDK guidelines

https://github.com/zowe/zowe-cli/blob/master/docs/SDKGuidelines.md

Version: v2.17.x LTS

Troubleshooting Zowe
To isolate and resolve Zowe™ problems, you can use the troubleshooting and support information.

How to start troubleshooting
When you run into some issues and are looking for troubleshooting tips, the following steps may help you.

1. Search the error message or error code in your error log by using the Search bar in the Zowe Docs site. If there is an existing
solution, follow the instructions to troubleshoot.

2. If no solution is available or the existing solutions cannot apply to your problem, you could search the keywords, error messages,
or error code in the Zowe GitHub repository. If you find a closed issue or pull request, try troubleshooting by using the
information shared in the item's Conversation section. If the issue is still open, post your question or comment to prompt a
discussion on your problem.

3. If your problem is not solved, try the following options:

Create an issue in the Zowe GitHub repository with a detailed description of the problem you have encountered.

Bring up your questions to the corresponding channels as shown below:

https://docs.zowe.org/
https://github.com/zowe
https://github.com/zowe

Zowe CLI Slack channel

Zowe API ML Slack channel

Zowe Chat Slack channel

Zowe Documentation Slack channel

Reach out to your available Zowe support team for assistance.

Known problems and solutions
Some common problems with Zowe are documented, along with their solutions or workarounds. If you have a problem with Zowe
installation and components, review the problem-solution topics to determine whether a solution is available to the problem that you
are experiencing.

You can also find error messages and codes, must-gathers, and information about how to get community support in these topics.

Troubleshooting Zowe server-side components

Troubleshooting Zowe Launcher

Troubleshooting Zowe z/OS component startup

Troubleshooting API Mediation Layer

Troubleshooting Zowe Application Framework

Troubleshooting Zowe client-side components

Troubleshooting Zowe CLI

Troubleshooting Zowe Explorer

Troubleshooting Zowe Chat

Troubleshooting Zowe IntelliJ plug-in

Verifying a Zowe release's integrity
Following a successful install of a Zowe release, the Zowe runtime directory should contain the code needed to launch and run Zowe.
If the contents of the Zowe runtime directory have been modified then this may result in unpredictable behavior. To assist with this
Zowe provides the ability to validate the integrity of a Zowe runtime directory, see Verify Zowe runtime directory

Understanding the Zowe release
Knowing which version of Zowe you are running might help you isolate the problem. Also, the Zowe community who helps you will
need to know this information. For more information, see Understanding the Zowe release.

https://openmainframeproject.slack.com/archives/CC8AALGN6
https://openmainframeproject.slack.com/archives/CC5UUL005
https://openmainframeproject.slack.com/archives/C03NNABMN0J
https://openmainframeproject.slack.com/archives/CC961JYMQ
https://docs.zowe.org/stable/troubleshoot/launcher/launcher-troubleshoot
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-startup
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml
https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot
https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli
https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-ze
https://docs.zowe.org/stable/troubleshoot/zowe-chat-troubleshoot/troubleshooting
https://docs.zowe.org/stable/troubleshoot/troubleshoot-intellij
https://docs.zowe.org/stable/troubleshoot/verify-fingerprint
https://docs.zowe.org/stable/troubleshoot/troubleshoot-zowe-release

Version: v2.17.x LTS

Understanding Zowe release versions

Zowe releases
Zowe uses semantic versioning for its releases, also known as SemVer. Each release has a unique ID made up of three numbers that
are separated by periods.

Each time a new release is created, the release ID is incremented. Each number represents the content change since the previous
release. For example:

2.5.0 represents the fifth minor release since the first major release.

2.5.1 represents the first patch to the 2.5.0 release.

2.6.0 is the first minor release to be created after 2.5.1 .

Major release

A major release is required if changes are made to the public API and the code is no longer compatible with an earlier version.

When Zowe is version one, it is associated with the Zowe v1 conformance program. Offerings that extend Zowe and achieve the Zowe
v1 conformance badge will remain compatible with Zowe throughout its version 1 lifetime. A major release increment because of
incompatibility is sometimes referred to as a "breaking" change.

The first SMP/E build for Zowe v2 has a Functional Module ID (FMID) of AZWE002, which was created with content from the 2.0.0
release. Each major release will be its own SMP/E FMID where the last digit is updated, for example AZWE00V where V represents the
major version.

Subsequent minor and patch releases to V2 are delivered as SMP/E PTF SYSMODs. Because of the size of the content, two co-requisite
PTFs are created for each Zowe release.

While Major releases are required for a "breaking" change, they also can be used to indicate to the community a significant content
update over and above what would be included in a minor release.

Minor release

A minor release indicates that new functionality is added but the code is compatible with an earlier version. The Zowe community
works on two-week sprints and creates a minor release at the end of these, typically once per month although the frequency might
vary.

Patch

A patch is usually reserved for a bug fix to a minor release.

https://docs.zowe.org/stable/extend/zowe-conformance-program

Version: v2.17.x LTS

Checking your Zowe version release number
Once Zowe is installed and running, you will likely update Zowe and Zowe plug-ins regularly as new major and minor releases come
out.

To keep track of which release is running as you troubleshoot an issue, the commands and file listed here can help.

Server side
To see the version of a Zowe release, run the zwe version command in USS:

The zwe version command returns a single line with the Zowe release number:

Using other commands

Add the debug or trace options to the zwe version command to show more information.

Using the debug mode:

The debug mode shows the unique build identifier for the installed version of Zowe. Run this when you want to replicate a bug for
testing or troubleshooting.

Using the trace mode:

The trace mode shows the location where the convenience build was extracted (such as <RUNTIME_DIR>). Run this when you want to

confirm the location of your Zowe runtime directory.

Using the manifest file

Find the version number of your Zowe release in the manifest.json file.

1. Extract the PAX file for the Zowe convenience build to <RUNTIME_DIR> .

2. Navigate to <RUNTIME_DIR> to locate the manifest.json file.

3. Open the manifest.json file.

The Zowe version is listed at the beginning of the file:

Client side

Zowe CLI

1. Open the Zowe CLI.

2. Run the following command:

https://docs.zowe.org/stable/user-guide/install-zowe-zos-convenience-build

The Zowe CLI version number is returned.

Zowe CLI plug-ins

1. Open the Zowe CLI.

2. Run the following command:

A list of the installed Zowe CLI plug-ins are returned, along with the version number for each plug-in.

Zowe Explorer for Visual Studio Code

1. Open Visual Studio Code and click the Extensions icon.

The Extensions Side Bar displays.

2. In the Search bar, enter Zowe Explorer .

3. In the Side Bar, select Zowe Explorer from the search results.

An Editor tab displays the Zowe Explorer marketplace details. The version number is located next to the Zowe Explorer name.

Zowe Explorer for Visual Studio Code Extensions

1. Open Visual Studio Code and click the Extensions icon.

The Extensions Side Bar displays.

2. In the Search bar, enter the name of the Zowe Explorer extension.

3. In the Side Bar, select the entered Zowe Explorer extension from the search results.

An Editor tab displays the Zowe Explorer extension's marketplace details. The version number is located next to the Zowe
Explorer extension's name.

Zowe IntelliJ Plug-in

1. Open the File menu and click Settings.

The Settings window opens.

2. Click Plugins, then click Installed tab.

A list of the installed extensions displays.

3. Search for, and select, Zowe Explorer .

The Zowe Explorer marketplace details display on the right side of the window. The version number is located adjacent to the
Zowe Explorer name.

Version: v2.17.x LTS

Gathering Information for Support or Troubleshooting
If you need to contact a support group for Zowe, they will likely need a variety of information from you to help you. This page details
a list of items you should gather to the best of your ability to provide to your support group. You may also find this list useful for
independent troubleshooting.

Describe your environment
Zowe version number:

Install method (pax, smpe, kubernetes, github clone):

Operating system (z/OS, kubernetes, etc) and OS version:

Node.js version number (Shown in logs, or via node --version):

Java version number (Shown in logs, or via java -version):

z/OSMF version:

Browser:

Are you accessing the Desktop from the APIML Gateway? (Recommended):

What is the output of log message ZWES1014I:

Environment variables in use:

Tips on gathering this information

A lot of this information can be gathered automatically using the zwe command zwe support . Otherwise, you can gather some of

the information in the ways below.

z/OS release level

To find the z/OS release level, issue the following command in SDSF:

Zowe version

Locate the file manifest.json within the zowe installation directory. At the top, you will find the version number.

Describe your issue

Do you think your issue is a bug? If so, try to list the steps to reproduce it, and what you expect to happen instead.

Provide the logs
When running Zowe servers on z/OS, the joblog has the most information. Depending on what support group you are contacting, you
may want to sanitize the logs as they can contain basic system information like hostnames, usernames, and network configuration.

Ensure that your logs were captured with long enough record length to be read by support. Zowe commonly writes lines as long as
500 characters, especially when tracing.

Enabling debugging and tracing

There are several debug modes in the Zowe servers, and support groups may ask for you to turn some on. Below are some tracing
you can turn on when needed:

When running a zwe command, you can run it with --trace to get the most output from it.

zwe startup tracing can be set via the zowe configuration file property zowe.launchScript.logLevel="trace" . You can see the

property in the example file here

app-server tracing can be enabled by setting various loggers in the property components.app-server.logLevels in the zowe

configuration file. The full list is documented here. More information

zss-tracing tracing can be enabled by setting various loggers in the property components.zss.logLevels in the zowe

configuration file. The full list is documented here. More information

discovery, gateway, api-catalog and other servers can have tracing enabled by setting debug: true within their zowe
configuration file section, such as components.gateway.debug=true

You may find more detail within the Mediation Layer and Application Framework troubleshooting categories.

Screenshots
If you have an issue in the browser, its often helpful to show the issue via screenshots.

https://github.com/zowe/zowe-install-packaging/blob/677a607686e6ee7ecb349dc5925a6f58dd9e61da/example-zowe.yaml#L356
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json#L442
https://docs.zowe.org/stable/troubleshoot/user-guide/mvd-configuration#logging-configuration
https://github.com/zowe/zss/blob/v2.x/master/schemas/zss-config.json#L251
https://docs.zowe.org/stable/troubleshoot/user-guide/mvd-configuration#logging-configuration

Version: v2.17.x LTS

Verify Zowe runtime directory
Zowe ships a zwe support verify-fingerprints command to help you verify authenticity of your runtime directory. This command
collects and calculates hashes for all files located in Zowe runtime directory and compare the hashes shipped with Zowe. With this
utility, you are able to tell what files are modified, added, or deleted from original Zowe build.

Here is an example for successful verification:

If this verification fails, the script will exit with code 181 and display error messages like Number of different files: 1 . You can

optionally pass --debug or -v parameter to instruct this command to verbosely display which files are different.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints

Version: v2.17.x LTS

Troubleshooting Kubernetes environments
The following topics contain information that can help you troubleshoot problems when you encounter unexpected behavior
installing and using Zowe™ containers in a Kubernetes environment.

ISSUE: Deployment and ReplicaSet failed to create pod

Problem:

If you are using OpenShift and see these error messages in ReplicaSet Events:

That means the Zowe ServiceAccount zowe-sa doesn't have any SecurityContextConstraint attached.

Solution:

You can run this command to grant a certain level of permission, for example, privileged , to zowe-sa ServiceAccount:

ISSUE: Failed to create services

Problem:

If you are using OpenShift and apply services, you may see this error:

Solution:

To fix this issue, you can simply find and comment out this line in the Service definition files:

With OpenShift, you can define a PassThrough Route to let Zowe handle TLS connections.

Version: v2.17.x LTS

Diagnosing Return Codes
If one of the Zowe servers ends abnormally with a return code, then this return code may be used as a clue to determine the cause of
the failure. The meaning of a return code depends upon which program generated it; many return codes can originate from operating
system utilities rather than from Zowe itself, but some may originate from Zowe too. Knowing which program generated the return
code is important to finding the relevant documentation on the code. For example, if you tried to run the app-server and received a

return code from a failure, it could have originated from, in order of execution, the Launcher, shell code and shell utilities such as cat

or mkdir , zwe , and finally the app-server itself.

Return codes that can arise from any of the servers due to the chain of events that start Zowe may be found in the following
documentation:

Zowe launcher error codes

The z/OS shell and programs called from the shell such as cat , mkdir , node or java :

Return codes ("errno"): https://www.ibm.com/docs/en/zos/2.5.0?topic=codes-return-errnos

Reason codes ("errnojr"): https://www.ibm.com/docs/en/zos/2.5.0?topic=codes-reason-errnojrs

zwe error codes are documented specific to each zwe subcommand visible within the --help option of zwe or on the zwe

reference page. Searching for "ZWEL" plus your error code in the search bar of the documentation website will likely bring you to
the appropriate page.

Error codes for the specific Zowe servers may be found in their own troubleshooting sections.

https://docs.zowe.org/stable/troubleshoot/servers/launcher/launcher-error-codes
https://www.ibm.com/docs/en/zos/2.5.0?topic=codes-return-errnos
https://www.ibm.com/docs/en/zos/2.5.0?topic=codes-reason-errnojrs
https://docs.zowe.org/stable/troubleshoot/appendix/zwe_server_command_reference/zwe/zwe

Version: v2.17.x LTS

Troubleshooting certificate configuration
As an API Mediation Layer user, you may encounter problems when configuring certificates. Review the following article to
troubleshoot errors or warnings that can occur when configuring certificates.

PKCS12 server keystore generation fails in Java 8 SR7FP15, SR7 FP16, and SR7 FP20

Eureka request failed when using entrusted signed z/OSMF certificate

Zowe startup fails with empty password field in the keyring setup

Certificate error when using both an external certificate and Single Sign-On to deploy Zowe

Browser unable to connect due to a CIPHER error

API Components unable to handshake

Java z/OS components of Zowe unable to read certificates from keyring

Java z/OS components of Zowe cannot load the certificate private key pair from the keyring

Exception thrown when reading SAF keyring {ZWED0148E}

ZWEAM400E Error initializing SSL Context when using Java 11

Failed to load JCERACFKS keyring when using Java 11

PKCS12 server keystore generation fails in Java 8 SR7FP15, SR7 FP16, and
SR7 FP20
Symptoms

Some Zowe Desktop applications do not work when Zowe creates a PKCS12 keystore. A message may appear in the log such as the
following:

ZWES1060W Failed to init TLS environment, rc=1(Handle is not valid)

ZWES1065E Failed to configure https server. Check agent https setting.

These messages indicate that ZSS cannot read the generated keystore. As such, parts of Zowe are not functional.

Solutions

This error results from the incompatibility between Java and GSK regarding cryptography.

Try one of the following options if you are affected by this error:

Temporarily downgrade Java, for example to Java 8 SR7FP10, and generate the PKCS12 keystore again.

Upgrade Zowe to a later version 2.11.0 or a newer version in which this issue is fixed.

NOTE

This error will not occur if you already have an existing keystore created with a proper Java version, or are using keyrings.

If you do not plan to use Zowe Desktop, you can disable the ZSS component to avoid receiving ZSS component errors in the
log.

Eureka request failed when using entrusted signed z/OSMF certificate
Symptoms

A problem may occur when using the entrusted signed z/OSMF certificate, whereby the ZLUX AppServer cannot register with Eureka.
Logs indicate that the cause is the self-signed certificate:

Solution

The error indicates that the keyring does not exist or cannot be found.

Review the keyring information and confirm the corresponding certificate authorities. Ensure that you specify the
certificateAuthorities variable with the correct keyring label, and the label of the connected CA in the zowe.certificate
section of your zowe.yaml file.

For example, if the keyring label is ZoweKeyring and the LABLCERT of the connected CA is CA Internal Cert , the

certificateAuthorities variable should be certificateAuthorities: safkeyring://ZWESVUSR/ZoweKeyring&CA Internal

Cert .

Zowe startup fails with empty password field in the keyring setup

Symptoms

The certificate appears to be correct, but the Gateway and the Discovery Service fail during start. The setup of the keyring certificate
does not require a value for password in the zowe.certificate.keystore.password and

zowe.certificate.truststore.password .

Solution

The password is only used for USS PKCS12 certificate files. The keyring is protected by SAF permissions. Note that in some
configurations, Zowe does not work if the password value is empty in the keyring configuration. We recommended that you assign a
value to password as shown in the following example:

Example:

Certificate error when using both an external certificate and Single Sign-On
to deploy Zowe
Symptom:

You used an external certificate and Single Sign-On to deploy Zowe. When you log in to the Zowe Desktop, you encounter an error
similar to the following:

Solution:

This issue might occur when you use a Zowe version of 1.12.0 or later. To resolve the issue, you can download your external root
certificate and intermediate certificates in PEM format. Then, add the following parameter in the zowe.yaml file.

environments.ZWED_node_https_certificateAuthorities: "/path/to/zowe/keystore/local_ca/localca.cer-

ebcdic","/path/to/carootcert.pem","/path/to/caintermediatecert.pem"

Recycle your Zowe server. You should be able to log in to the Zowe Desktop successfully now.

Browser unable to connect due to a CIPHER error
Symptom:

When connecting to the API Mediation Layer, the web browser throws an error saying that the site is unable to provide a secure
connection because of an error with ciphers.

The error shown varies depending on the browser. For example,

For Google Chrome:

For Mozilla Firefox:

Solution:

Remove GCM as a disabled TLS algorithm from the Java runtime being used by Zowe.

To do this, first locate the $JAVA_HOME/lib/security/java.security file. You can find the value of $JAVA_HOME in one of the

following ways.

Method 1: By looking at the java.home value in the zowe.yaml file used to start Zowe.

For example, if the zowe.yaml file contains the following line,

then, the $JAVA_HOME/lib/security/java.security file will be /usr/lpp/java/J8.0_64/lib/security/java.security .

Method 2: By inspecting the STDOUT JES spool file for the ZWESLSTC started task that launches the API Mediation Layer.

In the java.security file, there is a parameter value for jdk.tls.disabledAlgorithms .

Example:

Note: This line may have a continuation character \ and be split across two lines due to its length.

Edit the parameter value for jdk.tls.disabledAlgorithms to remove GCM . If, as shown in the previous example, the line ends <224,

GCM , remove the preceding comma so the values remain as a well-formed list of comma-separated algorithms:

Example:

Note: The file permissions of java.security might be restricted for privileged users at most z/OS sites.

After you remove GCM , restart the ZWESLSTC started task for the change to take effect.

API Components unable to handshake
Symptom:

The API Mediation Layer address spaces ZWE1AG, ZWE1AC and ZWE1AD start successfully and are visible in SDSF, however they are
unable to communicate with each other.

Externally, the status of the API Gateway homepage displays ! icons against the API Catalog, Discovery Service and Authentication
Service (shown on the left side image below) which do not progress to green tick icons as normally occurs during successful startup
(shown on the right side image below).

The Zowe desktop is able to start but logon fails.

The log contains messages to indicate that connections are being reset. For example, the following message shows that the API
Gateway ZWEAG is unable to connect to the API Discovery service, by default 7553.

The Zowe desktop is able to be displayed in a browser but fails to logon.

Solution:

Check that the Zowe certificate has been configured as a client certificate, and not just as a server certificate. For more informtion, see
More detail can be found in Configuring certificates overview.

Java z/OS components of Zowe unable to read certificates from keyring
Symptom:

Java z/OS components of Zowe are unable to read certificates from a keyring. This problem may appear as an error as in the following
example where Java treats the SAF keyring as a file.

Example:

Solution:

Apply the following APAR to address this issue:

APAR IJ31756

Java z/OS components of Zowe cannot load the certificate private key pair
from the keyring
Symptom:

API ML components configured with SAF keyring are not able to start due to an unrecoverable exception. The exception message
notifies the user that the private key is not properly padded.

Example:

Solution:

Make sure that the private key stored in the keyring is not encrypted by a password, or that the private key integrity is not protected
by a password. This is not related to SAF keyrings themselves, which are not usually protected by password, but rather to is related to
the concrete certificate private key pair stored in the SAF keyring.

Exception thrown when reading SAF keyring {ZWED0148E}

Symptom:

If you see one or more of the following messages in the logs, the cause is keyring configuration.

https://docs.zowe.org/stable/troubleshoot/user-guide/configure-certificates
https://www.ibm.com/support/pages/apar/IJ31756

ZWED0148E - Exception thrown when reading SAF keyring, e= Error: R_datalib call failed: function code: 01, SAF rc: number , RACF

rc: number , RACF rsn: number

java.io.IOException: R_datalib (IRRSDL00) error: profile for ring not found (number , number , number)

You may also see the following log message:

ZWES1060W Failed to init TLS environment, rc=1(Handle is not valid)

Note: This log message can have other causes too, such as lack of READ permission to resources in the CRYPTOZ class.

Solution:

1. Refer to table 2 (DataGetFirst) of the Return and Reason Codes to determine the specific problem.

2. Check your keyring (such as with a LISTRING command) and your zowe configuration file's zowe.certificate section to spot

and resolve the issue.

Example: If ZWED0148E contains the following message, it indicates that Zowe's local certificate authority (local CA) ZoweCert , the
certificate jwtsecret , or the Zowe certificate localhost does not exist in the Zowe keyring.

Zowe's local CA certificate has its default name ZoweCert . Zowe Desktop hardcodes this certificate in the configuration scripts.

If you are using your own trusted CA certificate in the keyring, and the name is different from the default one, this error will occur. To
resolve the issue, you must match the names in the Zowe configuration.

If you are using Zowe's local CA certificate and you still receive ZWED0148E, you may find the following message in the same log.

In this case, ensure that the label names exactly match the names in TSO when confirming your keyring. Any difference in spaces,
capitalization, or other places throw the error.

ZWEAM400E Error initializing SSL Context when using Java 11
Symptom:

API ML components configured with SAF keyring are not able to start due to an unrecoverable exception. The message indicates that
safkeyring is an unknown protocol.

Examples:

Solution:

Starting with Java 11, the safkeyring URLs are dependent on the type of RACF keystore as presented in the following table.

URL Keystore

JCECCARACFKS safkeyringjcecca://ZWESVUSR/ZOWERING

JCERACFKS safkeyringjce://ZWESVUSR/ZOWERING

https://www.ibm.com/docs/en/zos/2.5.0?topic=library-return-reason-codes
https://docs.zowe.org/stable/troubleshoot/user-guide/configure-certificates

URL Keystore

JCEHYBRIDRACFKS safkeyringjcehybrid://ZWESVUSR/ZOWERING

Failed to load JCERACFKS keyring when using Java 11
Symptom:

API ML components do not start properly because they fail to load the JCERACFKS keyring. The exception message indicates that the
keyring is not available. The keyring, however, is configured correctly and the STC user can access it.

Examples:

Solution:

In Java 11 releases before 11.0.17.0, the IBMZSecurity security provider is not enabled by default. Locate the java.security

configuration file in the $JAVA_HOME/conf/security USS directory and open the file for editing. Modify the list of security providers
and insert IBMZSecurity on second position. The list of enabled security providers should resemble the following series:

For more information see the steps in Enabling the IBMZSecurity provider.

https://www.ibm.com/docs/en/semeru-runtime-ce-z/11?topic=guide-ibmzsecurity#ibmzsecurity__enabling_z_provider__title__1

Version: v2.17.x LTS

Troubleshooting startup of Zowe z/OS components
The following topics contain information that can help you troubleshoot problems when you encounter unexpected behavior
installing Zowe z/OS components or starting Zowe's ZWESLSTC started task.

How to check if ZWESLSTC startup is successful

The ZWESLSTC started task on z/OS brings up a number of address spaces. There is no single Zowe has launched and is ready to run

message as the sequence of address spaces initialization is environment-dependent, although the message ID ZWED0021I is typically
the last one that is logged. More details on each subsystem and their startup messages are described in the following sections.

Check the startup of API Mediation Layer

Check the startup of Zowe Desktop

Check the startup of Zowe Secure Services

To check that Zowe has started successfully, the most complete way is to check that each component successfully completed its
initialization. Each component writes messages to the JES SYSPRINT and writes severe errors to the STDERR job spool file.

To learn more about the Zowe components and their role, see Zowe Architecture. It is possible to configure Zowe to bring up only a
subset of its components by using the zowe.components.<NAME>.enabled: boolean variables in the zowe.yaml file.

Check the startup of API Mediation Layer

The API Mediation Layer has four address spaces: API Catalog, API Gateway, API Discovery and Caching Service.

To check whether the API mediation layer is fully initialized, look for the ZWEAM000I message. Each component writes a successful

startup message ZWEAM000I to JES as shown below. The message also indicates the CPU of seconds spent. In a normal startup of the

APIML components each one will write a ZWEAM00I message similar to below:

As well as looking for ZWEAM00I in the JES log, you can also log in to the gateway homepage and check the service status indicator. If
there is a red or yellow tick beside one of its three services, the components are still starting.

When all services are fully initialized, there will be three green ticks.

https://docs.zowe.org/stable/getting-started/zowe-architecture

Check the startup of Zowe Desktop

During startup of the the Zowe desktop loads its plug-ins and writes a message ZWED0031I when it is completed.

The ZWED0031I message includes a count of the number of loaded plug-ins as well as the total number of plug-ins, for example

Plugins successfully loaded: 100% (19/19) . A failed plug-in load will not abort the launch of the desktop.

If the the Zowe desktop is started together with the API Gateway, the Zowe Desktop it will register itself with the API Gateway. This
step must be completed before a user is able to successfully log in to the Zowe Desktop. The message that is written to indicate that
the registration handshake between the Zowe Desktop and the API GAteway has been successful is ZWED0021I , for example

If you try to log into the Zowe desktop too early before the Eureka client registration has occurred you may get an Authentication
failed message on the login page because the APIML handshake is incomplete. If this occurs wait for the registration to be complete
as indiciated by the ZWED0021I message.

As well as spooling to the JES SYSPRINT file for the Zowe ZWESLSTC task, the Zowe Desktop writes messages to

zowe.logDirectory/zssServer-yyyy-mm-dd-hh-ss.log .

Check the startup of Zowe Secure Services

The zssServer is used for secure services for the Zowe desktop.

The zssServer will register itself with the cross memory server running under the address space ZWESISTC . You can use the attach

message ID ZWES1014I to check that this has occurred successfully. If this message contains a nonzero return code in the cmsRC=
value, then a failure occurred. For more information on how to diagnose these, see ZSS server unable to communicate with X-MEM.

https://docs.zowe.org/stable/troubleshoot/app-framework/app-troubleshoot#zss-server-unable-to-communicate-with-x-mem

Version: v2.17.x LTS

Troubleshooting Zowe API Mediation Layer
As an API Mediation Layer user, you may encounter problems with how the API ML functions. This article presents known API ML
issues and their solutions.

NOTE

To troubleshoot errors or warnings that can occur when configuring certificates, see the article Troubleshooting certificate
configuration.

Install API ML without Certificate Setup

Enable API ML Debug Mode

Change the Log Level of Individual Code Components

Services that are not running appear to be running

Debug and Fix Common Problems with SSL/TLS Setup

SDSF Job search fails

Known Issues
API ML stops accepting connections after z/OS TCP/IP stack is recycled

SEC0002 error when logging in to API Catalog

API ML throws I/O error on GET request and cannot connect to other services

Install API ML without Certificate Setup
For testing purposes, it is not necessary to set up certificates when configuring the API Mediation Layer. You can configure Zowe
without certificate setup and run Zowe with verify_certificates: DISABLED .

Important: For production environments, certificates are required. Ensure that certificates for each of the following services are issued
by the Certificate Authority (CA) and that all keyrings contain the public part of the certificate for the relevant CA:

z/OSMF

Zowe

The service that is onboarded to Zowe

Enable API ML Debug Mode
Use debug mode to activate the following functions:

Display additional debug messages for API ML

Enable changing log level for individual code components

Gather atypical debug information

When on z/OS, API ML log messages are written to the STC job log.

https://docs.zowe.org/stable/troubleshoot/troubleshoot-zos-certificate

Important: We highly recommend that you enable debug mode only when you want to troubleshoot issues. Disable debug mode
when you are not troubleshooting. Running in debug mode while operating API ML can adversely affect its performance and create
large log files that consume a large volume of disk space.

Follow these steps:

1. Open the file zowe.yaml .

2. For each component, find the components.*.debug parameter and set the value to true :

By default, debug mode is disabled, and the components.*.debug is set to false .

3. Restart Zowe™.

You enabled debug mode for the API ML core services (API Catalog, API Gateway and Discovery Service).

4. (Optional) Reproduce a bug that causes issues and review debug messages. If you are unable to resolve the issue, create an issue
here.

Change the Log Level of Individual Code Components
You can change the log level of a particular code component of the API ML internal service at run time.

Follow these steps:

1. Enable API ML Debug Mode as described in Enable API ML Debug Mode. This activates the application/loggers endpoints in each
API ML internal service (Gateway, Discovery Service, and Catalog).

2. List the available loggers of a service by issuing the GET request for the given service URL:

scheme

Specifies the API ML service scheme (http or https)

hostname

Specifies the API ML service hostname

port

Specifies the TCP port where API ML service listens on. The port is defined by the configuration parameter MFS_GW_PORT for
the Gateway, MFS_DS_PORT for the Discovery Service (by default, set to gateway port + 1), and MFS_AC_PORT for the
Catalog (by default, set to gateway port + 2).

Note: For the Catalog you can list the available loggers by issuing a GET request for the given service URL in the following
format:

Tip: One way to issue REST calls is to use the http command in the free HTTPie tool: https://httpie.org/.

Example:

https://github.com/zowe/api-layer/issues/
https://httpie.org/

3. Alternatively, extract the configuration of a specific logger using the extended GET request:

{name}

Specifies the logger name

4. Change the log level of the given component of the API ML internal service. Use the POST request for the given service URL:

The POST request requires a new log level parameter value that is provided in the request body:

level

Specifies the new log level: OFF, ERROR, WARN, INFO, DEBUG, TRACE

Example:

Gather atypical debug information

ZWE_configs_debug
This property can be used to unconditionally add active debug profiles.

For more information, see Adding active profiles in the Spring documentation.

ZWE_configs_sslDebug
This property can be used to enable the SSL debugging. This property can also assist with determining what exactly is happening
at the SSL layer.

This property uses the -Djavax.net.debug Java parameter when starting the Gateway component. By setting

ZWE_configs_sslDebug to ssl , all SSL debugging is turned on. The ZWE_configs_sslDebug parameter also accepts other values

that can enable a different level of tracing.

For more information, see the article Debugging Utilities in the IBM documentation.

NOTE

This property can also be enabled for other API ML components.

Services that are not running appear to be running
Services that are not running appear to be running. The following message is displayed in the Discovery Service:

EMERGENCY! EUREKA MAY BE INCORRECTLY CLAIMING INSTANCES ARE UP WHEN THEY'RE NOT. RENEWALS ARE LESSER
THAN THRESHOLD AND HENCE THE INSTANCES ARE NOT BEING EXPIRED JUST TO BE SAFE.

Cause:

This message is expected behavior of the discovery service. If a service is incorrectly terminated without properly unregistering from
Eureka, it initially enters eviction status for a brief timeframe before the service is deregistered. Failure to properly terminate occurs
when a service fails to respond to three consecutive heartbeat renewals. After the three heartbeat renewals are returned without a
response, the Eureka discovery service keeps the service in eviction status for one additional minute. If the service does not respond

https://docs.spring.io/spring-boot/docs/1.2.0.M1/reference/html/boot-features-profiles.html#boot-features-adding-active-profiles

within this minute, the Eureka service unregisters this unresponsive service. When more than 15 percent of currently registered
services are in eviction status, self preservation mode is enabled. In self preservation mode, no services in eviction status are
deregistered. As a result, these services continue to appear to be running even though they are not running.

Solution:

Use one of the following options to exit self preservation mode:

Restart the services that appear to be running
Relaunch the services that appear to be registered. After the message disappears, close each of the services one at a time. Allow
for a 3-minute period between closing each service.

Restart the discovery service
Manually restart the discovery service. The new instance will not be in self preservation mode. In a few minutes, the running
services re-register.

Adjust the threshold of services in eviction status
Change the frequency of the discovery service from entering self preservation mode by adjusting the threshold of services in
eviction status.

Note: The default threshold is .85. This results in the discovery service entering self preservation mode when 15 percent of
currently registered services are in eviction status.

Example:

This threshold limit causes the discovery service to enter self preservation mode when less than 30 percent of services are not
responding.

Debug and Fix Common Problems with SSL/TLS Setup
Review tips described in the blog post Troubleshooting SSL/TLS setup with Zowe Certificate Analyzer to find out how you can use the
Zowe Certificate Analyzer to address the following common issues with SSL/TLS setup:

How to verify if the API ML server certificate is trusted by your service

How to get a CA certificate in the correct format

How to perform a TLS handshake with debug logs

How to debug remote services

How to enable mutual authentication using a client certificate

How to add a trusted certificate to a SAF Key ring

SDSF Job search fails
Search for jobs using SDSF failed for prefix and owner : exc.sdsf_invocation_failed 8 (Issue does not impace ZD&T boxes)

Solution:

https://medium.com/zowe/troubleshooting-ssl-tls-setup-with-zowe-certificate-analyser-31aeec9e1144

You must be authorized to use SDSF with REXX on your z/OS system. For authorization, activate the SDSF RACF class and add the
following 3 profiles to your system:

GROUP.ISFSORIG

GROUP.ISFSPROG.SDSF

ISF.CONNECT.

Users must belong to a group that has READ access to these profiles.

This is quite a complex area and you should ask your systems programmer for advice. On most systems, the GROUP.* profiles are not
required and it is sufficient to have the following ISF profile defined:

class profile SDSF ISF.CONNECT.** (G)

Known Issues

API ML stops accepting connections after z/OS TCP/IP stack is recycled

Symptom:

When z/OS TCP/IP stack is restarted, it is possible that the internal services of API Mediation Layer (Gateway, Catalog, and Discovery
Service) stop accepting all incoming connections, go into a continuous loop, and write numerous error messages in the log.

Sample message:

The following message is a typical error message displayed in STDOUT:

Solution:

Restart API Mediation Layer.

Tip: To prevent this issue from occurring, it is strongly recommended not to restart the TCP/IP stack while API ML is running.

SEC0002 error when logging in to API Catalog

SEC0002 error typically appears when users fail to log in to API Catalog. The following image shows the API Catalog login page with
the SEC0002 error.

The error is caused by failed z/OSMF authentication. To determine the reason authentication failed, open the ZWESLSTC joblog and
look for a message that contains ZosmfAuthenticationProvider . The following is an example of the message that contains

ZosmfAuthenticationProvider :

Check the rest of the message, and identify the cause of the problem. The following list provides the possible reasons and solutions
for the z/OSMF authentication issue:

Connection refused

Configure z/OSMF

Missing z/OSMF host name in subject alternative names

Invalid z/OSMF host name in subject alternative names

Secure Fix

Insecure Fix

Invalid z/OSMF host name in subject alternative names

Request a new certificate

Re-create the Zowe keystore

Connection refused

In the following message, failure to connect to API Catalog occurs when connection is refused:

The reason for the refused connection message is either invalid z/OSMF configuration or z/OSMF being unavailable. The preceding
message indicates that z/OSMF is not on the 127.0.0.1:1443 interface.

Solution:

Configure z/OSMF

Make sure that z/OSMF is running and is on 127.0.0.1:1443 interface, and try to log in to API Catalog again. If you get the same error
message, change z/OSMF configuration.

Follow these steps:

1. Locate the z/OSMF PARMLIB member IZUPRMxx.

For example, locate IZUPRM00 member in SYS1.PARMLIB.

2. Change the current HOSTNAME configuration to HOSTNAME('*') .

3. Change the current HTTP_SSL_PORT configuration to HTTP_SSL_PORT('1443') .

Important! If you change the port in the z/OSMF configuration file, all your applications lose connection to z/OSMF.

For more information, see Syntax rules for IZUPRMxx.

If changing the z/OSMF configuration does not fix the issue, reconfigure Zowe.

Follow these steps:

1. Open .zowe_profile in the home directory of the user who installed Zowe.

2. Modify the value of the ZOWE_ZOSMF_PORT variable.

3. Reinstall Zowe.

Missing z/OSMF host name in subject alternative names

In following message, failure to connect to API Catalog is caused by a missing z/OSMF host name in the subject alternative names:

Solutions:

Fix the missing z/OSMF host name in subject alternative names using the following methods:

Note: Apply the insecure fix only if you use API Catalog for testing purposes.

Secure fix

Insecure fix

Secure fix

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_IZUPRMxx.htm

Follow these steps:

1. Obtain a valid certificate for z/OSMF and place it in the z/OSMF keyring. For more information, see Configure the z/OSMF Keyring
and Certificate.

2. Re-create the Zowe keystore by deleting it and re-creating it. For more information, see Zowe certificate configuration overview
and the corresponding sub-articles in this section. The Zowe keystore directory is the value of the KEYSTORE_DIRECTORY variable
in the zowe.yaml file that is used to launch Zowe.

Insecure fix

Follow these steps:

1. Re-create the Zowe keystore by deleting it and re-creating it.

2. In the zowe-setup-certificates.env file that is used to generate the keystore, ensure that the property VERIFY_CERTIFICATES
and NONSTRICT_VERIFY_CERTIFICATES are set to false .

Important! Disabling VERIFY_CERTIFICATES or NONSTRICT_VERIFY_CERTIFICATES may expose your server to security risks. Ensure

that you contact your system administrator before disabling these certificates and use these options only for troubleshooting
purposes.

Invalid z/OSMF host name in subject alternative names

In the following message, failure to connect to API Catalog is caused by an invalid z/OSMF host name in the subject alternative names:

Solutions:

Fix the invalid z/OSMF host name in the subject alternative names using the following methods:

Request a new certificate

Re-create the Zowe keystore

Request a new certificate

Request a new certificate that contains a valid z/OSMF host name in the subject alternative names.

Re-create the Zowe keystore

Re-create the Zowe keystore by deleting it and re-creating it. For more information, see Configuring PKCS12 certificates. The Zowe
keystore directory is the value of the KEYSTORE_DIRECTORY variable in the zowe.yaml file that is used to launch Zowe.

API ML throws I/O error on GET request and cannot connect to other services

Symptom:

The API ML services are running but they are in the DOWN state and not working properly. The following exceptions can be found in
the log: java.net.UnknownHostException and java.net.NoRouteToHostException .

Sample message:

See the following message for full exceptions.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm
https://docs.zowe.org/stable/user-guide/configure-certificates
https://docs.zowe.org/stable/troubleshoot/user-guide/configure-certificates.md/#pkcs12-certificates-in-a-keystore

Solution:

The Zowe started task needs to run under a user with sufficient privileges. As a workaround, you can try to run the started task under
the same user ID as z/OSMF (typically IZUSVR).

The hostname that is displayed in the details of the exception is a valid hostname. You can validate that the hostname is valid by using
ping command on the same mainframe system. For example, ping USILCA32.lvn.broadcom.net . If it is valid, then the problem can

be caused by insufficient privileges of your started task that is not allowed to do network access.

You can fix it by setting up the security environment as described in the Zowe documentation.

https://docs.zowe.org/stable/troubleshoot/user-guide/configure-zos-system#configure-security-environment-switching

Version: v2.17.x LTS

Error Message Codes
The following error message codes may appear on logs or API responses. Use the following message code references and the
corresponding reasons and actions to help troubleshoot issues.

API mediation utility messages

ZWEAM000I

%s started in %s seconds

Reason:

The service started.

Action:

No action required.

ZWEAM001I

API Mediation Layer started

Reason:

All key API Mediation Layer services started.

Action:

No action required.

API mediation common messages

ZWEAO102E

Gateway not yet discovered. The Transform service cannot perform the request

Reason:

The Transform service was requested to transform a url, but the Gateway instance was not discovered.

Action:

Do not begin performing requests until the API Mediation Layer fully initializes after startup. Check that your Discovery service is
running and that all services (especially the Gateway) are discovered correctly.

ZWEAO104W

GatewayInstanceInitializer has been stopped due to exception: %s

Reason:

An unexpected exception occurred while retrieving the Gateway service instance from the Discovery Service.

Action:

Check that both the service and the Gateway can register with Discovery. If the services are not registering, investigate the reason why.
If no cause can be determined, create an issue.

ZWEAO105W

Gateway HTTP Client per-route connection limit (maxConnectionsPerRoute) of %s has been reached for the '%s' route.

Reason:

Too many concurrent connection requests were made to the same route.

Action:

Further connections will be queued until there is room in the connection pool. You may also increase the per-route connection limit
via the gateway start-up script by setting the Gateway configuration for maxConnectionsPerRoute.

ZWEAO106W

Gateway HTTP Client total connection limit (maxTotalConnections) of %s has been reached.

Reason:

Too many concurrent connection requests were made.

Action:

Further connections will be queued until there is room in the connection pool. You may also increase the total connection limit via the
gateway start-up script by setting the Gateway configuration for maxTotalConnections.

ZWEAO401E

Unknown error in HTTPS configuration: '%s'

Reason:

An Unknown error occurred while setting up an HTTP client during service initialization, followed by a system exit.

Action:

Start the service again in debug mode to get a more descriptive message. This error indicates it is not a configuration issue.

Common service core messages

ZWEAM100E

Could not read properties from: '%s'

Reason:

The Build Info properties file is empty or null.

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAM101E

I/O Error reading properties from: '%s' Details: '%s'

Reason:

I/O error reading META-INF/build-info.properties or META-INF/git.properties .

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAM102E

Internal error: Invalid message key '%s' is provided. Please create an issue with this message.

Reason:

Message service is requested to create a message with an invalid key.

Action:

Create an issue with this message.

ZWEAM103E

Internal error: Invalid message text format. Please create an issue with this message.

Reason:

Message service is requested to create a message with an invalid text format.

Action:

Create an issue with this message.

ZWEAM104E

The endpoint you are looking for '%s' could not be located

Reason:

The endpoint you are looking for could not be located.

Action:

Verify that the URL of the endpoint you are trying to reach is correct.

ZWEAG140E

The 'applicationName' parameter name is missing.

Reason:

The application name is not provided.

Action:

Provide the 'applicationName' parameter.

ZWEAG141E

The generation of the PassTicket failed. Reason: %s

Reason:

An error occurred in the SAF Auth Service. Review the reason in the error message.

Action:

Supply a valid user and application name, and check that corresponding permissions have been set up.

ZWEAM400E

Error initializing SSL Context: '%s'

Reason:

An error occurred while initializing the SSL Context.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

Incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM500W

The service is not verifying the TLS/SSL certificates of the services

Reason:

This is a warning that the SSL Context will be created without verifying certificates.

Action:

Stop the service and set the verifySslCertificatesOfServices parameter to true , and then restart the service. Do not use this option in a

production environment.

ZWEAM501W

Service is connecting to Discovery service using the non-secure HTTP protocol.

Reason:

The service is connecting to the Discovery Service using the non-secure HTTP protocol.

Action:

For production use, start the Discovery Service in HTTPS mode and configure the services accordingly.

ZWEAM502E

Error reading secret key: '%s'

Reason:

A key with the specified alias cannot be loaded from the keystore.

Action:

Ensure that the configured key is present, in the correct format, and not corrupt.

ZWEAM503E

Error reading secret key: '%s'

Reason:

Error reading secret key.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM504E

Error reading public key: '%s'

Reason:

Error reading secret key.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM505E

Error initializing SSL/TLS context: '%s'

Reason:

Error initializing SSL/TLS context.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM506E

Truststore Password configuration parameter is not defined

Reason:

Your truststore password was not set in the configuration.

Action:

Ensure that the parameter server.ssl.trustStorePassword contains the correct password for your truststore.

ZWEAM507E

Truststore configuration parameter is not defined but it is required

Reason:

The truststore usage is mandatory, but the truststore location is not provided.

Action:

If a truststore is required, define the truststore configuration parameter by editing the server.ssl.truststore,
server.ssl.truststorePassword and server.ssl.truststoreType parameters with valid data. If you do not require a truststore, change the
trustStoreRequired boolean parameter to false .

ZWEAM508E

Keystore not found, server.ssl.keyStore configuration parameter is not defined

Reason:

Your keystore path was not set in the configuration.

Action:

Ensure that the correct path to your keystore is contained in the parameter server.ssl.keyStore in the properties or yaml file of your
service.

ZWEAM509E

Keystore password not found, server.ssl.keyStorePassword configuration parameter is not defined

Reason:

Your keystore password was not set in the configuration.

Action:

Ensure that the correct password to your keystore in the parameter server.ssl.keyStorePassword is contained in the properties or yaml
file of your service.

ZWEAM510E

Invalid key alias '%s'

Reason:

The key alias was not found.

Action:

Ensure that the key alias provided for the key exists in the provided keystore.

ZWEAM511E

There was a TLS request error accessing the URL '%s': '%s'

Reason:

The Gateway refuses to communicate with the requested service.

Action:

Possible actions regarding to message content:

Message: The certificate is not trusted by the API Gateway. Action: Verify trust of the certificate is the issue by disabling certificate
verification and retry the request.

Message: Certificate does not match any of the subject alternative names. Action: Verify that the hostname which the certificate is
issued for matches the hostname of the service.

Message: Unable to find the valid certification path to the requested target. Action: Import the root CA that issued services'
certificate to API Gateway truststore.

Message: Verify the requested service supports TLS. Action: Ensure the requested service is running with TLS enabled.

Message: Review the APIML debug log for more information. Action: Enable APIML debug mode and retry the request, then
review the APIML log for TLS errors.

ZWEAM600W

Invalid parameter in metadata: '%s'

Reason:

An invalid apiInfo parameter was found while parsing the service metadata.

Action:

Remove or fix the referenced metadata parameter.

ZWEAM700E

No response received within the allowed time: %s

Reason:

No response was received within the allowed time.

Action:

Verify that the URL you are trying to reach is correct and all services are running.

ZWEAM701E

The request to the URL '%s' has failed: %s caused by: %s

Reason:

The request failed because of an internal error.

Action:

Refer to specific exception details for troubleshooting. Create an issue with this message.

Security common messages

ZWEAT100E

Token is expired for URL '%s'

Reason:

The validity of the token is expired.

Action:

Obtain a new token by performing an authentication request.

ZWEAT103E

Could not write response: %s

Reason:

A message could not be written to the response.

Action:

Please submit an issue with this message.

ZWEAT403E

The user is not authorized to the target resource: %s

Reason:

The service has accepted the authentication of the user but the user does not have access rights to the resource.

Action:

Contact your security administrator to give you access.

ZWEAT409E

The platform returned error: %s

Reason:

The platform responded with unknown errno code.

Action:

Please submit an issue with this message.

ZWEAT410E

The platform returned error: %s

Reason:

The specified password is incorrect.

Action:

Provide correct password.

ZWEAT411E

The platform returned error: %s

Reason:

The platform returned error, specified in the error message.

Action:

Contact your security administrator with the message.

ZWEAT412E

The platform returned error: %s

Reason:

The specified password is expired.

Action:

Contact your security administrator to reset your password.

ZWEAT413E

The platform returned error: %s

Reason:

The new password is not valid.

Action:

Provide valid password.

ZWEAT414E

The platform returned error: %s

Reason:

The user name access has been revoked.

Action:

Contact your security administrator to unsuspend your account.

ZWEAT415E

The platform returned error: %s

Reason:

The user name does not exist in the system.

Action:

Provide correct user name.

ZWEAT416E

The platform returned error: %s

Reason:

The specified user name or password is invalid.

Action:

Provide correct user name or password.

ZWEAT500E

Failed to parse the client certificate forwarded from the central Gateway. Error message %s. The client certificate was %s

Reason:

The string sent by the central Gateway was not recognized as a valid DER-encoded certificate in the Base64 printable form.

Action:

Ensure that forwarding of the client certificate is also enabled in the central Gateway. Check for any error messages from the central
Gateway.

ZWEAT501E

Failed to get trusted certificates from the central Gateway. Unexpected response from %s endpoint. Status code: %s. Response body:
%s

Reason:

The response status code is different from the expected 200 OK.

Action:

Ensure that the parameter apiml.security.x509.certificatesUrl is correctly configured with the complete URL to the central Gateway
certificates endpoint. Test the URL manually.

ZWEAT502E

Invalid URL specified to get trusted certificates from the central Gateway. Error message: %s

Reason:

The parameter apiml.security.x509.certificatesUrl is not correctly configured with the complete URL to the central Gateway certificates
endpoint.

Action:

Ensure that the parameter apiml.security.x509.certificatesUrl is correctly configured.

ZWEAT503E

An error occurred during retrieval of trusted certificates from the central Gateway. Error message: %s

Reason:

The communication with the cloud gateway got interrupted or an error occurred while processing the response.

Action:

Check the provided error message. Contact the support.

ZWEAT504E

Failed to parse the trusted certificates provided by the central Gateway. Error message %s

Reason:

The string sent by the central Gateway was not recognized as valid DER-encoded certificates in the Base64 printable form.

Action:

Check that the URL configured in apiml.security.x509.certificatesUrl responds with valid DER-encoded certificates in the Base64
printable form.

ZWEAT505E

Incoming request certificate is not one of the trusted certificates provided by the central Gateway.

Reason:

The Gateway performs an additional check of request certificates when the central Gateway forwards the incoming client certificate to
the domain Gateway. This check may fail when the certificatesUrl parameter does not point to the proper central Gateway certificates
endpoint.

Action:

Check that the URL configured in apiml.security.x509.certificatesUrl points to the central Gateway and it responds with valid DER-
encoded certificates in the Base64 printable form.

ZWEAT601E

z/OSMF service name not found. Set parameter apiml.security.auth.zosmf.serviceId to your service ID.

Reason:

The parameter zosmfserviceId was not configured correctly and could not be validated.

Action:

Ensure that the parameter apiml.security.auth.zosmf.serviceId is correctly entered with a valid z/OSMF service ID.

ZWEAT602E

The SAF provider endpoint supports only the resource class 'ZOWE', but the current one is '%s'

Reason:

The parameter apiml.security.authorization.provider is set to endpoint

Action:

Change the SAF provider to another one to use this endpoint

ZWEAT603E

Endpoint %s is not properly configured

Reason:

The application cannot call the endpoint to check the SAF resource of the user

Action:

Verify the state of ZSS and IZS, then check if parameters apiml.security.authorization.endpoint.* are matching.

ZWEAT604E

Passwords do not match

Reason:

Re-entered password does not match for password update.

Action:

Enter the same value as the one entered for new password.

ZWEAT605E

Invalid body provided in request to create personal access token

Reason:

The request body is not valid

Action:

Use a valid body in the request. Format of a message: {validity: int , scopes: [string]} .

ZWEAT606E

Body in the HTTP request for Personal Access Token does not contain scopes

Reason:

The request body is not valid

Action:

Provide a list of services for which this token will be valid

ZWEAT607E

Body in the revoke request is not valid.

Reason:

The request body is not valid

Action:

Use a valid body in the request. Format of a message: {userId: string, (optional)timestamp: long} or {serviceId: string,

(optional)timestamp: long} .

ZWEAT608E

Error mapping between distributed and mainframe identity. Reason: %s %s

Reason:

Unexpected error occurred when mapping between distributed and mainframe identity

Action:

Contact Broadcom support.

ZWEAT609W

Mapping between distributed and mainframe identity failed. Reason: %s

Reason:

Mapping between distributed and mainframe identity failed.

Action:

Security client messages

ZWEAS100E

Authentication exception: '%s' for URL '%s'

Reason:

A generic failure occurred while authenticating.

Action:

Refer to the specific message to troubleshoot.

ZWEAS101E

Authentication method '%s' is not supported for URL '%s'

Reason:

The HTTP request method is not supported for the URL.

Action:

Use the correct HTTP request method that is supported for the URL.

ZWEAS103E

API Gateway Service is not available by URL '%s' (API Gateway is required because it provides the authentication functionality)

Reason:

The security client cannot find a Gateway instance to perform authentication. The API Gateway is required because it provides the
authentication functionality.

Action:

Check that both the service and Gateway are correctly registered in the Discovery service. Allow some time after the services are
discovered for the information to propagate to individual services.

ZWEAS104E

Authentication service is not available by URL '%s'

Reason:

The Authentication service is not available.

Action:

Make sure that the Authentication service is running and is accessible by the URL provided in the message.

ZWEAS105E

Authentication is required for URL '%s'

Reason:

Authentication is required.

Action:

Provide valid authentication.

ZWEAS120E

Invalid username or password for URL '%s'

Reason:

The username or password is invalid.

Action:

Provide a valid username and password.

ZWEAS121E

Authorization header is missing, or the request body is missing or invalid for URL '%s'

Reason:

The authorization header is missing, or the request body is missing or invalid.

Action:

Provide valid authentication.

ZWEAS123E

Invalid token type in response from Authentication service.

Reason:

Could not retrieve the proper authentication token from the Authentication service response.

Action:

Review your APIML authentication provider configuration and ensure your Authentication service is working.

ZWEAS130E

Token is not valid for URL '%s'

Reason:

The token is not valid.

Action:

Provide a valid token.

ZWEAS131E

No authorization token provided for URL '%s'

Reason:

No authorization token is provided.

Action:

Provide a valid authorization token.

ZAAS client messages

ZWEAS100E

Token is expired for URL

Reason:

The application using the token kept it for longer than the expiration time

Action:

When this error occurs it is necessary to get a new JWT token.

ZWEAS120E

Invalid username or password

Reason:

Provided credentials weren't recognized

Action:

Try with different credentials

ZWEAS121E

Empty or null username or password values provided

Reason:

One of the credentials was null or empty

Action:

Try with full set of credentials

ZWEAS122E

Empty or null authorization header provided

Reason:

The authorization header was empty or null

Action:

Try again with a valid authorization header

ZWEAS170E

An exception occurred while trying to get the token

Reason:

General exception. There are more pieces of information in the message

Action:

Log the message from the exception and then handle the exception based on the information provided there.

ZWEAS400E

Unable to generate PassTicket. Verify that the secured signon (PassTicket) function and application ID is configured properly by
referring to Using PassTickets in the guide for your security provider

Reason:

Unable to generate PassTicket.

Action:

Verify that the secured signon (PassTicket) function and application ID is configured properly by referring to Using PassTickets in the
guide for your security provider

ZWEAS401E

Token is not provided

Reason:

There was no JWT token provided for the generation of the PassTicket

Action:

Ensure that you are passing JWT token for PassTicker generation

ZWEAS404E

Gateway service is unavailable

Reason:

Gateway service does not respond.

Action:

Ensure that the Gateway service is up and that the path to the gateway service is properly set.

ZWEAS417E

The application name was not found

Reason:

The application id provided for the generation of the PassTicket was not recognized by the security provider

Action:

Ensure that the security provider recognized the application id.

ZWEAS130E

Invalid token provided

Reason:

The JWT token is not valid

Action:

Provide a valid token.

ZWEAS500E

There was no path to the trust store.

Reason:

The Zaas Client configuration does not contain the path to the trust store

Action:

Ensure that the configuration contains the trustStorePath and that it points to valid trust store.

ZWEAS501E

There was no path to the key store.

Reason:

The Zaas Client configuration does not contain the path to the key store

Action:

Ensure that the configuration contains the keyStorePath and that it points to valid key store.

ZWEAS502E

The configuration provided for SSL is invalid.

Reason:

The type of the keystore, truststore or the included keys/certs aren't considered valid

Action:

Ensure that the combination of the configuration is cryptographically valid.

ZWEAS503E

The SSL configuration contained invalid path.

Reason:

There was an invalid path to either trust store or keystore

Action:

Ensure that both provided paths are resolved to valid trust store and valid key store

Discovery service messages

ZWEAD400E

Cannot notify Gateway on '%s' about new instance '%s'

Reason:

The Discovery Service tried to notify the Gateway about an instance update, but the REST call failed. The purpose of this call is to
update the Gateway caches. The Gateway might be down or a network problem occurred.

Action:

Ensure that there are no network issues and that the Gateway was not restarted. If the problem reoccurs, contact Broadcom support.

ZWEAD401E

Cannot notify Gateway on '%s' about cancelled registration

Reason:

The Discovery Service tried to notify the Gateway about service un-registration, but the REST call failed. The purpose of this call is to
update the Gateway caches. The Gateway might be down or a network problem occurred.

Action:

Ensure that there are no network issues and that the Gateway was not restarted. If the problem reoccurs, contact Broadcom support.

ZWEAD700W

Static API definition directory '%s' is not a directory or does not exist

Reason:

One of the specified static API definition directories does not exist or is not a directory.

Action:

Review the static API definition directories and their setup. The static definition directories are specified as a launch parameter to a
Discovery service jar. The property key is: apiml.discovery.staticApiDefinitionsDirectories

ZWEAD701E

Error loading static API definition file '%s'

Reason:

A problem occurred while reading (IO operation) of a specific static API definition file.

Action:

Ensure that the file data is not corrupted or incorrectly encoded.

ZWEAD702W

Unable to process static API definition data: '%s' - '%s'

Reason:

A problem occurred while parsing a static API definition file.

Action:

Review the mentioned static API definition file for errors. Refer to the specific log message to determine the exact cause of the
problem:

ServiceId is not defined in the file '%s'. The instance will not be created. Make sure to specify the ServiceId.

The instanceBaseUrls parameter of %s is not defined. The instance will not be created. Make sure to specify the

InstanceBaseUrl property.

The API Catalog UI tile ID %s is invalid. The service %s will not have an API Catalog UI tile. Specify the correct catalog title ID.

One of the instanceBaseUrl of %s is not defined. The instance will not be created. Make sure to specify the InstanceBaseUrl
property.

The URL %s does not contain a hostname. The instance of %s will not be created. The specified URL is malformed. Make sure to
specify valid URL.

The URL %s does not contain a port number. The instance of %s will not be created.

The specified URL is missing a port number. Make sure to specify a valid URL.

The URL %s is malformed. The instance of %s will not be created: The Specified URL is malformed. Make sure to specify a valid
URL.

The hostname of URL %s is unknown. The instance of %s will not be created: The specified hostname of the URL is invalid. Make
sure to specify a valid hostname.

Invalid protocol. The specified protocol of the URL is invalid. Make sure to specify valid protocol.

Additional service metadata of %s in processing file %s could not be created: %s

ZWEAD703E

A problem occurred during reading the static API definition directory: '%s'

Reason:

There are three possible causes of this error:

The specified static API definition folder is empty.

The definition does not denote a directory.

An I/O error occurred while attempting to read the static API definition directory.

Action:

Review the static API definition directory definition and its contents on the storage. The static definition directories are specified as a
parameter to launch a Discovery Service jar. The property key is: apiml.discovery.staticApiDefinitionsDirectories

ZWEAD704E

Gateway Service is not available so it cannot be notified about changes in Discovery Service

Reason:

Gateway Service is probably mis-configured or failed to start from another reason.

Action:

Review the log of Gateway Service and its configuration.

Gateway service messages

ZWEAG500E

Client certificate is missing in request.

Reason:

No client certificate is present in the HTTPS request.

Action:

Properly configure client to send client certificate.

ZWEAG700E

No instance of the service '%s' found. Routing will not be available.

Reason:

The Gateway could not find an instance of the service from the Discovery Service.

Action:

Check that the service was successfully registered to the Discovery Service and wait for Spring Cloud to refresh the routes definitions.

ZWEAG701E

Service '%s' does not allow encoded characters in the request path: '%s'.

Reason:

The request that was issued to the Gateway contains an encoded character in the URL path. The service that the request was
addressing does not allow this pattern.

Action:

Contact the system administrator and request enablement of encoded characters in the service.

ZWEAG702E

Gateway does not allow encoded slashes in request: '%s'.

Reason:

The request that was issued to the Gateway contains an encoded slash in the URL path. Gateway configuration does not allow this
encoding in the URL.

Action:

Contact the system administrator and request enablement of encoded slashes in the Gateway.

ZWEAG704E

Configuration error '%s' when trying to read the public and private key for signing JWT: %s

Reason:

A problem occurred while trying to read the certificate-key pair from the keystore.

Action:

Review the mandatory fields used in the configuration such as the keystore location path, the keystore and key password, and the
keystore type.

ZWEAG705E

Failed to load public or private key from key with alias '%s' in the keystore '%s'. Gateway is shutting down.

Reason:

Failed to load a public or private key from the keystore during JWT Token initialization.

Action:

Check that the key alias is specified and correct. Verify that the keys are present in the keystore.

ZWEAG706E

RequestContext is not prepared for load balancing.

Reason:

Custom Ribbon load balancing is not in place before calling Ribbon.

Action:

Contact Broadcom support.

ZWEAG707E

The request to the URL '%s' aborted without retrying on another instance. Caused by: %s

Reason:

The request to the server instance failed and will not be retried on another instance.

Action:

Refer to 'Caused by' details for troubleshooting.

ZWEAG708E

The request to the URL '%s' failed after retrying on all known service instances. Caused by: %s

Reason:

Request to the server instance could not be executed on any known service instance.

Action:

Verify the status of the requested instance.

ZWEAG709E

Service is not available at URL '%s'. Error returned: '%s'

Reason:

The service is not available.

Action:

Make sure that the service is running and is accessible by the URL provided in the message.

ZWEAG710E

Load balancer does not have available server for client: %s

Reason:

The service is not available. It might be removed by the Circuit Breaker or by requesting specific instance that is not available.

Action:

Try the request later, or remove the request for the specific instance.

ZWEAG711E

The principal '%s' is missing queried authorization.

Reason:

The principal does not have the queried access to the resource name within the resource class.

Action:

No action is needed.

ZWEAG712E

The URI '%s' is an invalid format

Reason:

The URI does not follow the format /{serviceId}/{type}/{version}/{endpoint} or

/{type}/{version}/{serviceId}/{endpoint} .

Action:

Use a properly formatted URI.

ZWEAG713E

Configuration error when trying to establish JWT producer. Events: %s

Reason:

A problem occurred while trying to make sure that there is a valid JWT producer available. A possible cause of the problem is that API
ML does not recognize the authentication type used by z/OSMF.

Action:

Based on the specific information in the message, verify that the key configuration is correct, or alternatively, that z/OSMF is available.
If z/OSMF is available, specify the authentication type used by z/OSMF in your configuration settings.

Use the following configuration format:

Apply one of the following values:

auto Signifies that API ML is enabled to resolve the JWT producer

jwt Signifies that z/OSMF supports JWT (APAR PH12143 is applied)

ltpa Signifies that z/OSMF does not support JWT

ZWEAG714E

Unknown error occurred while retrieving the used public key

Reason:

An unknown problem occurred when retrieving the used public key. This should never occur.

Action:

Try again later.

ZWEAG715E

The wrong amount of keys retrieved. The amount of retrieved keys is: %s

Reason:

There are too many keys in the JWK set. As such, it is not possible to choose the correct one.

Action:

Verify the configuration of the z/OSMF to make sure that z/OSMF provides only one used key.

ZWEAG716E

The system does not know what key should be used.

Reason:

Typically z/OSMF is either unavailable or offline.

Action:

Verify that z/OSMF is available, accessible by the Gateway service, and online.

ZWEAG717E

The service id provided is invalid: '%s'

Reason:

The provided id is not valid under the conformance criteria.

Action:

Verify the conformance criteria, provide valid service id.

ZWEAG718E

Cannot retrieve metadata: '%s'

Reason:

Metadata are not accessible.

Action:

Verify that the metadata are accessible and not empty.

ZWEAG719I

The service id provided is invalid: '%s'

Reason:

The provided service does not satisfy the conformance criteria and is therefore not valid.

Action:

Verify the conformance criteria, provide valid service id.

ZWEAG100E

Authentication exception: '%s' for URL '%s'

Reason:

A generic failure occurred during authentication.

Action:

Refer to the specific authentication exception details for troubleshooting.

ZWEAG101E

Authentication method '%s' is not supported for URL '%s'

Reason:

The HTTP request method is not supported by the URL.

Action:

Use the correct HTTP request method supported by the URL.

ZWEAG102E

Token is not valid

Reason:

The JWT token is not valid.

Action:

Provide a valid token.

ZWEAG103E

The token has expired

Reason:

The JWT token has expired.

Action:

Obtain a new token by performing an authentication request.

ZWEAG104E

Authentication service is not available at URL '%s'. Error returned: '%s'

Reason:

The authentication service is not available.

Action:

Make sure that the authentication service is running and is accessible by the URL provided in the message.

ZWEAG105E

Authentication is required for URL '%s'

Reason:

Authentication is required.

Action:

Provide valid authentication.

ZWEAG106W

Login endpoint is running in dummy mode. Use credentials '%s'/'%s' to log in. Do not use this option in the production environment.

Reason:

The authentication is running in dummy mode.

Action:

Ensure that this option is not being used in a production environment.

ZWEAG107W

Incorrect value: apiml.security.auth.provider = '%s'. The authentication provider is not set correctly. The default 'zosmf' authentication
provider is being used.

Reason:

An incorrect value of the apiml.security.auth.provider parameter is set in the configuration.

Action:

Ensure that the value of apiml.security.auth.provider is set either to 'dummy' if you want to use dummy mode, or to 'zosmf' if you want
to use the z/OSMF authentication provider.

ZWEAG108E

z/OSMF instance '%s' not found or incorrectly configured. Gateway is shutting down.

Reason:

The Gateway could not find the z/OSMF instance from the Discovery Service or it could not communicate with the provided z/OSMF
instance.

Action:

Ensure that the z/OSMF instance is configured correctly and that it is successfully registered to the Discovery Service and that the API
Mediation Layer can communicate with the provided z/OSMF instance. The default timeout is 5 minutes. On a slower system, add the
variable components.gateway.apiml.security.jwtInitializerTimeout:... and the value in minutes into Zowe's configuration to override this
value.

ZWEAG109E

z/OSMF response does not contain field '%s'.

Reason:

The z/OSMF domain cannot be read.

Action:

Review the z/OSMF domain value contained in the response received from the 'zosmf/info' REST endpoint.

ZWEAG110E

Error parsing z/OSMF response. Error returned: '%s

Reason:

An error occurred while parsing the z/OSMF JSON response.

Action:

Check the JSON response received from the 'zosmf/info' REST endpoint.

ZWEAG120E

Invalid username or password for URL '%s'

Reason:

The username and/or password are invalid.

Action:

Provide a valid username and password.

ZWEAG121E

Authorization header is missing, or the request body is missing or invalid for URL '%s'

Reason:

The authorization header is missing, or the request body is missing or invalid.

Action:

Provide valid authentication.

ZWEAS123E

Invalid token type in response from Authentication service.

Reason:

Could not retrieve the proper authentication token from the Authentication service response.

Action:

Review your APIML authentication provider configuration and ensure your Authentication service is working.

ZWEAG130E

Token is not valid for URL '%s'

Reason:

The token is not valid.

Action:

Provide a valid token.

ZWEAG131E

No authorization token provided for URL '%s'

Reason:

No authorization token is provided.

Action:

Provide a valid authorization token.

ZWEAG150E

SAF IDT generation failed. Reason: %s

Reason:

An error occurred during SAF verification. Review the reason in the error message.

Action:

Verify the Identity Token configuration.

ZWEAG151E

SAF IDT is not generated because authentication or authorization failed. Reason: %s

Reason:

The user credentials were rejected during SAF verification. Review the reason in the error message.

Action:

Provide a valid username and password.

ZWEAG160E

No authentication provided in the request

Reason:

The JWT token or client certificate was not provided with the request

Action:

Configure your client to provide valid authentication.

ZWEAG161E

No user was found

Reason:

It was not possible to map provided token or certificate to the mainframe identity.

Action:

Ask your security administrator to connect your token or client certificate with your mainframe user.

ZWEAG162E

Gateway service failed to obtain token.

Reason:

Authentication request to get token failed.

Action:

Contact your administrator.

ZWEAG163E

Error occurred while parsing X509 certificate.

Reason:

%s

Action:

Configure your client to provide valid x509 certificate.

ZWEAG164E

Error occurred while validating X509 certificate. %s

Reason:

X509 certificate cannot be validated or the certificate cannot be used for client authentication.

Action:

Configure your client to provide valid x509 certificate.

ZWEAG165E

X509 certificate is missing the client certificate extended usage definition

Reason:

X509 certificate cannot be used for client authentication.

Action:

Configure your client to provide valid x509 certificate.

ZWEAG166E

ZOSMF authentication scheme is not supported for this API ML instance.

Reason:

z/OSMF is not used as security provider for API ML.

Action:

Contact your administrator.

ZWEAG167E

No client certificate provided in the request

Reason:

The X509 client certificate was not provided with the request

Action:

Configure your client to provide valid certificate.

ZWEAG168E

Invalid authentication provided in request

Reason:

The JWT token or client certificate is not valid

Action:

Configure your client to provide valid authentication.

ZWEAG169E

Unexpected response from the external identity mapper. Status: %s body: %s

Reason:

The external identity mapper request failed with Internal Error

Action:

Verify that ZSS is responding.

ZWEAG170E

Error occurred while trying to parse the response from the external identity mapper. Reason: %s

Reason:

The external identity mapper failed when trying to parse the response

Action:

Verify that the response is valid.

ZWEAG171E

Configuration error. Failed to construct the external identity mapper URI. Reason: %s

Reason:

Failed to construct the external identity mapper URI

Action:

Verify that the external identity mapper URL specified in the configuration is valid.

ZWEAT607E

Body in the revoke request is not valid.

Reason:

The request body is not valid

Action:

Use a valid body in the request. Format of a message: {userId: string, (optional)timestamp: long} or {serviceId: string,

(optional)timestamp: long} .

ZWEAG180E

There was an error while reading webfinger configuration

Reason:

Webfinger provider contains incorrect configuration.

Action:

Contact the administrator to validate webfinger configuration in gateway service.

ZWEAG181W

z/OSMF service '%s' is either not registered or not online yet.

Reason:

z/OSMF service may not be properly onboarded to API ML.

Action:

Verify if z/OSMF is up and registered to Discovery Service.

ZWEAG182E

SSL Misconfiguration, z/OSMF is not accessible. Message: %s Please verify the following:

CN (Common Name) and z/OSMF hostname match.

The certificate is valid

TLS version matches

z/OSMF server certificate is trusted in Zowe's truststore Enable debugging to see further details in stack trace.

Reason:

The z/OSMF connection is incorrectly configured.

Action:

Verify z/OSMF connection details. Verify z/OSMF can be accessed with HTTPS. Configure sslDebug to see SSL debugging messages.

ZWEAG183E

z/OSMF internal error

Reason:

z/OSMF returned HTTP Status %s.

Action:

Review z/OSMF status and availability.

ZWEAG184E

Could not connect to z/OSMF: %s

Reason:

There was a connection issue between the API Mediation Layer instance and z/OSMF.

Action:

Verify z/OSMF is running. Verify connectivity to z/OSMF from this instance.

ZWEAG185W

The change password endpoint has failed with code %s

Reason:

The change password endpoint was not found.

Action:

Ensure PTF for APAR PH34912 is applied. (https://www.ibm.com/support/pages/apar/PH34912)

https://www.ibm.com/support/pages/apar/PH34912

ZWEAG186E

z/OSMF internal error attempting password change: %s

Reason:

z/OSMF informed of an internal error.

Action:

Verify z/OSMF error log.

ZWEAG187W

The check of z/OSMF JWT authentication endpoint has failed. Using z/OSMF info endpoint as backup.

Reason:

z/OSMF JWT endpoint was not found.

Action:

Ensure APAR PH12143 (https://www.ibm.com/support/pages/apar/PH12143) fix has been applied.

ZWEAG188W

z/OSMF JWT builder endpoint call (%s) failed with %s

Reason:

z/OSMF returned an error code when calling JWT endpoint.

Action:

Review z/OSMF status. Contact your system administrator.

API Catalog messages

ZWEAC100W

Could not retrieve information about service %s from the Discovery Service. Requested URL: %s. Response received: status code: %s,
body: %s

Reason:

The response from The Discovery Service about the registered service instances returned an error or empty body.

Action:

Make sure the Discovery Service and requested service are up and running. If the HTTP response error code refers to a security issue,
make sure that security configuration is correct.

https://www.ibm.com/support/pages/apar/PH12143

ZWEAC101E

Could not parse service info from discovery -- %s

Reason:

The response from the Discovery Service about the registered instances could not be parsed to extract applications.

Action:

Run debug mode and look at the Discovery Service potential issues while creating a response. If the Discovery Service does not
indicate any error, create an issue.

ZWEAC102E

Could not retrieve containers. Status: %s

Reason:

One or more containers could not be retrieved.

Action:

Check the status of the message for more information and the health of the Discovery Service.

ZWEAC103E

API Documentation not retrieved, %s

Reason:

API documentation was not found.

Action:

Make sure the service documentation is configured correctly.

ZWEAC104E

Could not retrieve container statuses, %s

Reason:

The status of one or more containers could not be retrieved.

Action:

Check the status of the message for more information and the health of the Discovery Service.

ZWEAC700E

Failed to update cache with discovered services: '%s'

Reason:

Cache could not be updated.

Action:

Check the status of the Discovery Service.

ZWEAC701W

API Catalog Instance not retrieved from Discovery service

Reason:

An error occurred while fetching containers information.

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAC702E

An unexpected exception occurred when trying to retrieve an API Catalog instance from the Discovery Service: %s

Reason:

An unexpected error occurred during API Catalog initialization. The API Catalog was trying to locate an instance of itself in the
Discovery Service.

Action:

Review the specific message for more information. Verify if the Discovery Service and service registration work as expected.

ZWEAC703E

Failed to initialize API Catalog with discovered services

Reason:

The API Catalog could not initialize running services after several retries.

Action:

Ensure services are started and discovered properly.

ZWEAC704E

ApiDoc retrieval problem for '%s' service. %s

Reason:

ApiDoc for service could not be retrieved.

Action:

Verify that the service provides a valid ApiDoc.

ZWEAC705W

The home page url for service %s was not transformed. %s

Reason:

The home page url for service was not transformed. The original url will be used.

Action:

Refer to the specific printed message. Possible causes include:

The Gateway was not found. The Transform service cannot perform the request. Wait for the Gateway to be discovered.

The URI is not valid. Ensure the service is providing a valid URL.

Not able to select a route for the URL of the specific service. The original URL is used. If necessary, check the routing metadata of
the service.

The path of the service URL is not valid. Ensure the service is providing the correct path.

ZWEAC706E

Service not located, %s

Reason:

The service could not be found.

Action:

Check if the service is up and registered. If it is not registered, review the onboarding guide to ensure that all steps were completed.

ZWEAC707E

Static API refresh failed, caused by exception: %s

Reason:

The Static API refresh could not be performed because of exception.

Action:

Check the specific exception for troubleshooting.

ZWEAC708E

The API base path for service %s was not retrieved. %s

Reason:

The API base path for service was not retrieved. An empty path will be used.

Action:

Refer to the specific printed message. Possible causes include:

The URI is not valid. Ensure the service is providing a valid URL.

Not able to select a route for the URL of the specific service. The original URL is used. If necessary, check the routing metadata of
the service.

The path of the service URL is not valid. Ensure the service is providing the correct path.

ZWEAC709E

Static definition generation failed, caused by exception: %s

Reason:

The Static definition generation could not be performed because of exception.

Action:

Check the specific exception for troubleshooting.

Version: v2.17.x LTS

Troubleshooting Zowe Application Framework
The following topics contain information that can help you troubleshoot problems when you encounter unexpected behavior
installing and using Zowe™ Application Framework which includes the Zowe Desktop.

Most of the solutions below identify issues by referring to the Zowe logs. To identify and resolve issues, you should be familiar with
their names and locations.

The Zowe Application Framework manages issues in GitHub. When you troubleshoot a problem, you can check whether a GitHub
issue (open or closed) that covers the problem already exists. For a list of issues, see the zlux repo.

Desktop apps fail to load

Symptom:

When you open apps in the Zowe desktop, a page is displayed with the message "The plugin failed to load."

Solution:

This problem may occur due to file encoding. If this occurs in a Zowe extension, verify it is correctly encoded.

NODEJSAPP disables immediately
Symptom:

You receive the message CEE5207E The signal SIGABRT was received in stderr .

Solution:

You might have reached the limit for shared message queues on your LPAR. When Node.js applications are terminated by a SIGKILL
signal, shared message queues might not be deallocated. For more information, see the If the NODEJSAPP disables immediately
section in the Troubleshooting Node.js applications topic on IBM Knowledge Center.

Cannot log in to the Zowe Desktop
Symptom:

When you attempt to log in to the Zowe Desktop, you receive the following error message that is displayed beneath the Username
and Password fields.

The Zowe desktop attempts to authenticate the credentials using the types that have been configured, by default the three above of
["saf","apiml","zss"] . If Zowe has been configured with the LAUNCH_COMPONENT_GROUPS=DESKTOP where GATEWAY is not a launch
group, then the message will just include the types ["saf","zss"] .

Solution:

https://docs.zowe.org/stable/troubleshoot/app-framework/app-mustgather
https://github.com/zowe/zlux/issues
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.5.0/troubleshooting/node/node-troubleshooting.html

This can be due to network disruption, a server not running, certificate issues, incorrect password, or a locked account. If the reason
for failure isn't known, you should gather information to contact support

Below are some additional, possible reasons for the failure:

For the Zowe Desktop to work, the node server that runs under the ZWESLSTC started task must be able to make cross memory calls
to the ZWESIS01 load module running under the ZWESISTC started task. If this communication fails, you see the authentication error.

There are three known problems that might cause this error. The Zowe architecture diagram shows the following connections. One of
these three connections likely failed.

1. The zssServer connection to the ZWESISTC started task using cross memory communication. If this fails, see zssServer unable to

communicate with . The architecture diagram below has been annotated with a (1) to show this connection.

2. The Zowe Desktop Application Framework server connection to the zssServer across the default port 7557. If this fails, see
Application Framework unable to communicate with zssServer. The architecture diagram below has been annotated with a (2) to
show this connection.

3. The Zowe Desktop Application Framework server cannot connect to API Mediation Layer for authentication. If this fails, see
Application Framework unable to communicate with API Mediation Layer.

ZSS server unable to communicate with ZIS

Open the log file zowe.logDirectory/zssServer-yyyy-mm-dd-hh-ss.log . This file is created each time ZWESLSTC is started and

only the last five files are kept.

Look for the message that starts with ZIS status .

If the communication works, the message includes Ok . For example:

https://docs.zowe.org/stable/troubleshoot/app-framework/servers/must-gather
https://docs.zowe.org/stable/getting-started/zowe-architecture

If the communication works, the problem is likely that the Application Framework server is unable to communicate to the
zssServer. For more information, see Application Framework unable to communicate with zssServer.

If the communication is not working, the message includes Failure . For example:

or

or

or

In this case, check that the ZWESISTC started task is running. If not, start it with the TSO command /S ZWESISTC

If the problem cannot be easily fixed (such as the ZWESISTC task not running), then it is likely that the ZIS server is not
running. To check whether the server is running, check the started task ZWESISTC log for any errors.

If the ZIS server ZWESISTC started task is running, check that the program name of the cross memory procedure matches

between the ZWESISTC PROBLIB member and the instance.env file used to launch Zowe.

By default the proc value is ZWESIS_STD , and if a new name is chosen then both files need to be updated for the handshake
to be successful.

The line in the ZWESISTC problib that defines the procedure name that ZIS will use is

The line in the instance.env that specifies the cross memory procedure that the zssServer will try to attach to is

If this is the first time you set up Zowe, it is possible that the ZIS server configuration did not complete successfully. To set up
and configure the ZIS server, follow steps as described in the topic Installing and configuring the Zowe ZIS server (ZWESISTC).
Once ZWESISTC is started, if problems persist, check its log to ensure it has been able to correctly locate its load module

ZWESIS01 as well as the parmlib ZWESIP00.

If there is an authorization problem, the message might include Permission Denied . For example:

Check that the user ID of the ZWESLSTC started task is authorized to access the load module. Only authorized code can call
ZWESIS01 because it is an APF-authorized load module.

Note: If you are using RACF security manager, a common reason for seeing Permission Denied is that the user running the

started task ZWESLSTC (typically ZWESVUSR) does not have READ access to the FACILITY class ZWES.IS.

If the message includes the following text, the configuration of the Application Framework server may be incomplete:

If you are using AT/TLS, then the components.app-server.agent.http.attls=true statement might be missing from the server

configuration file. For more information, see Configuring Zowe App Server for HTTPS communication with ZSS.

Application Framework unable to communicate with zssServer

Follow these steps:

Open the log file zowe.logDirectory/appServer-yyyy-mm-dd-hh-ss.log . This file is created each time ZWESLSTC is started and

only the last five files are kept.

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/troubleshoot/user-guide/mvd-configuration#configuring-zss-for-https

Look for the message that starts with GetAddrInfoReqWrap.onlookup and the log messages below.

These messages show that the host name localhost cannot be reached between the Zowe desktop server and the zssServer

because localhost has not been mapped to an IP address.

Map localhost to port 127.0.0.1.

Create an entry in the file /etc/hosts that contains the line

Restart the ZWESLSTC address space.

Slow performance of the VT terminal on SSH

Symptom:

When you try to use VT terminal on the Zowe Desktop to connect to the UNIX System Services through SSH, the VT terminal on node
v12 slows down. Then, the connection fails because the connecting process can run into the 3-minute limit.

Solution:

To solve this issue, use Telnet through port 1023 to connect to the UNIX System Services.

Application Framework unable to communicate with API Mediation Layer

Follow these steps:

Verify whether API Mediation Layer is started or not. If it is started, you can see a service status page with all green check marks
by visiting https://<your-zowe-host>:<gateway-port> . If there are any red cross marks, follow the instructions in

Troubleshooting API ML to identify and solve the issue.

You may need to wait a little longer to allow API Mediation Layer Gateway to complete the environment test.

Server startup problem ret=1115
Symptom: When ZWESLSTC is restarted, the following message is returned in the output of the ZSS server log file,
zowe.logDirectory/zssServer-yyyy-mm-dd-hh-ss.log :

Solution: This message means that some other process is already listening on port 7542, either at address 127.0.0.1 (localhost) or at
0.0.0.0 (all addresses). This prevents the ZSS server from starting.

One possibility is that a previously running ZSS server did not shut down correctly, and either the operating system has not released
the socket after the ZSS server shut down, or the ZSS server is still running.

Server error EACCESS on z/os
Symptoms: When you see messages like this in the server logs:

It is a sign that a permission error is stopping Zowe servers from completing the action of binding to a TCP Port for listening for client
connections. This can manifest in the servers being inaccessible.

https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml

Network permissions control varies by OS, to resolve this we don't have a tip for users of containers, but for z/os, IBM has a guide on
access control, for more details check Port Statement

Also, there is a very important part troubleshooting step just for Zowe. When you are setting a PORT statement, you can assign rules
by jobname. When FACILITY resource BPX.JOBNAME is granted for the zowe STC user (recommended!) then each server of zowe will

have a different jobname. It will not be "ZWESLSTC" or "ZWESLSTC" as it would be when that resource is not granted. They'll instead
be other names that start with "ZWE".

Note: So, for a troubleshooting tip on the server error EACCESS on z/os, note that not only should an administrator check their PORT
statements, they should probably set their jobname in the port statements to ZWE since it will catch all zowe components regardless

of whether or not BPX.JOBNAME is granted.

Application plug-in not in Zowe Desktop

Symptom:
An application plug-in is not appearing in the Zowe Desktop.

Solution:
To check whether the plug-in loaded successfully, enter the following URL in a browser to display all successfully loaded Zowe plug-
ins:

https://my.mainframe.com:7556/plugins?type=application

You can also search the node server logs for the plug-in identifier, for example org.zowe.sample.app . If the plug-in loaded

successfully, you will find the following message:

If the plug-in did not load successfully, you will find the following message:

If the identifier is not in the logs, make sure the plug-in's locator file is in the /zlux-app-server/deploy/instance/ZLUX/plugins/

directory. The plug-in locator is a .json file, usually with same name as the identifier, for example org.zowe.sampleapp.json . Open

the file and make sure that the path that is defined with the pluginLocation attribute is correct. If the path is relative, make sure it is
relative to the zlux-app-server/bin directory.

For more information on loading plug-ins to the Desktop, see Adding Your App to the Desktop.

Error: You must specify MVD_DESKTOP_DIR in your environment
Symptom:

A plug-in that is built in your local environment using npm run start or npm run build failed with an error message about a

missing MVD_DESKTOP_DIR environment variable.

Solution:
Add the Zowe Desktop directory path to the MVD_DESKTOP_DIR environment variable. To specify the path, run the following

commands in your Windows console or Linux bash shell:

Windows

https://www.ibm.com/docs/en/zos/2.4.0?topic=control-controlling-access-particular-ports
https://docs.zowe.org/stable/troubleshoot/app-framework/app-mustgather
https://github.com/zowe/workshop-user-browser-app/blob/master/README.md

Mac Os/Linux

Error: Exception thrown when reading SAF keyring {ZWED0148E}
Symptom: The error message indicates that Zowe's local certificate authority (local CA) ZoweCert , the certificate jwtsecret , or the
Zowe certificate localhost does not exist in the Zowe keyring. ZWED0148E contains the following messages.

Solution:

Zowe's local CA certificate has its default name ZoweCert , and the Zowe Desktop hardcodes this certificate in the configuration

scripts.

If you are using your own trusted CA certificate in the keyring and the name is different from the default one, this error will occur. To
resolve the issue, you must match the names in the Zowe configuration. For more information, see Configuring certificates overview.

If you are using Zowe's local CA certificate but it still reports ZWED0148E, you may find the following message in the same log.

In this case, you must make sure that the label names exactly match the names in TSO when looking up the keyring you own. Any
difference in spaces, capitalization, or other places will cause the error.

Warning: Problem making eureka request { Error: connect ECONNREFUSED
}
Symptom: The Zowe started task ZWESLSTC log contains error messages reporting problems connecting

Solution:
You can ignore these messages. These messages are timing-related where different Eureka servers come up, try to connect to each
other, and warn that the endpoint they are trying to perform a handshake with is not available. When all of the Eurka services have
started, these errors will stop being logged.

Warning: Zowe extensions access to ZSS security endpoints fail
Symptom:

Zowe extensions fail when accessing the ZSS APIs such as the security-mgmt/classes/default-class/profiles endpoint. The

following error is written to the log.

Solution:

Access to the ZSS endpoints are protected. To access the ZSS endpoints, the user must have READ access on the OMVSAPPL resource

in the APPL class.

To fix this permit access, issue the following TSO command, where userID is the started task ID of the requesting process. The vendor

documentation describes which userID to use which might be ZWESVUSR .

https://docs.zowe.org/stable/troubleshoot/user-guide/configure-certificates

Version: v2.17.x LTS

Gathering information to troubleshoot Zowe Application
Framework
If you need to contact a support group for Zowe, they will likely need a variety of information from you to help you. This page details
a list of items you should gather to the best of your ability to provide to your support group. You may also find this list useful for
independent troubleshooting.

Basic information
Please review the list of information needed for general server support.

Javascript console output
When the web UI such as the Zowe Desktop or Apps inside it have an issue, the root problem may originate from either server-side or
browser-side behavior. In addition to the server logs, the browser logs should be gathered. They can be accessed by opening a
browser's web developer toolkit. Most browsers allow this via pressing F12.

Read more about it here.

https://docs.zowe.org/stable/troubleshoot/servers/must-gather
https://developers.google.com/web/tools/chrome-devtools/open

Version: v2.17.x LTS

Raising a Zowe Application Framework issue on GitHub
When necessary, you can raise GitHub issues against the Zowe™ zlux core repository here. This issue tracker is for the Desktop, the
apps, and the app-server component. It is suggested that you use the template that best matches what you want to talk about.

If you need to open an issue about configmgr, ZSS, or ZIS you should instead open a ticket at the zss repository here

If you have a general server install & configuration issue, you should instead open a ticket in the community repository here

https://github.com/zowe/zlux/issues
https://github.com/zowe/zss/issues
https://github.com/zowe/community/issues

Version: v2.17.x LTS

Enabling tracing
If you need to provide support with tracing information about the App Framework or a particular part of it, or need to debug a
program you are developing that uses the App Framework, you can enable a variety of tracing within the Zowe YAML configuration
file.

If you are looking for basic troubleshooting and support, please see Gathering Information for Support or Troubleshooting.

Basic debugging
Within the Zowe YAML file, the value components.app-server.debug can be set to true to turn on several debug loggers.

This does not turn on every type of debugging but provides a basic set for debugging for the App Server.

Enabling components.app-server.debug is equivalent to setting:

Advanced debugging for App Server

The Zowe YAML file section components.app-server.logLevels controls the verbosity for every logger within the server.

This includes core loggers, prefixed with _zsf , as well as plug-in loggers.

A list of core loggers and their purpose is defined within the App Server schema Loggers, plug-in loggers, and log levels (such as 5 for
highest debugging, or 2 for default) are defined in detail in the Logging document.

Attributes within components.app-server.logLevels can be exact names of loggers, or can be pattern matching of multiple loggers.

For example, to enable minimum debug verbosity of the auth logger of the server core ("_zsf.auth"), and to enable maximum verbosity
logging of all plug-ins made by company foo ("com.foo"), you could set the YAML configuration as:

Advanced debugging for ZSS
The Zowe YAML file section components.zss.logLevels controls the verbosity for every logger within the server.

This includes core loggers, prefixed with _zss .

A list of core loggers and their purpose is defined within the ZSS schema.

Unlike the App Server, the components.zss.logLevels section cannot take pattern matching for attribute names. The attribute
names must exactly match the name of a logger.

https://docs.zowe.org/stable/troubleshoot/servers/must-gather
https://github.com/zowe/zlux-app-server/blob/c22105381e129bd999c47e838b424679eba26aa6/schemas/app-server-config.json#L401
https://docs.zowe.org/stable/troubleshoot/extend/extend-desktop/mvd-logutility
https://github.com/zowe/zss/blob/c85e374f3d7a4a9b93d6f8337d474f384135744b/schemas/zss-config.json#L235

Version: v2.17.x LTS

App-server Return Codes
If the app-server abnormally ends with a return code, this may originate from the app-server itself or from the programs involved in
starting the server. Return codes from the startup process are documented here, while the app-server specific codes are listed below.

Return
code

Explanation

2 Generic cause, check logs for more information.

3
Insufficient authentication configuration. The server found no authentication plugins, or all of the plugins found failed
to load, or no plugins were found for the specific default auth type requested, or the entire auth configuration was
missing. More specific error messages will be found in the logs.

4
The server encountered an error when reading the PFX file requested in the HTTPS configuration. ZWED0070W in the
logs will explain the error in more detail.

5
The server could not establish networking for one of several possible reasons, and a ZWED error message in the logs
will explain the error in more detail.

7 The configuration requested loading a z/OS keyring when not running on z/OS. The error ZWED0145E is also logged.

https://docs.zowe.org/stable/troubleshoot/app-framework/servers/return-codes

Version: v2.17.x LTS

App-server Error Message Codes
The following error message codes may appear on the app-server log. Use the following message code references and the
corresponding reasons and actions to help troubleshoot issues.

App-server informational messages

ZWED0020I

Registering at discoveryUrl

Reason:

The app-server is registering its existence to the API ML discovery server, because components.app-

server.node.mediationLayer.enabled=true is set in the zowe configuration.

Action:

No action required.

ZWED0021I

Eureka Client Registered from ipAddress. Available at discoveryUrl.

Reason:

The registration attempt from ZWED0020I has succeeded. The server is known to the API ML discovery server from the address
ipAddress.

Action:

No action required.

ZWED0022I

Fork worker workerId

Reason:

A new app-server worker process is starting. Workers are redundant execution contexts of the server and increase throughput and
latency of requests when the server has a lot of concurrent client requests. Workers are started and stopped according to current
server load and the minimum and maximum worker limits defined in environment variables ZLUX_MIN_WORKERS and
ZLUX_MAX_WORKERS.

Action:

No action required.

ZWED0023I

Restart worker workerId

Reason:

An existing app-server worker process has exited with a status code that indicates it should be restarted rather than permenantly
stopped.

Action:

Review the preceeding log messages as worker restart may be due to a caught error.

ZWED0024I

Keys=workerIds

Reason:

The server lists the worker IDs right before all workers are about to be reloaded.

Action:

No action required.

ZWED0025I

Killing worker pid=processId

Reason:

The server just issued the SIGTERM unix signal to the worker with the process ID listed. This is an expected action when reloading all
workers of the server.

Action:

No action required.

ZWED0026I

Fork quantity workers.

Reason:

The server is starting up quantity new workers. Workers are redundant execution contexts of the server and increase throughput and
latency of requests when the server has a lot of concurrent client requests. This message appears at startup and the quantity is
determined by the environment variables ZLUX_MIN_WORKERS and ZLUX_MAX_WORKERS.

Action:

No action required.

ZWED0027I

Close worker workerId

Reason:

The server is removing an existing worker due to lack of recent client activity. Workers are added and removed according to average
load of the server. Workers are redundant execution contexts of the server and increase throughput and latency of requests when the
server has a lot of concurrent client requests. Workers may be removed down to the minimum count as defined by the environment
variable ZLUX_MIN_WORKERS.

Action:

No action required.

ZWED0028I

Master processId is running.

Reason:

The server has started up and is printing its unix process ID in case the user needs to know for analysis or troubleshooting.

Action:

No action required.

ZWED0029I

Worker workerId pid processId

Reason:

A worker has started and is listing its ID and unix process ID in case the user needs to know for analysis or troubleshooting.

Action:

No action required.

ZWED0031I

Server is ready at ipAddress, Plugins successfully loaded: percentage% (successful/total)

Reason:

The server is ready to accept client requests. It can be found at the ipAddress listed, and you can tell if it has loaded all plugins
successfully by the percentage listed.

Action:

If the percentage is less than expected, review the log for messages with IDs ZWED0159W or ZWED0027W. Those messages will tell
you which plugins failed, and you can search for their plugin ID within the log to find out the reason they failed to load.

ZWED0033I

The http port given to the APIML is: tcpPort The https port given to the APIML is: tcpPort The zlux-apiml config are: jsonConfig

Reason:

The server lists the properties that will be used to connect to the APIML Discovery server to help with troubleshooting.

Action:

No action required.

ZWED0036I

Plugin pluginId will serve static files from filePath

Reason:

The plugin pluginId was loaded which has a webContent section defined in its pluginDefinition.json file. The server will serve the read-
only content from the filePath.

Action:

No action required.

ZWED0037I

pluginId: found proxied service serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type "service".

Action:

No action required.

ZWED0038I

pluginId: importing service sourceServiceName from sourcePluginId as serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type "import". It
then resolved the import to the service sourceServiceName from plugin sourcePluginId.

Action:

No action required.

ZWED0039I

pluginId: found router serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type "router".

Action:

No action required.

ZWED0040I

pluginId: found legacy node service serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type
"nodeService".

Action:

This type of service is deprecated and may not work on a future version of Zowe, so you should consider getting an upgraded version
of the plugin that instead uses a service of an undeprecated type.

ZWED0041I

pluginId: found external service serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type "external".

Action:

No action required.

ZWED0042I

pluginId: found serviceType service serviceName

Reason:

When the server was loading the plugin pluginId, it found that the plugin contains a service named serviceName of type "serviceType".

Action:

No action required.

ZWED0043I

Plugin pluginId is not requested skipping without error

Reason:

When the server was loading the "nodeAuthentication" type plugin pluginId, it determined that the plugin only handles security
actions for a category that was not requested by the server configuration or any plugins. The plugin was skipped because it was not
required.

Action:

No action required unless you need the plugin to be used. If you need the plugin, you can set an authentication category it
implements as the default by configuration property components.app-

server.dataserviceAuthentication.defaultAuthentication , or within a plugin's security configuration.

ZWED0044I

Processing plugin reference filePath...

Reason:

The server is checking if the plugin definition file filePath exists and will attempt to load it.

Action:

No action required.

ZWED0045I

Reading plugins dir pluginsDirectory

Reason:

The server is scanning the directory pluginsDirectory as specified by the server configuration property components.app-
server.pluginsDir so that it can locate each plugin in the instance.

Action:

No action required.

ZWED0046I

Adding dynamic plugin pluginIdentifier

Reason:

The server has added the plugin with pluginIdentifier to its bootstrapped list of plugins. It also emits a pluginAdded event.

Action:

No action required. If you need it, you may check the list of plugins on the Desktop to see if the plugin was added successfully.

ZWED0047I

Reason:

A child process from path has received data of data - usually done interally by ProcessManager.

Action:

No action required.

ZWED0048I

[Path= path] exited, code: code

Reason:

A process from path has exited with a return code.

Action:

No action required.

ZWED0049I

Stopping managers

Reason:

Begins ending all child processes.

Action:

No action required.

ZWED0050I

Server shutting down, received signal=signal

Reason:

Tells server to shutdown after receiving signal by ending all child processes and then performing cleanup.

Action:

No action required.

ZWED0052I

Deleting plugin due to request, id pluginIdentifier, path path

Reason:

Notifies that the server is removing a plugin with pluginIdentifier located in path.

Action:

No action required. Optionally, you could verify that the plugin was deleted using following options:

doing a GET call to the list of the plugins, OR

viewing the status code of the REST request if plugin was deleted by the network request.

ZWED0053I

Setting up type proxy (pluginIdentifier:serviceName) to destination=destination

Reason:

Making an external proxy of type (HTTP or HTTPS) for pluginIdentifier:serviceName at the destination.

Action:

No action required.

ZWED0054I

Installing root service at url

Reason:

Attempting to install new root service at url.

Action:

No action required.

ZWED0055I

Installing root service proxy at url

Reason:

Attempting to install new root service proxy at url.

Action:

No action required.

ZWED0056I

pluginIdentifier: installing websocket service

Reason:

Attempting to install new websocket service for pluginIdentifier.

Action:

No action required.

ZWED0059I

Found connection info for pluginIdentifier:service=info

Reason:

Connection info for pluginIdentifier:service was found as info.

Action:

No action required.

ZWED0062I

pluginIdentifier: installing router at url

Reason:

For pluginIdentifier, the server is installing new router at url.

Action:

No action required.

ZWED0064I

pluginIdentifier: installing import sourcePlugin:name at url

Reason:

For pluginIdentifier, the server is instaling import from sourcePlugin with name at url.

Action:

No action required.

ZWED0066I

pluginIdentifier: serving static files at url

Reason:

For pluginIdentifier, the server is serving static files and assets at url.

Action:

No action required.

ZWED0067I

pluginIdentifier: serving library files at url

Reason:

For pluginIdentifier, the server is serving libary files at url.

Action:

No action required.

ZWED0070I

User=user (pluginId): Session authCapability successful. Plugin response: httpResponse

Reason:

An authentication plugin ran successfully and received a valid HTTP response.

Action:

No action required.

ZWED0072I

Using Certificate: stringArray

Reason:

The app server has successfully loaded a certificate and added it to the certificates array.

Action:

No action required.

ZWED0086I

tomcatPID closed, code=returnCode

Reason:

A running tomcat process with PID tomcatPID was cloesd.

Action:

Refer to return code.

ZWED0087I

tomcatPID exited, code=returnCode

Reason:

A running tomcat process with PID tomcatPID was exited.

Action:

Refer to return code.

ZWED0090I

tomcatPID closed, code=returnCode

Reason:

A running tomcat process with PID tomcatPID was cloesd.

Action:

Refer to return code.

ZWED0091I

tomcatPID exited, code=returnCode

Reason:

A running tomcat process with PID tomcatPID was exited.

Action:

Refer to return code.

ZWED0092I

Tomcat Manager ID=manager id stopping

Reason:

It specifies that Apache Tomcat Host Manager is stopping manager id.

Action:

No action required.

ZWED0093I

Tomcat Manager ID=manager id cleanup successful

Reason:

It specifies that Apache Tomcat Host Manager successfully cleaned up the manager id.

Action:

No action required.

ZWED0094I

Extracted war to destination path

Reason:

It specifies that it extracted the WAR directory successfully to the destination path.

Action:

No action required.

ZWED0095I

Making junction from extracted war to appbase

Reason:

A junction link is a sort of subset or a variation of a symbolic link. It creates a junction link between extracted war directory to appbase
directory.

Action:

No action required.

ZWED0096I

Making symlink from extracted war to appbase

Reason:

It creates a symbolic link between extracted war directory to appbase directory.

Action:

No action required.

ZWED0109I

Registering App (ID=plugin identifier) with App Server

Reason: The registration attempt from ZWED0109I has succeeded. Before the server starts, it registers all the plugin identifier with the
App server and installs them.

Action:

No action required.

ZWED0110I

App plugin identifier installed to appdir and registered with App Server

Reason:

App plugin identifier installed to appdir and registered with App Server successfully.

Action:

No action required.

ZWED0111I

Authentication plugin plugin identifier added to category authentication category

Reason:

Auth plugin plugin identifier is being registered as a part of authentication category.

Action:

No action required.

ZWED0112I

Auth enabled=false. Auth passthrough.

Reason:

This message alerts you whenever an authentication handler is requested but the dataservice has authentication disabled via
configuration. This is not the default behavior of Zowe but a user may have configured it for a dataservice or a plugin may have
shipped with this configuration.

Action:

Review dataservice configuration to determine if this is intentional and desired. Some dataservices do not require authentication, while
others should have it.

ZWED0114I

Adding plugin remotely

Reason:

A new plugin is detected and is being added.

Action:

No action required.

ZWED0115I

Skip child processes spawning on worker workerId childProcessPath

Reason: The process listed as childProcessPath was not spawned under the specified worker because it was listed as being a process
that should only be started once. Some child processes should be started per-worker for redundancy, while others that need exclusive
access to a resource such as a network port are specified with the property childProcess.once, and are skipped on all but one worker.
The other workers print this message to indicate this behavior.

Action:

No action required.

ZWED0116I

The LOCATIONS are serverModuleLocation and clientModuleLocation

Reason:

The server has set the location serverModuleLocation and clientModuleLocation.

Action:

No action required.

ZWED0117I

The fileLocation is lib

Reason:

Location of files will be in lib directory.

Action:

No action required.

ZWED0118I

The NODE_PATH is NODE_PATH from environment variable.

Reason: The server recognizes the location of Node as NODE_PATH from environment variable.

Action:

No action required.

ZWED0119I

Plugin plugin identifier will serve library data from directory dir location

Reason:

For plugins with type 'library', plugin plugin identifier has been registered and will be serving library data from dir location

Action:

No action required.

ZWED0120I

Auth plugin plugin identifier: loading auth handler module app server

Reason: An auth category was requested as the default in the server configuration, or requested by a particular plugin, and because
the auth plugin pluginId handles this category, it is being loaded by the app-server.

Action:

No action required.

ZWED0124I

Plugin plugin identifier at path=plugin location loaded.

Reason: All the plugin identifier will be loaded at plugins directory at path. Plugins will be available in plugin location.

Action:

No action required.

ZWED0125I

Plugin plugin identifier not loaded

Reason: A plugin object was not returned in the makePlugin() call of the app-server, and therefore the app-server did not load this
plugin. The plugin will not be available in the server.

Action:

Check the log for references to pluginId to see other messages that indicate the cause

ZWED0129I

(HTTP or HTTPS) Listening on ip address:port

Reason: type (HTTP or HTTPS) Listening on ip address:port.

Action:

No action required.

ZWED0130I

(HTTP or HTTPS) About to start listening on app-server port

Reason: About to start listening on app-server port.

Action:

No action required.

ZWED0154I

Following link: dependency: dependency importer

Reason:

Following the link formed by the dependency and the dependency importer in the graph.

Action:

No action required.

ZWED0158I

*** pluginsSorted:

Reason:

The graph with the sorted plugins.

Action:

No action required.

ZWED0159E

*** rejects:

Reason:

Removing the plugins with the broken dependencies from the graph.

Action:

No action required.

ZWED0160I

Dep.valid:

Reason:

Checking if the dependency is valid.

Action:

No action required.

ZWED0205I

User=user (pluginId): User logout

Reason:

This message prints when the user logs out of the Zowe Desktop. Logout is being handled by the pluginId plugin.

Action:

If logout was intentional, message can be safely ignored. If logout was unintentional, keep in mind the Desktop logs out after
inactivity. Incorrect logout behavior can be troubleshooted with the authentication plugin.

ZWED0211I

The number of processors is: count

Reason:

Lists the count of CPU cores on the system hosting the App server.

Action:

No action required.

ZWED0212I

Environmental variable ZLUX_MIN_WORKERS was not a valid number therefore count will be used as the minimum workers

Reason:

ZLUX_MIN_WORKERS environment variable is not valid, so the minimum number of workers as part of the cluster will be count

Action:

By default, the App server runs in a cluster. You can specify minimum number of cluster workers.

ZWED0213I

Environmental variable ZLUX_MAX_WORKERS was not a valid number therefore count will be used as the maximum workers.

Reason:

ZLUX_MAX_WORKERS environment variable is not valid, so the maximum number of workers as part of the cluster will be count.

Action:

By default, the App server runs in a cluster. You can specify maximum number of cluster workers.

ZWED0214I

Read directory: found plugin id = identifier, type = type

Reason:

Reading in directory, found a plugin with identifier of type

Action:

No action required.

ZWED0287I

JarMgr with id=id invoked to startup with config=object

Reason:

JarManager id has been started with the configuration object

Action:

No action required.

ZWED0290I

Plugin (pluginId) loaded. Version: pluginVersion. Successful: overallSuccess% (pluginsLoaded/pluginsTotal) Attempted:
pluginsAttempted% (attemptedCount/pluginsTotal)

Reason:

Plugin with pluginId loaded, with version pluginVersion. The server attempted to load a total of pluginsTotal with pluginsLoaded plugins
already successfully loaded.

Action:

No action Required.

ZWED0292I

Plugin identifier loaded. Version: pluginVersion.

Reason:

Plugin identifier loaded successfully and the plugin version for the same is pluginVersion.

Action:

No action Required.

ZWED0294I

Successfully loaded recognizers length recognizers for appId into config

Reason:

Successfully loaded recognizers length for appId into config at path workspace/app-
server/ZLUX/pluginStorage/org.zowe.zlux.ng2desktop/.

Action:

No action Required.

ZWED0295I

Successfully loaded actions length actions for appId into config

Reason:

Successfully loaded actions length for appId into config at path workspace/app-
server/ZLUX/pluginStorage/org.zowe.zlux.ng2desktop/.

Action:

No action required.

ZWED0299I

Loading remote iframe app plugin_identifier located at remoteUrl.

Reason:

Loading remote iframe app plugin_identifier which is located at remoteUrl.

Action:

No action Required.

ZWED0300I

APIML Storage configured

Reason:

caching service/APML storage is configured

Action:

No action Required.

ZWED0301I

Found pre-existing recognizers/pre-existing actions in config for appID.

Reason:

Get pre-existing recognizers/pre-existing actions in config, if any for appID.

Action:

No action Required.

ZWED0302I

HA mode is enabled/disabled.

Reason:

High Availability mode is enabled/disabled.

Action:

No action Required.

App-server warning messages

ZWED0004W

Tomcat for ID=id not starting, no services succeeded loading

Reason:

A tomcat instance required for loading a set of java dataservices could not start, so none of the associated dataservices will be
available either.

Action:

Review prior logs to determine the reason the tomcat server is not starting, and address the problem before restarting Zowe in order
to access the missing dataservices.

ZWED0006W

RBAC is disabled in the configuration. All authenticated users will have access to all services. Enable RBAC in the configuration to
control users' access to individual services.

Reason:

RBAC can be used to permit and reject access to each URL of the app-server individually according to security rules such as those
from SAF resources. Enabling RBAC is beneficial but requires configuration first so this message is often seen.

Action:

If you wish to learn more about RBAC and enable it, read Application Framework Advanced Configuration

ZWED0007W

Dataservice authentication definition is not present in server configuration file, or malformed. Correct the configuration file before
restarting the server.

Reason:

The components.app-server.dataserviceAuthentication configuration section is missing or invalid, so the server cannot continue
until it is fixed. Authentication plugins for dataservices are described here

Action:

Correct your zowe configuration for this section according to the app-server schema

ZWED0008W

Error loading auth plugin pluginIdentifier: error

Reason:

The plugin could not be loaded due to an error. This plugin may be required for the server to continue, but if it is non-essential then
the server will continue to run without the ability to perform authentication against that particular plugin.

Action:

Review the error to determine the way to fix the plugin before restarting Zowe.

ZWED0013W

Initializing was not complete for worker workerId

Reason:

A cluster mode worker exited before it fully initialized. Another worker will be started soon to attempt again.

Action:

If this continues to happen, you should contact support.

ZWED0014W

Error adding plugin: error

Reason:

A dynamic plugin, or a plugin added post-startup was unable to be added to the server. The server continues to run, but this plugin
was not added.

https://docs.zowe.org/stable/user-guide/mvd-configuration#controlling-access-to-apps
https://docs.zowe.org/stable/extend/extend-desktop/mvd-auth-plugins/
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json

Action:

Check the error and lines above in the log to determine the reason for the failure.

ZWED0015W

Error reloading workers: error

Reason:

The server was attempting to reload all workers, probably to complete a configuration change. An error occurred instead so some of
the workers may not have been reloaded and could contain the old configuration.

Action:

If you were doing a configuration change, you should try again or restart the server if the error persists. You can check the error to see
the reason for the issue.

ZWED0016W

Error setting override: error

Reason:

The server attempted to load a new configuration, but failed when writing the configuration update to a file.

Action:

Check the error to see the possible cause for the failure. Retry this operation but if the issue persists you should restart the server.

ZWED0017W

Duplicate plugin identifier pluginId found.

Reason:

A plugin was trying to be added to the server but it wasn't possible because another plugin with the same ID was already running
within the server.

Action:

Plugin upgrades cannot be done through the add plugin operation. Instead, the server should be stopped to perform this upgrade.

ZWED0018W

Could not initialize Java manager. Java services from Apps will not be able to load stackTrace

Reason:

The Java manager is used to run Java services bundled into plugins. It could not start, so the server cannot load any Java services.
Plugins that have Java services may fail to load, but the server will still run with the remaining plugins.

Action:

Check the stackTrace output to determine the reason the Java manager could not run.

ZWED0019W

Exception when setting log level for ID=logId. E: stackTrace

Reason:

Log levels listed in the configuration file are set during startup. For some reason, the level for logId could not be set, but the server will
continue to run with that logger set to default verbosity.

Action:

Check the stackTrace to determine the reason why logId could not be set. Potentially the log id was an invalid name, or the log level
was an invalid number.

ZWED0020W

Could not spawn childProcess: errorMessage

Reason:

The child process that was requested to run when the server started up could not run for some reason. childProcess lists the
parameters requested to start the process.

Action:

Check the errorMessage to determine the reason of failure, and also verify that the information in childProcess is valid.

ZWED0021W

Missing one or more parameters required to run. The server requires either HTTP or HTTPS. HTTP Port given: httpPort. HTTPS Port
given: httpsPort HTTPS requires either a PFX file or Key & Certificate files. Given PFX: pfx Given Key: key Given Certificate: certificate
config was: configuration All but host server and config file parameters should be defined within the config file in JSON format.

Reason:

The server could not start because the configuration was not valid. When the server's HTTPS section is specified, httpsPort must be a
valid TCP port number and you must have a key and certificate. If the HTTPS section is not specified, the HTTP section must be
specified and httpPort must be a valid TCP port number.

Action:

Review the configuration to see if there are corrections to be made before restarting the server.

ZWED0027W

Plugin (pluginId) loading failed. Version: versionNumber. Message: "errorMessage" Successful: percentSuccess%
(pluginsLoaded/pluginsTotal) Attempted: percentAttempted% (pluginsAttempted/pluginsTotal)

Reason:

An error prevented the plugin pluginId from loading. Other plugins will still be attempted to be loaded, until percentAttempted reaches
100%. The server will run if all auth plugins needed have successfully loaded.

Action:

Review errorMessage to see if there is something you can do to fix the error. You may need to contact the plugin developer to find a
solution. If you do not need this plugin, it is OK to continue.

ZWED0028W

Encountered parse exception while reading filename

Reason:

The server cannot read the JSON file filename. This might be a configuration file or a plugin file. In either case, the server may not be
able to run or may run with less plugins than desired.

Action:

Review the file listed in filename. Check if it is in the right encoding for your platform. Tagging the file according to its encoding is
recommended for z/OS. Also check if the file is valid JSON. The file may have a missing or extra comma, or missing quotes or brackets.

ZWED0029W

Authentication plugin was found which was not requested in the server configuration file's dataserviceAuthentication object. Skipping
load of this plugin

Reason:

The server will attempt to load every plugin given to it in the plugins directory. Authentication plugins are only needed if a plugin
requests them or it implements the default authentication category. Because the server did not find a user of this plugin, it was not
loaded.

Action:

No action is needed unless you believe that this plugin needed to be loaded. If so, check for plugins that require it to determine if
there is missing or incorrect auth configuration.

ZWED0030W

location points to an invalid plugin definition, skipping

Reason:

The file specified at location is not valid according to the pluginDefinition schema, so it cannot be loaded. The server will still start
without the plugin if possible.

Action:

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json

Correct the pluginDefinition.json file of the plugin to load the plugin on next server restart, or remove the plugin if not needed.

ZWED0032W

Failed to load filename

Reason:

The plugin definition located at filename could not be read, so the plugin that referred to this cannot be loaded. The server may still
run without the plugin if possible.

Action:

Check if the file exists and is readable to the user that is running the server. Also check that the file is in the right encoding for the OS
the app-server is running on. On z/OS, it is recommended to have the file encoding tagged.

ZWED0033W

Could not initialize plugin pluginId: error

Reason:

The plugin pluginId could not be loaded. This may be due to unsatisfied imports, where an import requested a version of something
that was not available, or an entire plugin was not available. The server will still attempt to load if this plugin was not needed.

Action:

Check the error message to determine the cause of error for correction.

ZWED0034W

Skipping install of plugin due to existing plugin with same id=identifier

Reason:

The plugin could not be loaded due to a plugin that is already loaded containing the same identifier ID. Plugin IDs are unique, so the
first plugin with that ID that is seen is the one that is loaded.

Action:

Check to see if you have 2 extensions that contain plugins with the same ID. Alternatively, an extension may have updated to have its
name change without its ID changing, causing a duplicate to appear. You may need to clean up your extensions or the contents of the
pluginsDir directory.

ZWED0035W

Error thrown when installing plugin=identifier: error

Reason:

The plugin with id identifier could not be added to the server because of an error that occurred. The server will still attempt to run
without the plugin if possible.

Action:

Check the error message to see the reason for the error, and correct it before restarting the server in order to try loading the plugin
again.

ZWED0036W

Uncaught exception found. Error: stackTrace

Reason:

The server encountered an unexpected error. If cluster mode is running, this will result in the worker crashing but the cluster starting a
new worker to replace it. The client that initiated the request will need to retry the operation though other clients should not
experience disruption.

If cluster mode is not running, the process will end but the launcher will restart it. In this case, state may be lost unless the caching
service was also being used.

Action:

The stackTrace should be sent to developers so that the issue can be fixed.

ZWED0037W

Ending server process due to uncaught exception.

Reason:

The server is stopping after encountering ZWED00036W.

Action:

The information within ZWED0036W should be sent to developers so that the issue can be fixed.

ZWED0038W

Reason:

A child process with path childProcessConfig.path encountered an error with receiving data.

Action:

Action depends on context of what data is. May be useful in debugging an issue with internal ProcessManager.

ZWED0039W

Exception at server cleanup function: stack

Reason:

An exception occurred when ending process, during the cleanup phase.

Action:

No action is needed, but stack can be sent to developers if server processes are failing to end.

ZWED0040W

Callservice: Service call to %s:%s%s failed.

Reason:

An HTTP request to host with port at path failed.

Action:

Check the subsequent error message to see why it failed or Network log, if request originated from the browser.

ZWED0041W

[Proxy URL: urlPrefix] Exception caught. Message=message

Reason:

For urlPrefix proxy, an exception was caught with content message

Action:

No action needed usually, but message may be needed for debugging

ZWED0042W

Stack trace follows stack

Reason:

For the exception from ZWED0041W, a stack trace is printed

Action:

No action needed usually, but stack may be needed for debugging

ZWED0043W

[Proxy URL: urlPrefix] proxyWS error: error

Reason:

Proxy worker encountered an error

Action:

No action needed usually except, debugging of the error.

ZWED0044W

[Proxy URL: urlPrefix] WS error: error

Reason:

Worker encountered an error

Action:

No action needed usually except, debugging of the error.

ZWED0045W

Failed to reach the auth services host for address host:port

Reason:

Client encountered error when trying to connect to an agent host:port

Action:

This usually means your agent (for example: ZSS) is unreachable or your configuration is pointing to an incorrect agent

ZWED0046W

The auth services host system was not specified at startup, and defaulted to 127.0.0.1. Verify that the auth services server is running, or
specify at startup the remote host and port to connect to. See documentation for details.

Reason:

Client encountered an error when trying to connect to the agent from ZWED0045W

Action:

See ZWED0045W

ZWED0048W

Invalid Swagger from file for service (plugin identifier:service name)

Reason:

N/A

Action:

Check validity of Swagger file

ZWED0049W"

error message stack

Reason:

Prints the error message and stack from ZWED0048W

Action:

See ZWED0048W

ZWED0051W

Failed to parse translation file path. File skipped

Reason:

Failed to parse the file path as a valid translation file, most likely because it's not valid JSON

Action:

Check if the translation file is valid JSON and matches the structure of core translation files (i.e. Sample Apps)

ZWED0052W

Error when reading file=path. Error=message

Reason:

Failed to read certificates or keys path with a returned message

Action:

Review content of message and correct

ZWED0053W

Event handler failed: error

Reason:

An asynchronous event listener handler failed

Action:

This isn't part of normal operation, if it causes issue, error and any relevant context should be sent to developers

ZWED0054W

Skipping invalid listener address=hostname

Reason:

hostname was deemed invalid when attempting a DNS lookup to find IP address

Action:

Compare with your configuration to see where the invalid hostname is being picked up

ZWED0055W

Skipping invalid listener address=hostname

Reason:

hostname is not a valid string

Action:

Compare with your configuration to see where the invalid hostname is being referenced

ZWED0056W

Couldn't process address as IP

Reason:

The address was not pointing a valid IP address by the ipaddr utility

Action:

Compare with your configuration to see where the invalid address is being referenced

ZWED0057W

Loopback calls: localhost equivalent address not found in the list listenerAddresses. Using first address address; Verify firewall will allow
this.

Reason:

Unable to find a localhost equivalent from the listenerAddresses list so the server considers the first address in the loop by default.

Action:

Verify if this is intended configuration (edit/define zowe.components.app-server.node.https.ipAddresses or check Zowe
documenation)

ZWED0058W

Log location for logger 'identifier:serviceDefinitionName' is undefined

Reason:

Log location isn't being specified for this dataservice.

Action:

Check dataservice plugin definition to see if log location is being specified.

ZWED0059W

Failed to add the plugin: errorMessage

Reason:

Using the /plugins API to add a plugin, has failed

Action:

Review errorMessage for explanation

ZWED0060W

errorMessage

Reason:

Invalid JSON

Action:

Review errorMessage

ZWED0061W

Callservice: Service call failed.

Reason:

A network request to this service failed.

Action:

Check Network log and review the error.

ZWED0062W

[Service URL: url] Exception caught. Message=errorMessage

Reason:

An error occurred calling url with reason errorMessage

Action:

Review correctness of url and review errorMessage

ZWED0063W

Stack trace follows stackTrace

Reason:

This exception originates from the web socket and the stack trace message handles the generated exception. The stack trace for an
exception helps in understanding the error and what went wrong with the code.

Action:

No action needed unless user is experiencing an interruption in the server service, then send the stack to developers.

ZWED0064W

plugin.identifier: Invalid method method

Reason:

It will throw the warning if method is invalid (different from these methods: get|post|put|delete|ws)

Action:

Review the warning message and use correct method.

ZWED0065W

Library plugin plugin.identifier is missing libraryVersion attribute for hosting files. Skipping file hosting.

Reason:

Library plugin's plugin definition is missing the library version attribute.

Action:

Add the correct library version in the plugin definition.

ZWED0066W

pluginID: getCapabilities() is not a function

Reason:

The handler for plugin pluginID does not have a getCapabilities() method

Action:

No action required. If your desired authentication plugin isn't successfully authenticating a login, please send the log and any relevant
info to the developers.

ZWED0068W

Failed to set proxy authorizations. Error=errorMessage

Reason:

Failed to add proxy authorization with reason errorMessage.

Action:

No action required. If your desired authentication plugin isn't successfully authenticating a login, please send the log and any relevant
info to the developers.

ZWED0069W

Returning null for cipher array because input had non-string:

Reason:

Returns null for cipher array if an array element is not a string type.

Action:

Please verify, if any custom cyphers present, that all cyphers are of type string.

ZWED0070W

Error when reading PFX. The server cannot continue. Error=errorMessage

Reason:

If we get an error while reading config.https.pfx file then the server cannot continue and throws errorMessage.

Action:

No action is needed, but the errorMessage may be needed to debug

ZWED0071W

Unexpected error on server ipAddress:port. E=errorMessage. Stack trace follows. stack

Reason:

When we get an unexpected (anything except EACCES, EADDRINUSE, ENOTFOUND, EADDRNOTAVAIL) error in the web server for
ipAddress:port.

Action:

No action needed unless user is experiencing an interruption in server, then send error message and stack to developers

ZWED0072W

Could not stop manager due to error errorMessage

Reason:

If the server manager is unable to stop due to any reason it will throw an exception with an errorMessage.

Action:

If the Java manager (handles Jar and War) is unable to stop all servers, send errorMessage to developers

ZWED0073W

No server returned for group=group

Reason:

If No server was found in this War group then it will throw this warning message.

Action:

No action is required

ZWED0074W

Unknown default behavior=defaultBehavior

Reason:

The default grouping behaviour in the config for this War is not of type 'microservice' or 'appserver'

Action:

No action is needed, but the warning may be needed to debug

ZWED0075W

Services in plugin=plugin war grouping skipped. Plugin missing or already grouped

Reason:

Server was not created for plugin War grouping, because it was already made or plugin is missing.

Action:

No action is needed

ZWED0076W

Skipping invalid plugin group=plugins

Reason:

If plugins is not an array and the size is less than zero, then it will log a warning message.

Action:

Make sure plugins should be an array of size greater than zero.

ZWED0077W

Could not extract war for service=key-value, error=errorMessage

Reason:

If the service with the key-value pair is unable to extract the war file then it throws the errorMessage

Action:

Check if the war file exists and configured correctly.

ZWED0078W

Could not access files to determine status for service=key-value, error=errorMessage

Reason:

If we are unable to get the status of war extracted or not, then it throws errorMessage in catch block.

Action:

Check if the war file exists.

ZWED0079W

Cannot add servlet for service=key-value, error=errorMessage

Reason:

If unable to add servlet for service key-value, then it logs a warning errorMessage.

Action:

No action is needed, but the warning may be needed to debug this War

ZWED0080W

Cannot add servlet for service=key-value

Reason:

When we are not able to get the directory to add servlet for service key-value.

Action:

Check if your directory exists and is valid.

ZWED0081W

Could not start Tomcat, error=errorMessage

Reason:

Tomcat manager is unable to start Tomcat with the Java option, due to an incorrect configuration with components.app-

server.node.https.port , components.app-server.node.https.key , or components.app-server.node.https.certificate .

Action:

Verify configuration with components.app-server.node.https.port , components.app-server.node.https.key , or

components.app-server.node.https.certificate is valid or not.

ZWED0082W

Tomcat PID=pid: stderr=error

Reason:

A Tomcat process with Tomcat pid encountered an error (stderr).

Action:

Action depends on what error is and may be useful to debug.

ZWED0083W

Tomcat could not start. Closing. code=code

Reason:

If the Tomcat manager is unable to start itself, then it closes with code.

Action:

Review the message and if app server service is interrupted, send the message along with the log to support for troubleshooting.

ZWED0084W

Tomcat could not start. Exiting. code=code

Reason:

If the Tomcat manager is unable to start itself, then it exits with code.

Action:

Review the message and if app server service is interrupted, send the message along with the log to support for troubleshooting.

ZWED0085W

Tomcat PID=pid Error when stopping, error=errorMessage

Reason:

If Tomcat manager is unable to stop the Tomcat process on Windows, then it logs errorMessage.

Action:

Review the errorMessage and see if there is something you can do to fix the error

ZWED0086W

Could not stop Tomcat, error=errorMessage

Reason:

If Tomcat manager is unable to stop the Tomcat process on Unix, then it logs errorMessage.

Action:

Review the errorMessage and if app server service is interrupted, send the message along with the log to support for troubleshooting.

ZWED0087W

Tomcat PID=pid: stderr=error

Reason:

While stopping Tomcat, Tomcat process with Tomcat pid encountered an error (stderr).

Action:

Review the error and if app server service is interrupted, send the message along with the log to support for troubleshooting..

ZWED0146W

Could not stat destination or temp folder path. Error=ErrorMsg

Reason:

Server was unable to use 'stat' command on folder path and threw ErrorMsg.

Action:

No action is needed usually, however, need to debug the ErrorMsg.

ZWED0148W

App extracted but not registered to App Server due to write fail. Error=errorMessage

Reason:

App extracted successfully but not registered to App Server due to write fail. Error=errorMessage.

Action:

Go through the errorMessage and undestand what to debug.

ZWED0149W

Could not find pluginDefinition.json file in App (dir=AppDir). Error=ErrorMsg

Reason:

Throws ErrorMsg when its not able to find the pluginDefinition.json file in AppDir location.

Action:

Check if pluginDefinition.json exists in AppDir.

ZWED0150W

identifier library path location does not exist.

Reason:

Server throws warning when library plugin identifier does not exist at path location.

Action:

Check if the library plugin exists in the path location.

ZWED0151W

unhandledRejection error

Reason:

When process experiences an unhandledRejection.

Action:

No action is needed usually, however, need to debug the ErrorMsg.

ZWED0152W

Error at call sessionStore. APIMethodname: Error Object

Reason:

There is a problem calling a sessionStore APIMethodname.

Action:

No action is needed usually, however, need to debug the ErrorMsg.

ZWED0153W

WARNING: CLI Argument missing name or has unsupported type=type

Reason:

The server throws a warning when the CLI argument is missing a name, or has an unsupported type (supported types: 1 - flag, 2 -
value, 3 - json).

Action:

Check any missing argument or unsupported argument.

ZWED0154W

WARNING: Unrecognized command: args

Reason:

Throws warning when args is unrecognized.

Action:

Check the command once again or check if the specified command is interpreted as intended.

ZWED0155W

ErrorMsg

Reason:

Server throws 500 code with ErrorMsg.

Action:

Go through the ErrorMsg for context on what to debug.

ZWED0156W

1 function initLoggerMessages - ERROR - Error

Reason:

Attempt to get log message for a language a user may have specified, has failed with Error.

Action:

Go through the Error for details on what to debug.

ZWED0157W

2 function initLoggerMessages - ERROR - Error.

Reason:

Attempt to get log message for English has failed with Error.

Action:

Go through the Error for details on what to debug.

ZWED0158W

ErrorMsg

Reason:

Server throws 500 code with ErrorMsg.

Action:

Go through the ErrorMsg for details on what to debug.

ZWED0159W

Plugin (PluginIdentifier) loading failed. Message: "errorMessage" Successful: pluginsLoaded% (pluginsLoaded/eventCount) Attempted:
pluginCount% (pluginCount/eventCount)

Reason:

Plugin with pluginId loaded failed with errorMessage. The server attempted to load a total of pluginCount with pluginsLoaded plugins
already successfully loaded.

Action:

Review errorMessage to see if there is something you can do to fix the error. You may need to contact the plugin developer to find a
solution. If you do not need this plugin, it is OK to continue.

ZWED0166W

Error updating the storage: Error

Reason:

Throws warning Error when it faced error while updating the storage.

Action:

Contact support if Error is not clear.

ZWED0167W

Error adding to the storage: errorMessage

Reason:

Throws errorMessage while adding to the storage.

Action:

If app server service is interrupted, go through the errorMessage for details on what to debug or contact support if errorMessage is not
clear.

ZWED0168W

Unable to retrieve storage value from cluster Error

Reason:

Throws warning Error when it is unable to retrieve storage value from cluster.

Action:

By default, the timeout for cluster method calls is 1000ms which should cause no issues. If service is interrupted, contact support and
provide Error.

ZWED0169W

Error deleting the storage with id: deleteStorageByKey Error

Reason:

when server tries deleting storage by key deleteStorageByKey.

Action:

Contact support if Error is not clear.

ZWED0170W

Plugin (PluginIdentifier) loading failed. Version: PluginVersion. Message: "Error"

Reason:

Plugin PluginIdentifier with version PluginVersion has failed to load with an Error.

Action:

Review Error to see if there is something you can do to fix the error. You may need to contact the plugin developer to find a solution. If
you do not need this plugin, it is OK to continue.

ZWED0171W

Rejected undefined referrer for url=originalUrl, ip=ip

Reason:

Throws 403 Forbidden when App server fails to honor a network request due to failed referrer check.

Action:

Double check the address. A possible reason for a 403 error is a misstyped originalUrl or ip or because loopback routing is not
configured in the App server.

ZWED0172W

Rejected bad referrer=referrerHeaderValue for url=accessedUrl, ip=clientIp

Reason:

The client from clientIp tried to access accessedUrl but due to having a referrer header value that didn't seem to originate from this
server, a security violation was caused and the attempt to access the URL was rejected.

Action:

Review the values to determine if this was a valid attempt to access the server or not. If this access seems suspicious, then the server
was correct in rejecting the access. However, if the access attempt seemed legitimate, then this points to the referrer configuration
needing revision. You can customize which referrer header values are permitted using the environment variable
ZWE_REFERRER_HOSTS and it should be set to match the external hostnames of the system the app-server is running on.

ZWED0173W

Unable to decode P12 certificate (different password than keystore?). Attempting to use empty string as password. Decode error:
error.

Reason:

The server tried to load the p12 file provided for the server certificate or certificate authorities, but encountered error. The server may
not be accessible as a result of invalid TLS configuration.

Action:

Check the value of zowe.certificate.keystore.password and zowe.certificate.truststore.password, or the environment variable
KEYSTORE_PASSWORD to see if they are valid for the p12 file provided, and adjust the configuration if needed.

ZWED0174W

componentName could not verify (operatingSystem) as a supported platform to install (pluginId). Proceeding anyway...

Reason:

The plugin pluginId has a dependency which can only run on certain operating systems, and operatingSystem is not on the list, but
because the operating system is not explicitly forbidden, the server will attempt to load the plugin anyway. This may fail, but the server
may continue to run without the plugin if possible.

Action:

Review the plugin dependencies as seen in the plugin's pluginDefinition.json file to see if your Zowe configuration or the plugin can
be changed in order to match the requirements. Consult the plugin developer if you believe the plugin was able to run fine on the
operating system, so they can explicitly add support in the future.

ZWED0175W

componentName could not verify (systemArchitecture) as a supported architecture to install (pluginId). Proceeding anyway...

Reason:

The plugin pluginId has a dependency which can only run on certain system architectures, and systemArchitecture is not on the list, but
because the system architecture is not explicitly forbidden, the server will attempt to load the plugin anyway. This may fail, but the
server may continue to run without the plugin if possible.

Action:

Review the plugin dependencies as seen in the plugin's pluginDefinition.json file to see if your Zowe configuration or the plugin can
be changed in order to match the requirements. Consult the plugin developer if you believe the plugin was able to run fine on the
system architecture, so they can explicitly add support in the future.

ZWED0177W

Unable to load actionOrRecognizer for 'pluginId' into config

Reason:

The plugin pluginId has an action or recognizer within its package and the plugin install process was trying to copy that into the
workspace so it can be used, but encountered an error that prevented this.

Action:

Contact support if the reason cannot be determined.

ZWED0178W

Skipping authentication plugin pluginId because it's not HA compatible

Reason:

The server is setup for running in high availability (HA) mode which requires that plugins that have state, in particular authentication
plugins, must be HA-compatible or else errors will occur. Therefore, the server skips over loading of this plugin nbecause its
pluginDefinition.json did not state it was HA compatible.

Action:

Either the plugin must be updated to support and state its support for HA, or it must be removed, or HA mode disabled. To make a
plugin support HA, the conformance program should be reviewed. When HA mode is supported, the plugin can be marked as
compatible by setting capabilities.haCompatible=true within its initialization.

ZWED0179W

Unable to retrieve the list of certificate authorities from the keyring=keyringName owner=username Error: error

Reason:

The server could not automatically determine the certificate authorities (CA) from the z/OS keyring listed. This may cause the server to
be unable to verify certificate chains from other servers or clients causing other errors later.

Action:

Review the error to resolve it and contact support if needed. It's also possible as a workaround to explicitly state the CAs within the
keyring that you would like to load, rather than relying upon the server's attempt to automatically find all CAs within the keyring.

App-server error messages

ZWED0001E

Error: error

Reason:

The server is running in cluster mode and the cluster manager has encountered an unexpected error.

Action:

Review the error to resolve it, and contact support if needed.

ZWED0002E

Could not stop language manager for types=languageNames

Reason:

A plugin had a service that needed a language manager to run. During shutdown, the language manager could not be stopped.

Action:

The language manager may continue to run after the app-server shuts down. Review the logs to determine the location of the
language manager and try to stop the manager manually.

ZWED0003E

Loopback configuration not valid, loobackConfiguration Loopback calls will fail!

Reason:

The loopback configuration that the server uses to contact itself over an internal network was missing a value for the network port,
therefore no requests over the loopback address will be possible.

Action:

Review the configuration of components.app-server.node.port to see if it has a value and set one to fix the issue.

ZWED0004E

Could not listen on address ip:port. It is already in use by another process.

Reason:

The server tried to start using the ip and port values shown which were from the zowe configuration. When trying to connect to this
address, the server recieved an error telling it that the address was already in use.

Action:

Check the system's network port status to see what program could be using this address, and either stop that program or change the
zowe configuration to use a different address before restarting zowe.

ZWED0005E

Could not listen on address ip:port. Invalid IP for this system.

Reason:

When the app-server was binding to the address shown, it recieved the error EADDRNOTAVAIL or ENOTFOUND. In either case, the
app-server was not able to bind to the address and so it will not run until the problem is solved.

Action:

Review the address and check if it is valid or if there is some lack of permissions that might explain why these errors were received by
the server.

ZWED0006E

Usage: --inputApp | -i INPUTAPP --pluginsDir | -p PLUGINSDIR --zluxConfig | -c ZLUXCONFIGPATH [--verbose | -v]

Reason:

This message appearas when you attempt app installation but have not provided enough of the mandatory arguments for the
program to run. It is printing out what options are valid so that you can retry with different options.

Action:

Retry the operation after modifying the input arguments to be valid against the list shown. Or, if you are trying to do app installation,
you should use zwe components install instead whenever possible.

ZWED0007E

serviceName invalid version version

Reason:

The service mentioned was trying to be loaded by the server but failed validation due to the version number not being a a valid
semver string. This service and therefore plugin will be skipped during loading.

Action:

Contact the developers so that they can revise the pluginDefinition.json of the plugin where the service is located to be semver-
compatible. Details on semver version can be found at semver.org

ZWED0008E

localServiceName: invalid version range serviceName: versionRange

Reason:

When the serviceName was trying to be imported into a plugin as localServiceName, the version range of acceptable versions for the
service to be imported was not valid. Due to this, the import cannot be resolved and the plugin will be skipped in loading.

Action:

Contact the developers of the plugin this error occurred in as the pluginDefinition.json needs to be revised to have the version range
given for this import service be a valid semver range string.

ZWED0009E

localServiceName: invalid version range versionRange

Reason:

When the a service was trying to be imported into a plugin as localServiceName, the version range of acceptable versions for the
service to be imported was not valid. Due to this, the import cannot be resolved and the plugin will be skipped in loading.

Action:

Contact the developers of the plugin this error occurred in as the pluginDefinition.json needs to be revised to have the version range
given for this import service be a valid semver range string.

ZWED0010E

No file name for data service

Reason:

When the server was trying to load a service for a plugn, it couldn't identify the filename where the service is located within the plugin,
so the service and therefore plugin have been skipped during loading.

Action:

Contact the plugin developer to fix that the service within the pluginDefinition.json is missing the "fileName" or "filename" property
which must describe the path to the dataservice entry file, relative to the plugin's lib directory.

ZWED0011E

Plugin pluginId has web content but no web directory under location

Reason:

The plugin definition of pluginId stated that the plugin has web content to serve such as HTML files, but the required 'web' folder was
missing, so the plugin cannot be loaded.

Action:

Check that the web folder within this plugin exists or not. If it does exist, then the server may not have had permission to read it.
Otherwise, if it doesn't exist, try to reinstall the plugin in case it is corrupt. Or, contact the developers to fix the lack of web directory.

ZWED0012E

pluginId::serviceName Required local service missing: localService

Reason:

The service serviceName could not be loaded because of an unsatisfied version requirement upon another service. This causes the
plugin pluginId to be skipped during loading.

Action:

Review the plugin's definition to see why the version match could not be made. Either a required plugin is missing, or the
pluginDefinition.json will need to be revised by the developer of the plugin to fix the version check failure.

ZWED0013E

pluginId::serviceName Could not find a version to satisfy local dependency serviceName@requiredVersion

Reason:

The service serviceName could not be loaded because of an unsatisfied version requirement upon another service. This causes the
plugin pluginId to be skipped during loading.

Action:

Review the plugin's definition to see why the version match could not be made. Either a required plugin is missing, or the
pluginDefinition.json will need to be revised by the developer of the plugin to fix the version check failure.

ZWED0014E

Plugin pluginId invalid

Reason:

The plugin could not be loaded because the plugin definition was not valid in some way. There are fields that every plugin must
define, such as type. Then, depending on type, there are more fields a plugin can and cannot have. When the server went to load the
plugin, it found that the definition was not correct versus the requirements, so the loading of this plugin was skipped.

Action:

Contact the developers of this plugin so that they can fix the plugin to adhere to the plugin schema

ZWED0015E

No plugin directory found at pluginLocation

Reason:

The server finds plugins by reading JSON files within the "plugins" folder of its workspace directory. When it checked the JSON of this
particular plugin, the JSON stated the plugin could be found at a folder pluginLocation which either does not exist or could not be
read by the server.

Action:

Check that the location shown exists. If it does exist, then there is some permission problem preventing the server from reading it. If it
does not exist, determine whether this plugin is desired but has the wrong location, or if this plugin is not desired and should be
removed. Contact support so they can assist in fixing the plugin location problem.

ZWED0016E

No pluginDefinition.json found at pluginLocation

Reason:

The server finds plugins by reading JSON files within the "plugins" folder of its workspace directory. When it checked the JSON of this
particular plugin, it stated the plugin was located in a folder which the server determined did not contain the pluginDefinition.json file
that every plugin requires. Due to this missing file, the loading of this plugin was skipped.

Action:

Check that a pluginDefinition.json exists at the location specified. If it does, then the server is missing permissions necessary to read
the file. If the file does not exist, review if there is a problem with the plugin itself that should be resolved by contacting the plugin
developers. If the plugin exists with a pluginDefinition.json file at a different location than the error suggests, contact Zowe support to
resolve the location problem.

ZWED0017E

Identifier doesn't match one found in pluginDefinition: pluginIdentifier

Reason:

The identifier found in the plugin reference doesn't match the one specified in the pluginDefinition.json

Action:

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/plugindefinition-schema.json

Check if identifier found is the same one as intended (typo perhaps?). If not, delete the plugin identifier JSON (found in
instance/workspace/app-server/plugins) and restart Zowe. If issue isn't resolved, increase app server debugging and send logs to the
app developer

ZWED0018E

No plugin type found, skipping

Reason:

The plugin definition for the plugin has no 'pluginType' property set

Action:

Contact app developers if you need plugin to be loaded and working

ZWED0019E

Plugin already registered

Reason:

A plugin with this identifier has already been registered to the map of plugins

Action:

Check if you have multiple components sharing the same, or different versions, of the same plugin. This is not allowed

ZWED0020E

"pluginIdentifier: pluginType type is unknown

Reason:

The plugin pluginIdentifier has in its plugin definition an invalid plugin type

Action:

Accepted plugin types found in the schema (https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-
schema.json#L47)

ZWED0021E

pluginPath is missing

Reason:

App server tried to process the plugin reference from path pluginPath

Action:

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json#L47

Check if pluginPath is a real path or the App server (started task user of Zowe) has the permission to read it

ZWED0022E

Module not found moduleName

Reason:

App server, during a cluster/worker method call, tried to require a module moduleName it couldn't find

Action:

Contact the plugin developer if plugin returns this error.

ZWED0023E

Method not implemented methodName

Reason:

App server, during a cluster/worker method call, tried to act on a method that isn't valid.

Action:

Contact the plugin developer if plugin returns this error.

ZWED0024E

Object not exported exportName

Reason:

App server, during a cluster/worker method call, tried and failed to export a module object.

Action:

Contact the plugin developer if plugin returns this error.

ZWED0025E

.authenticate() missing

Reason:

Authentication plugin (which plugin includes looking at nearby log messages) is missing the .authenticate() method.

Action:

Contact the plugin developer if plugin is essential for authenticaiton.

ZWED0026E

Circular dependency: pluginIdentifier

Reason:

The App server encountered a circular dependency for plugin pluginIdentifier (meaning it contains a dependency that imports itself).

Action:

Contact the plugin developer for troubleshooting help. This is a packaging issue.

ZWED0027E

Circular dependency: pluginIdentifier

Reason:

The App server encountered a circular dependency for plugin pluginIdentifier (meaning it contains a dependency that imports itself).

Action:

Contact the plugin developer for troubleshooting help. This is a packaging issue.

ZWED0028E

Config invalid

Reason:

The App server attempted to validate and process the server configuration and there was an issue.

Action:

Please consult the App server schema components.app-server.node section (https://github.com/zowe/zlux-app-
server/blob/v2.x/staging/schemas/app-server-config.json#L9). You may also instead have a syntax issue. For a free, offline YAML
validator, check out RedHat's VSCode YAML Extension

ZWED0038E

JavaManager given port range beyond limits

Reason:

The Java manager was given a port outside the valid port range (0 < 65535).

Action:

Please check your configuration to see if any ports are out of bounds.

ZWED0039E

JavaManager not given any ports with which to run servers.

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L9

Reason:

Configuration does not contain ports for Java manager to try to run the servers.

Action:

Please check your configuration to see if any ports are missing.

ZWED0040E

Unknown java war grouping default=grouping

Reason:

For this war, an unknown grouping default grouping was encountered (types: 'microservice' or 'appserver' allowed).

Action:

Contact the plugin developer for troubleshooting.

ZWED0041E

Could not find port to use for configuration, at config position=portIndex.

Reason:

The server was trying to determine a network port to use for a Java dataservice, but no available ports could be found, so the server
cannot load that service.

Action:

Check your Zowe configuration to see if you have enough or any ports specified for the app-server to use when assigning ports to
Java dataservices.

ZWED0042E

Could not find runtime to satisfy group: javaRuntime

Reason:

When trying to run a group of Java dataservices under a common java runtime, the javaRuntime couldn't be found, so the
dataservices cannot be run.

Action:

Check the configuration for this group of Java services to see if javaRuntime is a good value, and resolve the Java issue before
restarting the server.

ZWED0043E

Unknown java app server type=javaRuntimeTime specified in config. Cannot continue with java loading.

Reason:

The app-server can only handle Java dataservices if they run under certain types of Java server runtimes. The type chosen was not one
of the types supported, so the server cannot continue with the loading.

Action:

Check if the version of the plugin you are using is compatible with the version of Zowe you are using. Check if you can change the
"type" of java server to one that the app-server does work with, such as "tomcat".

ZWED0044E

Java runtimes not specified, and no JAVA_HOME set

Reason:

The app-server cannot run the java dataservices because it doesn't know how to start any Java with the configuration specified.

Action:

Either define the environment variable JAVA_HOME to point to a valid Java runtime home, or specify a Java runtime within the app-
server configuration as components.app-server.languages.java.runtimes . For more information, see the server schema

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json

ZWED0045E

Java app server not defined in config

Reason:

A dataservice was configured to run from a WAR file but the configuration section components.app-

server.languages.java.war.javaAppServer was missing, so the app-server could not run the dataservice.

Action:

Define the missing configuration section according to the app-server schema https://github.com/zowe/zlux-app-
server/blob/v2.x/master/schemas/app-server-config.json or remove it and the plugin that required it.

ZWED0046E

JavaManager not given either war or jar configuration options, nothing to do

Reason:

A java dataservice was requested but the components.app-server.languages.java configuration section of Zowe was missing
either a war or jar subsection. Since one of the two is needed, the server could not continue with loading the java dataservices.

Action:

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json
https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json

Review the app-server schema https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json and your
Zowe configuration file to identify and correct the missing properties within components.app-server .

ZWED0047E

Proxy (pluginid:servicename) setup failed. Host & Port for proxy destination are required but were missing. For information on how to
configure a proxy service, see the Zowe wiki on dataservices (https://github.com/zowe/zlux/wiki/ZLUX-Dataservices)

Reason:

A proxy was requested by the service pluginid:servicename but the service configuration or pluginDefinition did not specify what the
proxy destination was, so the server is skipping the loading of that plugin.

Action:

Review the plugin's configuration or contact the developer of that plugin to correct the proxy configuration.

ZWED0049E

Can't specify error metadata

Reason:

When a dataservice called the utility function makeErrorObject, it did not supply context of the _objectType and _metaDataVersion ,

which are required and caused the function to throw its own error about the lack of information.

Action:

Contact the developer of the plugin which caused this error.

ZWED0050E

Root service serviceName not found

Reason:

A dataservice tried to call a "root", or non-plugin service of the app-server or app-server's agent, and this root service serviceName
was not found on the server, so the request failed.

Action:

Verify that your version of Zowe works with the plugins that you have installed, and contact the developer of the plugin which tried to
call this missing root service.

ZWED0051E

Could not resolve service URL. Plugin=pluginId, service=serviceName

Reason:

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json
https://github.com/zowe/zlux/wiki/ZLUX-Dataservices

A dataservice serviceName handled by a language manager could not be used because the URL in which to access this dataservice
from its language manager could not be determined.

Action:

Check the logs to see if there was trouble installing the service or plugin, and contact the developers of pluginId for more support.

ZWED0052E

Could not load service pluginId:serviceName due to unknown type=serviceType

Reason:

The service from the plugin shown could not be loaded because the plugin declared the service to be of some type that the app-
server does not handle.

Action:

Check to see if the version of Zowe you are using works with the version of the plugin you are using. Plugins must have dataservices
only of types seen within the pluginDefinition schema https://github.com/zowe/zlux-app-
server/blob/v2.x/staging/schemas/plugindefinition-schema.json

ZWED0053E

Import sourcePluginId:sourceServiceName can't be satisfied

Reason:

A plugin trying to load a dataservice from sourcePluginId:sourceServiceName couldn't load that service, therefore the requesting plugin
will fail to load.

Action:

Confirm that the source plugin and service exist. Check the logs to see if there was something that caused the source service to fail
loading. Contact the developers of either source or target plugin for more assistance if the cause is not clear.

ZWED0111E

SEVERE: Exception occurred trying to generate object from input: error

Reason:

The server could not parse its input configuration due to the error shown, so the server cannot start.

Action:

Review the error to determine the cause, or contact support if the cause is unclear.

ZWED0112E

The server found no plugin implementing the specified default authentication type of type.

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/plugindefinition-schema.json

Reason:

The value of components.app-server.dataserviceAuthentication.defaultAuthentication within the server configuration

specified a type of authentication that some authentication plugin must implement in order for the server to run. Because no plugin
that successfully loaded declared that it implemented this type, the server found no implementation and could not continue.

Action:

Review if any plugin you have implements the given type. If the type is incorrect, revise the configuration to choose a type that does
exist in your system. If the type is correct, check if you are missing a required plugin.

ZWED0113E

The server found no authentication types. Verify that the server configuration file defines server authentication.

Reason:

The server was unable to find any authentication plugins where at least one is required to run.

Action:

Review the list of plugins that are being used and see if any authentication plugins you needed have failed to load, and review their
error messages.

ZWED0114E

The server found no plugin implementing the specified default authentication type of type.

Reason:

The value of components.app-server.dataserviceAuthentication.defaultAuthentication within the server configuration

specified a type of authentication that some authentication plugin must implement in order for the server to run. Because no plugin
that successfully loaded declared that it implemented this type, the server found no implementation and could not continue.

Action:

Review if any plugin you have implements the given type. If the type is incorrect, revise the configuration to choose a type that does
exist in your system. If the type is correct, check if you are missing a required plugin.

ZWED0115E

Unable to retrieve storage object from cluster. This is probably due to a timeout. You may change the default of 'storageTimeout' ms
by setting 'node.cluster.storageTimeout' within the config.

Reason:

The app-server was running in cluster mode and a service attempted to get content from the cluster storage but this failed. Because
storage could not be read, its possible the service that requested the storage will have further errors.

Action:

If there was a network disruption or performance issue, a timeout could have occurred. Review the rest of the logs to see if there are
other messages to explain the failure. You can attempt to avoid timeout-related failures by editing the configuration parameter
components.app-server.node.cluster.storageTimeout .

ZWED0145E

Cannot load SAF keyring content outside of z/OS

Reason:

The Zowe configuration of zowe.certificate or components.app-server.node.https specifies SAF keyrings as locations to find

keystore and truststore data. SAF keyrings only exist on z/OS, and the server detected it was not running on z/OS so it cannot
continue.

Action:

Modify the configuration to use a different keystore type, or migrate the server to z/OS.

ZWED0146E

SAF keyring data had no attribute "attribute". Attributes=attributeKeys

Reason:

Within the list of attributeKeys, attribute could not be found.

Action:

Check the keystore configuration of the server such as in zowe.certificate or components.app-server.node.https to see if it is

valid for Zowe. The SAF keyring Zowe was configured to use may be missing a key and certificate pair, or certificate authorities
keychain. For more suggestions on configuring keyrings for Zowe, review the install guide

ZWED0147E

SAF keyring data was not found for "keyName"

Reason:

The server tried to read the SAF keyring specified within the Zowe configuration, but ran into an error where the server received no
data instead.

Action:

Review the logs to see if a reason for the error is shown. Verify that the Zowe configuration points to a valid keyring that the Zowe
server user has permissions to read.

ZWED0148E

Exception thrown when reading SAF keyring, e=error

https://docs.zowe.org/stable/troubleshoot/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-based-keystore-and-connect-to-an-existing-certificate

Reason:

The SAF keyring which the app-server was configured to use could not be read due to an error. The server likely will not start or will be
unable to do any network activity until this error is resolved.

Action:

Review the error message to determine the cause. Often, the error messages will originate from a system service where the
documentation can be found here https://www.ibm.com/docs/en/zos/2.5.0?topic=library-return-reason-codes

ZWED0149E

SAF keyring reference missing userId "user", keyringName "name", or label "label"

Reason:

The server configuration specified that the app-server should load keystore and truststore content from a SAF keyring, but the syntax
in the configuration was incorrect, because user, name, or label were not usable by the server.

Action:

Check the zowe.certificate or components.app-server.node.https sections of Zowe configuration to see if there are entries that

start with safkeyring:// and verify that they are in the format of safkeyring://USERNAME:RINGNAME&LABEL . Older versions of zowe

will require that there be 4 slashes, such as safkeyring://// . The &LABEL suffix is only needed for specifying certificate authorities

and should be omitted in other sections, for example it is only needed within zowe.certificate.pem.certificateAuthorities or

components.app-server.node.https.certificateAuthorities . For more suggestions on configuring keyrings for Zowe, review the

install guide

ZWED0150E

Cannot load SAF keyring due to missing keyring_js library

Reason:

The Zowe configuration specified that the app-server should load keystore and truststore information from a SAF keyring, which
requires the nodejs library keyring_js. This library is defined within the package.json of zlux-server-framework and ships with Zowe
installs, but could not be loaded for some reason and therefore the server could not load keyrings and will either stop or have issues
with network communication.

Action:

Use the command zwe support to verify if the Zowe install has all files expected, as this message indicates the keyring_js library is

missing and reinstalling Zowe may be required.

ZWED0151E

Env var variableName not found

Reason:

https://www.ibm.com/docs/en/zos/2.5.0?topic=library-return-reason-codes
https://docs.zowe.org/stable/troubleshoot/user-guide/certificate-configuration-scenarios#scenario-4-use-a-zos-keyring-based-keystore-and-connect-to-an-existing-certificate

The server was loading plugins. It determines the location of each plugin via a plugin pointer file. The plugin referenced in the logs, it's
location is dynamically determined by an environment variable variableName. Because the variable did not resolve to a value, the
plugin could not be found and could not be loaded.

Action:

Review the documentation for the plugin that failed to load, check what the value of the variable should be, and contact support for
that plugin if needed.

ZWED0152E

Unable to locate server config instance location and INSTANCE_DIR environment variable does not exist.

Reason:

While installing a plugin, the server could not determine the location of the configuration dataservice's "instance" folder. Due to this,
the plugin could not be completely installed.

Action:

Correct the error before reinstalling the plugin. This error could happen due to an incorrect value for components.app-

server.instanceDir and normally defaults to {{ zowe.workspaceDirectory }}/app-server .

ZWED0153E

(operatingSystemName) is not a supported platform for componentName. Skipping (pluginid)... Supported: requiredOperatingSystem

Reason:

The Zowe host operating system operatingSystemName is not supported by the component componentName. Supported platforms
are defined in the component's pluginDefinition.json.

Action:

Refer to componentName pluginDefinition.json for supported platforms. The installation of Zowe may also be moved to a supported
platform. Lastly, contact the author of the component, or a system administrator.

ZWED0154E

(architectureName) is not a supported architecture for componentName. Skipping (pluginid)... Supported: requiredArchitecture

Reason:

The Zowe host architecture is not supported by componentName. Supported architectures are defined in the component's
pluginDefintion.json.

Action:

Refer to componentName pluginDefinition.json for supported architectures. The installation of Zowe may also be moved to a
supported architecture. Lastly, contact the author of the component, or a system administrator.

ZWED0155E

(url) is not a supported endpoint for componentName. Skipping (pluginid)... Supported: urls

Reason:

The endpoint url does not match any required endpoints of componentName. Supported endpoints may be viewd in the component's
pluginDefinition.json.

Action:

Refer to componentName pluginDefinition.json for supported endpoints. Optionally, remove url from the required endpoints in
pluginDefinition.json. Lastly, contact the author of the component, or a system administrator.

ZWED0156E

Could not register default plugins into app-server.

Reason:

org.zowe.zlux.json is missing from app-server plugin directory. This error will cause the process to exit.

Action:

Verify integrity of Zowe installation, or contact system administrator. Please refer to
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support for collecting Zowe runtime
information.

ZWED0157E

Could not register default plugin pluginid into app-server.

Reason:

Could not register default plugin pluginid into app-server due to plugin upgrade failure.

Action:

Verify integrity of plugin files, or contact system administrator. Please refer to
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support for collecting Zowe runtime
information.

ZWED0158E

Could not listen on address ipAddress:port. Insufficient permissions to perform port bind.

Reason:

Server could not bind to port due to an EACCES error. User lacks privilege to perform port bind. This error will cause the process to
exit.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support

Action:

Contact system administrator.

Version: v2.17.x LTS

ZSS Error Message Codes
The following error message codes may appear on ZSS log. Use the following message code references and the corresponding
reasons and actions to help troubleshoot issues.

ZSS informational messages

ZWES1007I

webContent was not found in plugin definition for '%s'

Reason:

The webContent was not found in plugin definition for <plugin-ID> .

Action:

No action required.

ZWES1008I

libraryVersion was not found in plugin definition for '%s'

Reason:

The libraryVersion was not found in plugin definition for <plugin-ID> .

Action:

No action required.

ZWES1010I

Plugin ID and/or location was not found in '%s'

Reason:

The plugin ID and/or location was not found in <path> .

Action:

No action required.

ZWES1013I

ZSS Server has started. Version '%s' '%s'

Reason:

ZSS Server has started. Version is <zowe-version> <addressing-mode> .

<addressing-mode> is either 31-bit or 64-bit .

Action:

No action required.

ZWES1014I

ZIS status - '%s' (name='%.16s', cmsRC='%d', description='%s', clientVersion='%d')

Reason:

The message shows status of the connection to Privileged Server: ZIS status - <OK or Failure> (name= <Privileged Server Name> ,

cmsRC= <RC> , description= <description , clientVersion= <version>)

Action:

if Status is OK then no action required. If Status is Failure see check <cmsRC> and description. In the cases listed below check that

the ZWESISTC started task is running. If not, start it with the TSO command /S ZWESISTC :

cmsRC=12 , description= 'Global area address is NULL'

cmsRC=39 , description= 'Cross-memory server abended'

cmsRC=47 , description= 'ZVT is NULL'

cmsRC=64 , description= 'PC is unavailable'

ZWES1035I

ZSS Server settings: Address='%s', port='%d', protocol='%s'

Reason:

Server is starting using Address= <IP address> , port= <port> , protocol= http or https

Action:

No action required.

ZWES1038I

Server timeouts file '%s' either not found or invalid JSON. ZSS sessions will use the default length of one hour.

Reason:

The server timeouts file <path> either was not found or is invalid JSON. ZSS sessions uses the default length of one hour.

Action:

No action required.

ZWES1039I

Installing '%s' service...

Reason:

<Service> is about to install.

Action:

No action required.

ZWES1061I

TLS settings: keyring '%s', label '%s', password '%s', stash '%s'

Reason:

ZSS uses TLS settings: keyring <keyring> or <p12-file> , label <cert-label> , password "****" or (no password) , stash <stash-

file> or (no stash) .

Action:

No action required.

ZWES1063I

Caching Service settings: gateway host '%s', port %d

Reason:

Caching Service settings are gateway host <Gateway-host> , port <Gateway-port> . HA mode is enabled.

Action:

No action required.

ZWES1064I

Caching Service not configured

Reason:

Caching Service not configured. HA mode is disabled.

Action:

No action required.

ZWES1100I

Product Registration is enabled.

Reason:

Product Registration is enabled.

Action:

No action required.

ZWES1101I

Product Registration is disabled.

Reason:

Product Registration is disabled.

Action:

No action required.

ZWES1102I

Product Registration successful.

Reason:

Product Registration successful.

Action:

No action required.

ZWES1600I

JWT will be configured using JWK URL '%s'

Reason:

JWT will be configured using JSON Web Key(JWK) at URL <url> .

Action:

No action required.

ZWES1601I

Server is ready to accept JWT with (or without) fallback to legacy tokens

Reason:

Server is ready to accept JWT with or without fallback to legacy tokens.

Action:

No action required.

ZSS error messages

ZWES1001E

Log level '%d' is incorrect.

Reason:

The logging level <log-level> is incorrect.

Action:

Verify the <log-level> is in range 0..5 .

ZWES1002E

Error in timeouts file: Could not parse config file as a JSON object.

Reason:

There is an error in timeouts file: could not parse config file as a JSON object.

Action:

Verify the timeouts file is a valid JSON.

ZWES1006E

Error while parsing plugin definition file '%s': '%s'.

Reason:

An error occurred while parsing <plugin-definition-file> : <error-details> .

Action:

If you are a plugin developer check <error-details> and fix the error by editing <plugin-definition-file> , otherwise, report the

error to the plugin vendor.

ZWES1011E

Error while parsing: '%s'

Reason:

There is an error while parsing: <json-statement> .

Action:

Review the <json-statement> and correct it.

ZWES1016E

Cannot validate file permission, path is not defined.

Reason:

Cannot validate the file permission, path is not defined.

ZWES1017E

Could not get file info on config path='%s': Ret='%d', res='%d'

Reason:

Could not get the file information on config path= <path> : Ret= <return-code> , res= <reason-code>

Action:

Contact support.

ZWES1020E

Skipping validation of file permissions: Disabled during compilation, using file '%s'.

Reason:

Skipping validation of file permissions: disabled during compilation, using the file <file> .

Action:

Contact support.

ZWES1021E

Cannot validate file permissions: Path is not defined.

Reason:

Cannot validate the file permissions: path is not defined.

ZWES1022E

Cannot validate file permissions: Path is for a directory and not a file.

Reason:

Cannot validate the file permissions. Given path is a directory path only without a file.

ZWES1034E

Server startup problem: Address '%s' not valid.

Reason:

IP address nor hostname is not valid.

Action:

Use valid IP address or hostname, e.g. 0.0.0.0 .

ZWES1036E

Server startup problem: Ret='%d', res='0x%x'

Reason:

Server has failed to start.

Action:

If the next message is ZWES1037E then refer ZWES1037E. Otherwise, examine the reason code with bpxmtext command, e.g. use

bpxmtext 744c7247 if you got res='0x744c7247'

ZWES1037E

This is usually because the server port '%d' is occupied. Is ZSS running twice?

Reason:

ZSS port number is already occupied.

Action:

Check if another ZSS instance is already running, or chose another free port number and restart Zowe.

ZWES1065E

Failed to configure https server, check agent https settings

Reason:

Failed to configure https server.

Action:

Check agent https settings.

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text

ZWES1500E

Failed to generate PassTicket - userId='%s', applId='%s', %s

Reason:

Failed to generate the PassTicket for userId= <user-id> , applId= <application-name> , <error-text> .

Action:

Review your security product to determine that it meets all passTickets requirements.

ZSS warning messages

ZWES1000W

Privileged server name not provided, falling back to default.

Reason:

Privileged server name not defined in configuration file.

Action:

If your privileged server name is ZWESIS_STD then no action required. Otherwise set components.zss.crossMemoryServerName
property in configuration to the correct name.

ZWES1004W

Expected plugin ID '%s', instead received '%s'

Reason:

Expected plugin ID is <plugin-ID> , but it was received <wrong-plugin-ID> .

Action:

Verify the plugin JSON definition.

ZWES1005W

Plugin ID was not found in '%s'

Reason:

pluginId property wasn't found in <path-to-pluginDefinition.json> file. The plugin skipped.

Action:

If you are a plugin developer add the pluginId property to the <path-to-pluginDefinition.json> file. Otherwise, contact the

plugin vendor.

ZWES1009W

Plugin ID '%s' is NULL and cannot be loaded.

Reason:

The plugin with <plugin-ID> was not succesfully created and cannot be loaded.

Action:

Verify the plugin JSON definition.

ZWES1012W

Could not open pluginsDir '%s': Ret='%d', res='0x%x'

Reason:

Could not open <pluginsDir> : Ret= <return-code> , res= <reason-code>

Action:

Check that <pluginsDir> exists and allows reading. Examine the reason code with bpxmtext command for additional information.

ZWES1060W

Failed to init TLS environment, rc=%d(%s)

Reason:

Failed to initialized TLS environment GSKit return code <rc> (<description>)

Action:

Ensure that the ZSS certificate is configured correctly. Check GSKit return code and description for additional information.

ZWES1103W

Product Registration failed, RC = %d

Reason:

Failed to register ZSS.

Action:

Examine the return code at [https://www.ibm.com/docs/en/zos/2.2.0?topic=requeststatus-return-codes] and correct the error.

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text
https://www.ibm.com/docs/en/zos/2.2.0?topic=requeststatus-return-codes

ZWES1200W

Could not %s file '%s': Ret='%d', res='%d'

Reason:

Could not <action> file <file> , return code is <return-code> , resason code is <reason-code> .

<action> specifies for which file operation a problem was detected.

Action:

No action required.

ZWES1201W

Could not %s file '%s': Ret='%d', res='%d'

Reason:

Unixfile REST Service could not <action> file <filename> : Ret= <return-code> , res= <reason-code>

Action:

Action depends on return/reason code. For additional information examine the reason code with the bpxmtext command.

ZWES1202W

Transfer type has not been set.

Reason:

The transfer type was not set.

Action:

No action required.

ZWES1103W

Could not get metadata for file '%s': Ret='%d', res='%d'

Reason:

Unixfile REST Service could not get metadata for file <filename> : Ret= <return-code> , res= <reason-code>

Action:

Action depends on return/reason code. For additional information examine the reason code with bpxmtext command.

ZWES1200W

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text
https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text

Could not %s file '%s': Ret='%d', res='%d'

Reason:

Could not <action> file <file> , return code is <return-code> , resason code is <reason-code> .

<action> specifies for which file operation a problem was detected.

Action:

No action required.

ZWES1202W

Transfer type has not been set.

Reason:

The transfer type was not set.

Action:

No action required.

ZWES1400W

Non standard class provided for '%s' '%s', ending request...

Reason:

Non standard class was provided for <HTTP-setting> <HTTP-method> , the request was ended.

ZWES1401W

Profile not provided for profiles GET, ending request...

Reason:

The profile not provided for profiles GET, the request was ended.

ZWES1402W

Profile name required for '%s' '%s'

Reason:

The profile name is required for <HTTP-setting> <HTTP-method>

ZWES1403W

User ID required for user POST/PUT

Reason:

The user ID is required for user POST or PUT.

ZWES1404W

Body not provided for user POST/PUT, ending request...

Reason:

The body was not provided for user POST or PUT, the request was ended.

ZWES1406W

Unknown access type '%d' provided for user POST/PUT, ending request...

Reason:

Unknown access type <access-type> provided for user POST or PUT, the request was ended.

ZWES1407W

Access list can only be retrieved in bulk, ending request...

Reason:

The access list can only be retrieved in bulk, the request was ended.

ZWES1408W

Access list buffer with size '%u' not allocated, ending request...

Reason:

The access list buffer with size <size> was not allocated, the request was ended.

ZWES1409W

Access list size out of range '%u', ending request...

Reason:

The size of access list is out of range <number> , the request was ended.

ZWES1410W

Access list entry name required for access list DELETE

Reason:

The access list entry name is required for access list DELETE .

ZWES1411W

Class-mgmt query string is invalid, ending request...

Reason:

`Class-mgmt`` query string is invalid, the request was ended.

ZWES1412W

Group name required for '%s' '%s'

Reason:

The group name required for <HTTP-setting> <HTTP-method> .

ZWES1413W

Body not provided for group POST, ending request...

Reason:

The body was not provided for group POST , the request was ended.

ZWES1414W

Superior not provided for group POST, ending request...

Reason:

Superior not provided for group POST , the request was ended.

ZWES1415W

Bad superior group provided for group POST, ending request...

Reason:

Bad superior group was provided for group POST , the request was ended.

ZWES1416W

Access type not provided for user POST/PUT, ending request...

Reason:

The access type was not provided for user POST or PUT , the request was ended.

ZWES1417W

Unknown access type, use [USE, CREATE, CONNECT, JOIN]

Reason:

Unknown access type, use USE , CREATE , CONNECT or JOIN .

ZWES1418W

Access list will be re-allocated with capacity '%u'

Reason:

The access list will be re-allocated with capacity <size> .

Action:

No action required.

ZWES1419W

Group-mgmt query string is invalid, ending request...

Reason:

<Group-mgmt> query string is invalid and the requested was ended.

ZWES1602W

JWK is in unrecognized format

Reason:

JSON Web Key(JWK) is in unrecognized format.

Action:

Report an issue at [https://github.com/zowe/zlux/issues]

ZWES1603W

Failed to construct public key using JWK

Reason:

JSON Web Key(JWK) has invalid public key info.

Action:

Report an issue at [https://github.com/zowe/zlux/issues]

ZWES1604W

JWK: failed to init HTTP context, ensure that APIML and TLS settings are correct

https://github.com/zowe/zlux/issues
https://github.com/zowe/zlux/issues

Reason:

Failed to init HTTP context for requesting JSON Web Key(JWK).

Action:

Check the zowe keystore configuration and specification of it within the zowe server config.

ZWES1605W

Server will not accept JWT

Reason:

ZSS Server will not accept JWT.

Action:

No action required.

ZWES1606W

Failed to get JWK - %s, retry in %d seconds

Reason:

Failed to get JWK - <reason> , retry in <n> seconds. ZSS Server was unable to get JSON Web Key(JWK), it will try to repeat the

attempt in <n> seconds.

Action:

This message is repeated each <n> seconds. After a succesfull attempt, the message ZWES1601I is displayed and no action is

required.

If message ZWES1601I does not appear, but rather the message ZWES1606W Failed to get JWK. rc=failed to init HTTP
request (9), rsn=TLS error (17). Retry in 10 seconds , consider the following:

TLSv1.3 recommends encryption ChaCha20-Poly1305 . However, this encryption may be restricted by the ICSF FIPS 140-2
policy. When ZSS requests ChaCha20-Poly1305 , such request will fail.

Modify the zowe.yaml to use TLSv1.2 to avoid the problem with ChaCha20-Poly1305 :

Version: v2.17.x LTS

ZIS Error Message Codes
The following codes can appear in either the ZIS SYSPRINT or JESMSGLG log, or both. Use the following message code references and
the corresponding reasons and actions to help troubleshoot issues.

ZIS cross-memory server messages

ZWES0001I

ZSS Cross-Memory Server starting, version is major.minor.patch+datestamp

Reason:

The cross-memory server with the specified version is starting.

Action:

No action required.

ZWES0002I

Input parameters at address:

hex_dump

Reason:

The message shows a hex dump of the parameters passed in the started task JCL.

Action:

No action required.

ZWES0003I

Server name not provided, default value 'name' will be used

Reason:

The user did not provide a server name.

Action:

The cross-memory server uses the indicated default value name. If needed, specify a server name either via the NAME parameter in the

JCL or via the ZWES.NAME parameter in the PARMLIB member; the JCL parameter takes precedence.

ZWES0004I

Server name is 'name'

Reason:

The message indicates this server's name.

Action:

No action required.

ZWES0005E

ZSS Cross-Memory server not created, RSN = reason_code

Reason:

The cross-memory server failed to create the cross-memory server's data structure.

Action:

The cross-memory server terminates. Contact support.

ZWES0006E

ZSS Cross-Memory server resource not allocated (resource_name)

Reason:

The cross-memory server failed to allocate storage for a resource.

Action:

The cross-memory server terminates. Contact support.

ZWES0007E

ZSS Cross-Memory server PARMLIB member suffix is incorrect - 'suffix'

Reason:

The cross-memory's PARMLIB member suffix is invalid.

Action:

The cross-memory server terminates. Ensure that the suffix consists of two characters that are allowed in a member name.

ZWES0008E

ZSS Cross-Memory server configuration not read, member = 'member_name', RC = return_code_1 (return_code_2, reason_code_2)

Reason:

The cross-memory server failed to read the specified PARMLIB member.

Action:

The cross-memory server terminates. Review the error codes and contact support if you cannot resolve the issue.

Possible return codes and the corresponding actions:

return_code_1 return_code_2 reason_code_2 Action

RC_ZISPARM_MEMBER_NOT_FOUND(2) N/A N/A
Ensure the
member exists

RC_ZISPARM_DDNAME_TOO_LONG(8) N/A N/A Contact support

RC_ZISPARM_MEMBER_NAME_TOO_LONG(9) N/A N/A Contact support

RC_ZISPARM_PARMLIB_ALLOC_FAILED(10)

Return code from
IEFPRMLB

REQUEST=ALLOCATE

Reason code from
IEFPRMLB

REQUEST=ALLOCATE

Review the
IEFPMLB return
and reason codes

RC_ZISPARM_READ_BUFFER_ALLOC_FAILED(11) N/A N/A Contact support

RC_ZISPARM_PARMLIB_READ_FAILED(12)
Return code from
IEFPRMLB

REQUEST=READMEMBER

Reason code from
IEFPRMLB

REQUEST=READMEMBER

Review the
IEFPMLB return
and reason codes

RC_ZISPARM_PARMLIB_FREE_FAILED(13)
Return code from
IEFPRMLB REQUEST=FREE

Reason code from
IEFPRMLB REQUEST=FREE

Review the
IEFPMLB return
and reason codes

RC_ZISPARM_SLH_ALLOC_FAILED(16) Start line number End line number Contact support

RC_ZISPARM_CONTINUATION_TOO_LONG(19) Start line number End line number
Review the lines
and fix
continuation

ZWES0009E

ZSS Cross-Memory server configuration not found, member = 'member_name', RC = return_code

Reason:

The cross-memory server could not find the specified PARMLIB member.

Action:

The cross-memory server terminates. Ensure that the name is correct and the member is available.

ZWES0010E

ZSS Cross-Memory server configuration not loaded, RC = return_code, RSN = reason_code

Reason:

The cross-memory server failed to load the configuration.

Action:

The cross-memory server terminates. Contact support.

ZWES0011E

ZSS Cross-Memory server not started, RC = return_code

Reason:

The cross-memory server could not start.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue, contact support.

ZWES0012I

ZSS Cross-Memory Server terminated

Reason:

The cross-memory server fully terminated.

Action:

No action required.

ZWES0013E

ZSS Cross-Memory Server terminated due to an error, status = status_code

Reason:

The cross-memory server terminated due to an error.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue, contact support.

ZWES0014E

Fatal config error - details, RC = return_code

Reason:

A fatal error occurred during processing of the configuration.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue, contact support.

ZWES0015E

LPA lpa_action failed for module module_name, RC = csvdylpa_return_code, RSN = csvdylpa_reason_code

Reason:

The cross-memory server failed to perform the specified link pack area (LPA) action for a plug-in module.

Action:

The cross-memory server terminates. Review the provided CSVDYLPA return and reason codes (see "z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN") and contact support if you cannot resolve the issue.

ZWES0016I

Service 'plug-in_name':'service_name' version has been added

Reason:

The cross-memory server successfully added the specified service.

Action:

No action required.

ZWES0017W

Plug-in 'plug-in_name' failure - details

Reason:

One of the callbacks of a plug-in failed.

Action:

Depending on the stage, some of the plug-in functionality might be impacted. Contact support if you cannot resolve the issue.

ZWES0018W

Plug-in 'plug-in_name' version plug-in_version doesn't match anchor version anchor_version, LPA module discarded

Reason:

The cross-memory server detected that a plug-in module was outdated; this usually happens when a plug-in gets updated.

Action:

The cross-memory server discards the old module and loads the latest version to the link pack area (LPA).

ZWES0019W

Parameter 'parameter_name' has an invalid value

Reason:

The cross-memory server detected an invalid parameter.

Action:

The cross-memory server uses the default parameter. Fix the reported parameter and restart the cross-memory server.

ZWES0020E

ZSS Cross-Memory server PARMLIB member name not determined, RC = return_code

Reason:

The cross-memory server could not determine which PARMLIB member to use.

Action:

The cross-memory server terminates. Contact support.

ZWES0021E

ZSS Cross-Memory server module member name not determined, RC = csvquery_return_code

Reason:

The cross-memory server could not determine its module name.

Action:

The cross-memory server terminates. Review the provided CSVQUERY return code (see "z/OS MVS Programming: Assembler Services
Reference ABE-HSP") and contact support if you cannot resolve the issue.

ZWES0098I

debug_message

Reason:

This is a debug message.

Action:

No action required.

ZWES0099I

hex_dump

Reason:

This is a debug hex dump.

Action:

No action required.

ZIS Auxiliary Server messages

ZWES0050I

ZIS AUX Server starting, version is major.minor.patch+datestamp

Reason:

The cross-memory auxiliary server with the specified version is starting.

Action:

No action required.

ZWES0051I

ZIS AUX Server terminated

Reason:

The cross-memory auxiliary server fully terminated.

Action:

No action required.

ZWES0052I

Input parameters at address:

Reason:

The message shows a dump of the parameters passed to this address space.

Action:

No action required.

ZWES0053E

Not APF-authorized (testauth_status)

Reason:

One or more data sets in the STEPLIB concatenation is not APF-authorized.

Action:

The cross-memory auxiliary server terminates. Ensure that all the STEPLIB data sets are APF-authorized.

ZWES0054E

ZIS AUX Server started in wrong key key

Reason:

The cross-memory auxiliary server detected that it was running in the wrong key.

Action:

The cross-memory auxiliary server terminates. Ensure that you have added the correct PPT-entry (see the documentation) for the ZIS
AUX module.

ZWES0055E

ZIS AUX Server resource not allocated (resource_name)

Reason:

The cross-memory auxiliary server failed to allocate storage for a resource.

Action:

Depending on the location of the failure some functionality might be affected. Contact support.

ZWES0056E

RESMGR failed, RC = return_code, service RC = resmgr_return_code

Reason:

The cross-memory auxiliary server failed to install the task resource manager.

Action:

The cross-memory auxiliary server terminates. Review the RESMGR ADD service return code value in resmgr_return_code (see "z/OS
MVS Programming: Authorized Assembler Services Reference LLA-SDU"). If you cannot resolve the issue, contact support.

ZWES0057E

PC not established, RC = return_code, RSN = reason_code

https://docs.zowe.org/stable/user-guide/configure-xmem-server

Reason:

The cross-memory auxiliary server failed to set up the communication Program Call (PC) routine.

Action:

The cross-memory auxiliary server terminates. Contact support.

ZWES0058E

Communication area failure - details

Reason:

The cross-memory auxiliary server could not establish the communication area.

Action:

The cross-memory auxiliary server terminates. Review the details. If you cannot resolve the issue, contact support.

ZWES0059E

Address space extract RC = return_code, RSN = reason_code

Reason:

The cross-memory auxiliary server could not extract its address space parameters.

Action:

Contact support.

ZWES0060E

Fatal config error - details, RC = return_code

Reason:

A fatal error occurred when processing the configuration.

Action:

The cross-memory auxiliary server terminates. Review the details. If you cannot resolve the issue, contact support.

ZWES0061E

ZIS AUX Server configuration not read, member = 'member_name', RC = return_code_1 (return_code_2, reason_code_2)

Reason:

The cross-memory auxiliary server failed to read the specified PARMLIB member.

Action:

The cross-memory auxiliary server terminates. Review the error codes and contact support if you cannot resolve the issue.

Possible return codes and the corresponding actions:

return_code_1 return_code_2 reason_code_2 Action

RC_ZISPARM_MEMBER_NOT_FOUND(2) N/A N/A
Ensure the
member exists

RC_ZISPARM_DDNAME_TOO_LONG(8) N/A N/A Contact support

RC_ZISPARM_MEMBER_NAME_TOO_LONG(9) N/A N/A Contact support

RC_ZISPARM_PARMLIB_ALLOC_FAILED(10)

Return code from
IEFPRMLB

REQUEST=ALLOCATE

Reason code from
IEFPRMLB

REQUEST=ALLOCATE

Review the
IEFPMLB return
and reason codes

RC_ZISPARM_READ_BUFFER_ALLOC_FAILED(11) N/A N/A Contact support

RC_ZISPARM_PARMLIB_READ_FAILED(12)

Return code from
IEFPRMLB

REQUEST=READMEMBER

Reason code from
IEFPRMLB

REQUEST=READMEMBER

Review the
IEFPMLB return
and reason codes

RC_ZISPARM_PARMLIB_FREE_FAILED(13)
Return code from
IEFPRMLB REQUEST=FREE

Reason code from
IEFPRMLB REQUEST=FREE

Review the
IEFPMLB return
and reason codes

RC_ZISPARM_SLH_ALLOC_FAILED(16) Start line number End line number Contact support

RC_ZISPARM_CONTINUATION_TOO_LONG(19) Start line number End line number
Review the lines
and fix
continuation

ZWES0062E

ZIS AUX Server configuration not found, member = 'member_name', RC = return_code

Reason:

The cross-memory auxiliary server could not find the specified PARMLIB member.

Action:

The cross-memory auxiliary server terminates. Ensure that the name is correct and the member is available.

ZWES0063E

User module failure - details

Reason:

One of the callbacks of the user module failed.

Action:

Depending on the stage, some of the user module functionality might be impacted. Contact support if you cannot resolve the issue.

ZWES0064W

Unsafe function function_name failed, ABEND abend_code-reason_code (recovery RC = recovery_return_code)

Reason:

An abend occurred in one of the callbacks of the user module.

Action:

Depending on the stage, some of the user module functionality might be impacted. Contact support if you cannot resolve the issue.

ZWES0065W

Caller not released, RC = return_code

Reason:

A synchronization error occurred when communicating with the parent address space of this auxiliary address space.

Action:

Communication between the parent and auxiliary address spaces might be impacted. Contact support.

ZWES0066E

AUX host server ABEND abend_code-reason_code (recovery RC = recovery_return_code)

Reason:

An abend occurred in one of the components of the cross-memory auxiliary server.

Action:

The cross-memory auxiliary server terminates. Contact support.

ZWES0067E

Main loop unexpectedly terminated

Reason:

The cross-memory auxiliary server detected an incorrect state in the main loop.

Action:

The cross-memory auxiliary server terminates. Contact support.

ZWES0068W

Command too long (length)

Reason:

The provided modify command is too long.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0069W

Command not tokenized

Reason:

The cross-memory auxiliary server failed to tokenize the provided modify command.

Action:

The cross-memory auxiliary server ignores the command. Review the messages preceding this message and contact support if you
cannot resolve the issue.

ZWES0070I

Modify command 'command' received

Reason:

The cross-memory auxiliary server received a modify command.

Action:

The cross-memory auxiliary server proceeds to handle the command.

ZWES0071I

Termination command received

Reason:

An operator issued the termination command and the cross-memory auxiliary server successfully received it.

Action:

The cross-memory auxiliary server starts the termination sequence.

ZWES0072I

Modify command 'command' accepted

Reason:

The cross-memory auxiliary server accepted a modify command.

Action:

No action required.

ZWES0073I

Modify command 'command' not recognized

Reason:

The cross-memory sever did not recognize a modify command.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0074W

Modify command 'command' rejected

Reason:

The cross-memory auxiliary server rejected the provided modify command because it was either incorrect or the server was not ready
to process it.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0075W

'command' expects expected_arg_number args, provided_arg_number provided, command ignored

Reason:

The modify command command was used with an incorrect number of arguments.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0076W

Log component 'component' not recognized, command ignored

Reason:

An operator passed an invalid log component in the LOG modify command.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0077W

Log level 'level' not recognized, command ignored

Reason:

An operator passed an invalid log level in the LOG modify command.

Action:

The cross-memory auxiliary server ignores the command.

ZWES0078I

response_text

Reason:

This message contains the response of a DISPLAY modify command.

Action:

No action required.

ZWES0079I

Response message - 'response_text'

Reason:

This message contains the response of a modify command.

Action:

No action required.

ZWES0080I

Termination signal received (signal)

Reason:

The parent address space issued a termination signal and the cross-memory auxiliary server successfully received it.

Action:

The cross-memory auxiliary server starts the termination sequence.

ZWES0081E

Bad dub status bpx4qdb_status (bpx4qdb_return_code,bpx4qdb_reason_code), verify that the started task user has an OMVS segment

Reason:

The cross-memory auxiliary server detected an invalid dub status.

Action:

The cross-memory auxiliary server terminates. Ensure that the user under which the cross-memory auxiliary server's started task runs
has an OMVS segment.

ZWES0082W

Legacy API has been detected, some functionality may be limited

Reason:

The cross-memory auxiliary server detected a legacy communication area.

Action:

Some functionality might not be available. Update the parent address space to use a more modern AUX API version.

Core cross-memory server messages

ZWES0100I

debug_message

Reason:

This is a debug message.

Action:

No action required.

ZWES0101I

hex_dump

Reason:

This is a debug hex dump.

Action:

No action required.

ZWES0102E

Initialization step 'step_name' failed, RC = return_code

Reason:

A cross-memory server's initialization step failed. The initialization process stops.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue, contact support.

ZWES0103I

Initialization step 'step_name' successfully completed

Reason:

A cross-memory server's initialization step completed successfully.

Action:

No action required.

ZWES0104I

About to start console task

Reason:

The cross-memory server is starting the console listener task which handles operator commands.

Action:

No action required.

ZWES0105I

Core server initialization started

Reason:

The cross-memory server is starting initialization.

Action:

No action required.

ZWES0106E

Core server initialization failed, RC = return_code

Reason:

The initialization process failed.

Action:

The cross-memory server terminates. Review the messages preceding this message. If you cannot resolve the issue, contact support.

ZWES0107I

Cold start initiated

Reason:

An operator started the server with the cold start option.

Action:

The cross-memory server discards its global resources and performs a clean start.

ZWES0108W

Global resources clean up RC = return_code

Reason:

The global resource clean-up process failed.

Action:

The cross-memory server continues running. Review return_code and contact support if needed.

Possible return codes:

return_code Action

RC_CMS_GLOBAL_AREA_NULL(12) Ignore if you have not run this ZIS after IPL

RC_CMS_ZVT_NULL(47) Ignore if you have not run any ZIS after IPL

RC_CMS_ZVTE_CHAIN_LOOP(66) Contact support

return_code Action

RC_CMS_ZVTE_CHAIN_NOT_LOCKED(67) Contact support

RC_CMS_ZVTE_CHAIN_NOT_RELEASED(68) Contact support

ZWES0109I

Core server ready

Reason:

The cross-memory server initialized and it is ready to accept program calls.

Action:

No action required.

ZWES0110E

Main loop unexpectedly terminated

Reason:

The cross-memory server detected an incorrect state in the main loop.

Action:

The cross-memory server terminates. Contact support.

ZWES0111I

Main loop terminated

Reason:

The main loop of this cross-memory server successfully terminated upon shutdown.

Action:

No action required.

ZWES0112E

Termination step 'step_name' failed, RC = return_code

Reason:

A cross-memory server's termination step failed.

Action:

The termination process continues. Review the messages preceding this message. If you cannot resolve the issue, contact support.

ZWES0113I

Termination step 'step_name' successfully completed

Reason:

A cross-memory server's termination step completed successfully.

Action:

No action required.

ZWES0114I

Core server stopped

Reason:

The cross-memory server successfully stopped.

Action:

No action required.

ZWES0115E

Core server stopped with an error, status = status_code

Reason:

The cross-memory server stopped with a non-zero status.

Action:

Review the messages preceding this message. Contact support if you cannot resolve the issue.

ZWES0116E

Core server is abnormally terminating

Reason:

An abend occurred in this cross-memory server.

Action:

Review any messages and errors preceding this message and contact support if you cannot resolve the issue.

ZWES0117E

Not APF-authorized (testauth_status)

Reason:

One or more data sets in the STEPLIB concatenation is not APF-authorized.

Action:

The cross-memory server terminates. Ensure that all the STEPLIB data sets are APF-authorized.

ZWES0118E

Core server started in wrong key key

Reason:

The cross-memory server detected that it was running in the wrong key.

Action:

The cross-memory server terminates. Ensure that you have added the correct PPT-entry (see the documentation) for the main ZIS
module.

ZWES0200I

modify_commands

Reason:

This message lists the modify commands supported by this cross-memory server (not including the plug-ins).

Action:

No action required.

ZWES0201E

Service ID service_id is out of range

Reason:

The cross-memory server detected an invalid service ID.

Action:

The cross-memory server terminates. Contact support.

ZWES0202E

A duplicate server is running

https://docs.zowe.org/stable/user-guide/configure-xmem-server

Reason:

A cross-memory server with the same server name is already running.

Action:

The cross-memory server terminates. Specify a different server name in the cross-memory server's JCL or the PARMLIB member.

ZWES0203E

Server not locked, ISGENQ RC = return_code, RSN = reason_code

Reason:

An internal synchronization error occurred.

Action:

The cross-memory server terminates. Contact support.

ZWES0204E

Global area address in NULL

Reason:

The global anchor of this cross-memory server is zero.

Action:

The cross-memory server terminates. Contact support.

ZWES0205E

Relocation failed for service_id (function_address not in [module_start_address, module_end_address])

Reason:

An error occurred during the relocation of one of the services in the server module.

Action:

The cross-memory server terminates. Contact support.

ZWES0206E

parameter_name (parameter_address) has invalid eyecatcher

Reason:

The print or dump service received a request with an invalid eyecatcher.

Action:

The service ignores the request. Correct the parameter list if your application initiated the request, otherwise contact support.

ZWES0207E

resource_name (resource_size) not allocated

Reason:

The cross-memory server failed to allocate storage for a resource.

Action:

Depending on the location of the failure some functionality might be affected. Contact support.

ZWES0208E

Module not loaded into LPA, RC = csvdylpa_return_code, RSN = csvdylpa_reason_code

Reason:

The cross-memory server failed to add its main module to the link pack area (LPA).

Action:

The cross-memory server terminates. Review the provided CSVDYLPA return and reason codes (see "z/OS MVS Programming:
Authorized Assembler Services Reference ALE-DYN") and contact support if you cannot resolve the issue.

ZWES0209E

Module not deleted from LPA, RC = csvdylpa_return_code, RSN = csvdylpa_reason_code

Reason:

The cross-memory server failed to delete its main module from the link pack area (LPA).

Action:

The cross-memory server terminates with a non-zero status. Review the provided CSVDYLPA return and reason codes (see "z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN") and contact support if you cannot resolve the issue.

ZWES0210W

No valid LPMEA in global area

Reason:

The cross-memory server detected an invalid LPMEA area for its main module.

Action:

The cross-memory server continues running. If the error occurred in the development mode ignore it, otherwise contact support.

ZWES0211E

Name/Token delete failed, RC = ieantdl_return_code

Reason:

The cross-memory server failed to delete the cross-memory server's global area's name/token.

Action:

The cross-memory server terminates with a non-zero status. Review the provided IEANTDL return code (see "z/OS MVS Programming:
Assembler Services Reference IAR-XCT") and contact support if you cannot resolve the issue.

ZWES0212E

RACROUTE LIST failed (saf_return_code, racf_return_code, racf_reason_code)

Reason:

The cross-memory server failed to perform RACROUTE LIST on the FACILITY class.

Action:

The cross-memory server terminates. The message contains the SAF return code, RACF return and reason codes (see "z/OS Security
Server RACROUTE Macro Reference"); review the codes. If you cannot resolve the issue, contact support.

ZWES0213E

ZVT not populated, RC = return_code

Reason:

The cross-memory server failed to populate the Zowe vector table.

Action:

The cross-memory server terminates. Contact support.

ZWES0214E

Global area not set, RC = return_code

Reason:

The cross-memory server could not set the cross-memory server's global area.

Action:

The cross-memory server terminates. Contact support.

ZWES0215E

Global area not retrieved, RC = return_code

Reason:

The cross-memory server could not retrieve the cross-memory server's global area.

Action:

The cross-memory server terminates. Contact support.

ZWES0216E

PC-type not set, step = step_name (return_code reason_code)

Reason:

The cross-memory server failed to set up a Program Call (PC) routine.

Action:

Contact support.

ZWES0217E

Too many tokens in command

Reason:

The provided modify command has too many tokens.

Action:

The cross-memory server ignores the command.

ZWES0218E

Command too long (command_length)

Reason:

The provided modify command is too long.

Action:

The cross-memory server ignores the command.

ZWES0219E

Command not tokenized

Reason:

The cross-memory server failed to tokenize the provided modify command.

Action:

The cross-memory server ignores the command. Review the messages preceding this message and contact support if you cannot
resolve the issue.

ZWES0220I

Modify command_verb command received

Reason:

The cross-memory server received a modify command with verb command_verb.

Action:

The cross-memory server proceeds to handle the command.

ZWES0221I

Modify command_verb command accepted

Reason:

The cross-memory server accepted a modify command with verb command_verb.

Action:

No action required.

ZWES0222I

response_text

Reason:

This message contains the response of a successful modify command.

Action:

No action required.

ZWES0223I

Termination command received

Reason:

An operator issued the termination command and the cross-memory server successfully received it.

Action:

The cross-memory server starts the termination sequence.

ZWES0224W

command_verb expects expected_arg_number args, provided_arg_number provided, command ignored

Reason:

A modify command with verb command_verb was used with an incorrect number of arguments.

Action:

The cross-memory server ignores the command.

ZWES0225W

Log component 'component_name' not recognized, command ignored

Reason:

An operator passed an invalid log component in the LOG modify command.

Action:

The cross-memory server ignores the command.

ZWES0226W

Log level 'level' not recognized, command ignored

Reason:

An operator passed an invalid log level in the LOG modify command.

Action:

The cross-memory server ignores the command.

ZWES0227W

Modify command_verb command not recognized

Reason:

The cross-memory server did not recognize a modify command with verb command_verb.

Action:

The cross-memory server ignores the command.

ZWES0228W

Empty modify command received, command ignored

Reason:

The cross-memory server received an empty modify command.

Action:

The cross-memory server ignores the command.

ZWES0229W

Server not ready for command command_verb

Reason:

The cross-memory server is being either initialized or terminated and isn't ready to accept the provided modify command.

Action:

The cross-memory server ignores the command. Re-issue the command later.

ZWES0230W

Display option 'option_name' not recognized, command ignored

Reason:

The cross-memory server did not recognize a DISPLAY modify command.

Action:

The cross-memory server ignores the command.

ZWES0231E

RESMGR version resource_manager_version not locked, ISGENQ RC = return_code, RSN = reason_code

Reason:

The cross-memory's address space resource manager serialization failed (lock not acquired)

Action:

The cross-memory server terminates. Contact support.

ZWES0232E

RESMGR version resource_manager_version not released, ISGENQ RC = return_code, RSN = reason_code

Reason:

The cross-memory's address space resource manager serialization failed (lock not released).

Action:

The cross-memory server continues running. Contact support.

ZWES0233E

RESMGR ECSA storage not allocated, size = requested_size

Reason:

The cross-memory server could not obtain common storage for the cross-memory server's address space resource manager.

Action:

The cross-memory server terminates. Ensure that there is no shortage of the extended common service area (ECSA) storage on your
system. If you cannot resolve the issue, contact support.

ZWES0234E

RESMGR NAME/TOKEN not created, RC = ieantcr_return_code

Reason:

The cross-memory server failed to create the resource manager name/token pair.

Action:

The cross-memory server terminates. Review the provided IEANTCR return code (see "z/OS MVS Programming: Assembler Services
Reference IAR-XCT") and contact support if you cannot resolve the issue.

ZWES0235E

RESMGR NAME/TOKEN not retrieved, RC = ieantrt_return_code

Reason:

The cross-memory server failed to retrieve the resource manager name/token pair.

Action:

The cross-memory server terminates. Review the provided IEANTRT return and reason (see "z/OS MVS Programming: Assembler
Services Reference IAR-XCT") codes and contact support if you cannot resolve the issue.

ZWES0236E

RESMGR not added for ASID = hex_asid_number, RC = return_code, manager RC = resmgr_return_code

Reason:

The cross-memory server could not add the resource manager.

Action:

The cross-memory server terminates. Review the RESMGR ADD service return code value in resmgr_return_code (see "z/OS MVS
Programming: Authorized Assembler Services Reference LLA-SDU"). If you cannot resolve the issue, contact support.

ZWES0237E

RESMGR not removed for ASID = hex_asid_number, RC = return_code, manager RC = resmgr_return_code

Reason:

The cross-memory server could not delete the resource manager.

Action:

The cross-memory server terminates with a non-zero status. Review the RESMGR DELETE service return code in resmgr_return_code
(see "z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU"). If you cannot resolve the issue, contact support.

ZWES0238E

rname_value RNAME not created, failure_reason

Reason:

The cross-memory server failed to create an RNAME.

Action:

The cross-memory server terminates. Contact support.

ZWES0239E

nametoken_name NAME (NT) not created, failure_reason

Reason:

The cross-memory server failed to create a name-token name.

Action:

The cross-memory server terminates. Contact support.

ZWES0240W

Discarding outdated LPA module at module_address (current_module_timestamp - new_module_timestamp)

Reason:

The cross-memory server detected that the current link pack area (LPA) module was outdated; this usually happens when the cross-
memory server gets updated.

Action:

The cross-memory server discards the old module and loads the latest version to LPA.

ZWES0241E

Service with ID service_id not relocated, function_address not in range [module_start_address, module_end_address]

Reason:

An error occurred during the relocation of a cross-memory service.

Action:

The cross-memory server terminates. Contact support.

ZWES0242W

Modify command_verb command rejected

Reason:

The cross-memory server rejected the provided modify command because it was either incorrect or the server was not ready to
process it.

Action:

The cross-memory server ignores the command.

ZWES0243W

Server busy, modify commands are rejected

Reason:

An operator issued too many commands in a short period and the cross-memory server was not able to process the provided modify
command.

Action:

The cross-memory server ignores the command.

ZWES0244E

Resource 'resource_name' not created, RC = return_code

Reason:

The cross-memory server failed to create an internal resource.

Action:

Depending on the location either the cross-memory server terminates or some functionality is impacted. Contact support.

ZWES0245E

ABEND abend_code-reason_code averted in step 'step_name' (recovery RC = recovery_return_code)

Reason:

An abend occurred in a component of the cross-memory server.

Action:

Depending on the location either the cross-memory server terminates or some functionality is impacted. Contact support.

ZWES0246E

Service entry service_id is occupied

Reason:

The cross-memory server made an attempt to install a cross-memory service in an already occupied slot.

Action:

The cross-memory server terminates. Contact support.

ZWES0247W

Development mode is enabled

Reason:

The user enabled one or more of the development modes.

Action:

Ensure it was done intentionally, otherwise disable any development mode.

ZWES0248W

Address space is not reusable, start with REUSASID=YES to prevent an ASID shortage

Reason:

An operator started the cross-memory server's address space as a non-reusable address space.

Action:

Use RESUASID=YES when starting the cross-memory server, otherwise starting it without that parameter can cause an address space
identifier (ASID) shortage.

ZWES0249E

Module module_name is loaded from common storage, ensure module_name is valid in the STEPLIB

Reason:

The cross-memory server detected that its module was located in common storage.

Action:

The cross-memory server terminates. Ensure that the module is in a STEPLIB data set.

ZWES0250E

Bad dub status bpx4qdb_status (bpx4qdb_return_code,bpx4qdb_reason_code), verify that the started task user has an OMVS segment

Reason:

The cross-memory server detected an invalid dub status.

Action:

The cross-memory server terminates. Ensure that the user under which the cross-memory server's started task runs has an OMVS
segment.

ZWES0251I

Look-up routine anchor has been created at address

Reason:

The cross-memory server created a cross-memory server look-up routine anchor.

Action:

No action required.

ZWES0252I

Look-up routine anchor at address has been reused

Reason:

The cross-memory server found and reused an existing look-up routine anchor.

Action:

No action required.

ZWES0253I

Look-up routine anchor at address has been deleted

Reason:

The cross-memory server deleted a look-up routine anchor.

Action:

No action required.

ZWES0254W

Look-up routine anchor at address has been discarded due to reason:

Reason:

The cross-memory server discarded a look-up routine anchor.

Action:

The cross-memory server creates a new anchor. Review the reason and contact support if the reason is not one of the following:

Incompatible version

Insufficient size

Outdated look-up routine

ZWES0255E

Look-up routine anchor has not been created

Reason:

The cross-memory server could not create a look-up routine anchor.

Action:

The cross-memory server terminates. Ensure there is no shortage of the extended common service area (ECSA) storage on your
system. Contact support if you cannot resolve the issue.

ZWES0256I

Look-up routine anchor at address has been explicitly discarded

Reason:

The user forced the cross-memory server to discard the current look-up routine anchor via a parameter.

Action:

No action required.

ZWES0257W

Look-up routine anchor discard RC = return_code

Reason:

The cross-memory server could not discard the current look-up routine anchor.

Action:

The cross-memory server continues running. Review return_code and contact support if needed.

Possible return codes:

return_code Action

RC_CMS_ZVT_NULL(47) Ignore if you have not run any ZIS after IPL

ZIS Dynamic Linkage Base plug-in messages

ZWES0700I

ZIS Dynamic Base plug-in starting, version major.minor.patch+datestamp, stub version stub_version

Reason:

The dynamic linkage base plug-in with the specified plug-in and stub versions is starting.

Action:

No action required.

ZWES0701I

ZIS Dynamic Base plug-in successfully started

Reason:

The dynamic linkage base plug-in successfully started.

Action:

No action required.

ZWES0702E

ZIS Dynamic Base plug-in startup failed, status = status_code

Reason:

The dynamic linkage base plug-in failed to start.

Action:

The dynamic linkage functionality will not be available. Review the messages preceding this message and contact support if you
cannot resolve the issue.

ZWES0703E

ZIS Dynamic Base plug-in init error - details

Reason:

The dynamic linkage base plug-in failed during initialization.

Action:

The dynamic linkage functionality will not be available. Review the details and contact support if you cannot resolve the issue.

ZWES0704I

ZIS Dynamic Base plug-in terminating

Reason:

The plug-in is terminating.

Action:

No action required.

ZWES0705I

ZIS Dynamic Base plug-in successfully terminated

Reason:

The plug-in successfully terminated.

Action:

No action required.

ZWES0706E

ZIS Dynamic Base plug-in terminated with error

Reason:

The dynamic linkage base plug-in terminated with errors.

Action:

Review the details and contact support if you cannot resolve the issue.

ZWES0707I

response_text

Reason:

This message contains a response from a modify command of the dynamic linkage base plug-in.

Action:

No action required.

ZWES0708I

Stub vector has been created at address

Reason:

The dynamic linkage base plug-in created a new stub vector at the specified address.

Action:

No action required.

ZWES0710I

Stub vector at address has been reused

Reason:

The dynamic linkage base plug-in reused the stub vector at the specified address.

Action:

No action required.

ZWES0711I

Stub vector at address has been deleted

Reason:

The dynamic linkage base plug-in deleted the stub vector at the specified address.

Action:

No action required.

ZWES0712W

Stub vector at address is discarded due to reason:

Reason:

The dynamic linkage base plug-in discarded an existing stub vector because it was invalid.

Action:

The dynamic linkage base plug-in creates a new vector. Review the reason and contact support if the reason is not one of the
following:

Incompatible version

Insufficient size

ZWES0713W

ZIS Dynamic base plug-in development mode is enabled

Reason:

The user enabled the development mode.

Action:

Ensure it was done intentionally, otherwise disable any development mode.

ZWES0714E

Bad cross-memory server version: expected [min_major.min_minor.min_patch, max_major.max_minor.max_patch), found
current_major.current_minor.current_patch

Reason:

The dynamic linkage base plug-in detected that it was running in an unsupported cross-memory server.

Action:

The dynamic linkage functionality will not be available. Use a supported version of the cross-memory server.

Version: v2.17.x LTS

Troubleshooting Zowe Launcher
The following topics contain information that can help you troubleshoot problems when you encounter unexpected behavior using
Zowe™ Launcher.

Issues and development of the Zowe Launcher is managed in GitHub. When you troubleshoot a problem, you can check whether a
GitHub issue (open or closed) that covers the problem already exists. For a list of issues, see the launcher repo.

Error Message Codes

Enable Zowe Launcher Debug Mode

Use debug mode to display additional debug messages for Zowe Launcher.

Important: We highly recommend that you enable debug mode only when you want to troubleshoot issues. Disable debug mode
when you are not troubleshooting. Running Zowe Launcher in debug mode can adversely affect its performance and consume a large
amount of spool space.

Follow these steps:

1. Open the PROCLIB member ZWESLSTC

2. Find STDENV DD inline statements

3. Add a new line

By default debug mode is disabled, so the ZLDEBUG is set to OFF . To disable debug mode remove the line or set ZLDEBUG to OFF .

3. Restart ZWESLSTC Started Task.

https://github.com/zowe/launcher
https://docs.zowe.org/stable/troubleshoot/launcher/launcher-error-codes

Version: v2.17.x LTS

Error Message Codes
The following error message codes may appear on Zowe Launcher SYSPRINT. Use the following message code references and the
corresponding reasons and actions to help troubleshoot issues.

Zowe Launcher informational messages

ZWEL0001I

component %s started

Reason:

Component <component-name> started.

Action:

No action required.

ZWEL0002I

component %s stopped

Reason:

Component <component-name> stopped.

Action:

No action required.

ZWEL0003I

new component initialized %s, restart_cnt=%d, min_uptime=%d seconds, share_as=%s

Reason:

Component <component-name> initialized.

restart_cnt - Number of attempts to restart the component in case of failure

min_uptime - Minimum uptime that the component can be considered as successfully started

share_as - One of <yes|no|must> which indicates whether child processes of the component start in the same address space.

See documentation for _BPX_SHAREAS for details.

Action:

No action required.

https://www.ibm.com/docs/en/zos/2.4.0?topic=shell-setting-bpx-shareas-bpx-spawn-script

ZWEL0004I

component %s(%d) terminated, status = %d

Reason:

Component <component-name> (<pid>) terminated with status <code> .

Action:

No action required.

ZWEL0005I

next attempt to restart component %s in %d seconds

Reason:

Component failure detected.

Action:

No action required. The component <component-name> will be restarted in <n> seconds.

Zowe Launcher error messages

ZWEL0030E

failed to prepare Zowe instance

Reason:

Failed to prepare the Zowe high availability (HA) instance.

Action:

Check previous messages in the Zowe Launcher SYSPRINT to find the reason and correct it.

ZWEL0038E

failed to restart component %s, max retries reached

Reason:

Maximum retries reached for restarting component <component-name>.

Action:

Check <component-name> configuration and correct the maximum restart count via configuration attribute restartIntervals if
needed, then restart the component by using z/OS MODIFY command F ZWESLSTC,APPL=STOP(<component-name>)

ZWEL0040E

failed to start component %s

Reason:

Failed to start component <component-name> .

Action:

Check <component-name> configuration and correct if needed, then either 1) start the component manually by using z/OS MODIFY

command F ZWESLSTC,APPL=STOP(<component-name>) or 2) restart the entire HA instance

ZWEL0047E

failed to parse zowe.yaml - %s

Reason:

Failed to parse Zowe configuration file.

Action:

Validate the format of Zowe configuration file. It should be a valid YAML file following specifications defined in https://yaml.org/.

ZWEL0073E

Launcher Could not load schemas, status=5

Reason:

The Zowe Launcher was able to locate the runtime directory, but unable to find the /schemas directory.

Action:

Locate the runtimeDirectory from the zowe.yaml variable runtimeDirectory: "<PATH_TO_RUNTIME>" .

Check that there is a <PATH_TO_RUNTIME>/schemas directory. This should contain four .json files shown below.

On ocassion the error occurs because the runtimeDirectory is pointing to a valid directory, but one which doesn't contain a valid

Zowe runtime environment is one of the first failures during a Zowe launch.

https://yaml.org/

Version: v2.17.x LTS

Troubleshooting Zowe CLI

When there is a problem
If Zowe™ CLI is experiencing a problem, there are steps you can take to find a potential solution.

Applicable environments

These instructions apply to Zowe CLI installed on Windows, Mac OS X, and Linux systems as a standalone installation via a Zowe
download or an NPM registry.

Reaching out for support

1. Is there already a GitHub issue (open or closed) that covers the problem? Check CLI Issues.

2. Review the current list of Known Zowe CLI issues in documentation. Also try searching using the Zowe Docs Search bar.

Resolving the problem

Collect the following information to help diagnose the issue:

Zowe CLI version installed.

List of plug-ins installed and their version numbers.

Node.js and NPM versions installed.

List of environment variables in use.

For instructions on using commands to collect this information, see Gathering information to troubleshoot Zowe CLI or Using
individual commands for troubleshooting.

The following information is also useful to collect:

If you are experiencing HTTP errors, see z/OSMF troubleshooting for information to collect.

Is the CLI part of another Node application, such as VSCode, or is it a general installation?

Which queue managers are you trying to administer, and on what systems are they located?

Are the relevant API endpoints online and valid?

https://github.com/zowe/zowe-cli/issues
https://docs.zowe.org/stable/troubleshoot/cli/known-cli
https://docs.zowe.org/
https://docs.zowe.org/stable/troubleshoot/cli/mustgather-cli
https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli/use-individual-troubleshoot-commands
https://docs.zowe.org/stable/troubleshoot/cli/zosmf-cli

Version: v2.17.x LTS

Gathering information to troubleshoot Zowe CLI
An important step in troubleshooting is confirming that your local environment is set up correctly. There are several Zowe CLI
commands you can use to view the conditions for the following system settings:

Configurations

Supported components

Command property values

These commands offer differing levels of information for analysis. Review this list to understand the outputs they provide and how to
apply them for troubleshooting.

Generating a working environment report
Issue the following command:

The output provides a granular view of key areas in the working environment on your terminal, including the following settings:

Node.js version, operating system path, environment variables

NPM information

Zowe CLI version, profile names

Installed plug-ins and their versions

This detailed report helps provide insights as you troubleshoot. If it finds a problem with a setting, the report displays a warning
message.

Alternatively, the output can be saved as a text file that can be attached to an issue submitted to the Zowe CLI issues list. Before filing
an issue, confirm that it has not already been submitted.

Finding configuration file properties and locations

Issue the following command:

The output provides a brief overview with the following information:

Configuration file locations

https://github.com/zowe/zowe-cli/issues

Profile names and types

Profile type defaults

All property values (host, port, etc.)

This overview outlines configuration property values and where they are specified.

Finding configuration file locations

Issue the following command:

The output provides a list of configuration files that affect your Zowe commands in the directory from which this command is issued.

Finding property values used by a Zowe command
Add the --show-inputs-only option to any Zowe command.

For example, if you want to check the command to list a data set, you add the option to the following command:

The output provides the property values that are used by the specified command, which can help the user identify properties that
might be incorrect.

Version: v2.17.x LTS

Using individual commands for Zowe CLI
troubleshooting
Follow these instructions to gather specific pieces of information to help troubleshoot Zowe™ CLI issues.

Identify the currently installed CLI version
Issue the following command:

The exact Zowe CLI version may vary depending upon if the @latest or @zowe-v1-lts , or @zowe-v2-lts version is installed.

You can also display the version of your globally-installed Zowe CLI through the following NPM command:

More information regarding versioning conventions for Zowe CLI and plug-ins is located in Versioning Guidelines.

Identify the currently installed versions of plug-ins
Issue the following command:

The output describes version and the registry information.

Environment variables
The following settings are configurable via environment variables:

Log levels

Environment variables are available to specify logging level and the CLI home directory.

Important! Setting the log level to TRACE or ALL might result in "sensitive" data being logged. For example, command line arguments
will be logged when TRACE is set.

For more information about logging and environment variables, see Setting CLI log levels.

CLI daemon mode

By default, the CLI daemon mode binary creates or reuses a file in the user's home directory each time a Zowe CLI command runs. In
some cases, this behavior might be undesirable. For example, the home directory resides on a network drive and has poor file
performance. For information about how to change the location that the daemon uses, see Setting CLI daemon mode properties.

Home directory

You can set the location on your computer for the Zowe CLI home directory, which contains log files, profiles, and plug-ins for the
product.

https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md
https://docs.zowe.org/stable/user-guide/cli-configuringcli-ev#setting-cli-log-levels
https://docs.zowe.org/stable/troubleshoot/user-guide/cli-configuringcli-ev#setting-cli-daemon-mode-properties

The default .zowe folder is created when you issue your first Zowe CLI command. If you change the location of the folder, you must

reinstall plug-ins and recreate or move profiles and log files that you want to retain. In some cases, you might want to maintain a
different set of profiles in multiple folders, then switch between them using the environment variable.

For information about setting an environment variable for the Zowe CLI home directory, see Setting the CLI home directory.

The values for these variables can be echoed.

Home directory structure

Location of logs

There are two sets of logs to be aware of:

Imperative CLI Framework log, which generally contains installation and configuration information.

Zowe CLI log, which contains information about interaction between CLI and the server endpoints.

Analyze these logs for any information relevant to your issue.

Profile configuration

The profiles folder stores connection information.

Important! The profile directory might contain "sensitive" information, such as your mainframe password. You should obfuscate any
sensitive references before providing configuration files.

Note: While the profile directory can still be used in Zowe CLI v2, it has been deprecated in favor of v2 team configuration files.

Node.js and npm

https://docs.zowe.org/stable/troubleshoot/user-guide/cli-configuringcli-ev#setting-the-cli-home-directory
https://docs.zowe.org/stable/user-guide/cli-using-using-team-profiles

Zowe CLI is compatible with the currently supported Node.js LTS versions. For an up-to-date list of supported LTS versions, see
Node.js.org.

To gather the Node.js and npm versions installed on your computer, issue the following commands:

npm configuration

If you are having trouble installing Zowe CLI from an npm registry, gather your npm configuration to help identify issues with registry
settings, global install paths, proxy settings, etc...

npm log files

In case of errors, npm creates log files in the npm_cache_logs location. To get the npm_cache location for a specific OS, run the
following command:

By default, npm keeps only 10 log files, but sometimes more are needed. Increase the log count by issuing the following command:

This command increases the log count to 50, so that more log files will be stored on the system. Now you can run tests multiple times
and not lose the log files. The logs can be passed to Support for analysis.

As the log files are created only when an npm command fails, but you are interested to see what is executed, you can increase the log
level of npm. Issue the following command:

With this change, you can see all actions taken by npm on the stdout. If the command is successful, it still does not generate a log
file.

The available log levels are: "silent", "error", "warn", "notice", "http", "timing", "info", "verbose", "silly", and "notice". "Notice" is the
default.

Alternatively, you can pass --loglevel verbose on the command line, but this only works with npm related commands. By

setting log level in the config, it also works when you issue some zowe commands that use npm (for example, zowe plugins

install @zowe/cics).

https://nodejs.org/en/download/releases/

Version: v2.17.x LTS

Using cURL to troubleshoot Zowe CLI
When a REST API call fails on Zowe CLI, you can use cURL to troubleshoot.

Run a command with cURL and compare its output with what is returned using Zowe CLI. This can help pinpoint whether the problem
lies with z/OSMF or Zowe CLI, depending on which command returns an API error.

Installing cURL
cURL is installed by default on Windows 10 V1803 and later, macOS, and most Linux distributions.

If the cURL command is missing from your system, you can download it from the cURL Releases and Downloads page.

Understanding cURL commands
A cURL command using the https protocol follows the basic syntax curl <URL> .

Add cURL options to establish communication between Zowe CLI and z/OSMF, as in the following example command:

NOTE: Some terminals may require single quotes rather than double quotes.

--location

Use --location to allow the server to redirect to a different URL, if needed.

When the server attempts to redirect and --location is not included in the command, the server responds with a 3XX status code.

--request <API method>

Use --request to identify the API method (such as POST , GET , PUT , DELETE). Not necessary when the API method is GET .

<API method> : Specifies the API method used in the request.

"https://<host>:<port>/<API>"

Indicates the protocol and URL.

<host> : Specifies the host name where the z/OSMF services are running.

<port> : Specifies the REST port number. If not specified, defaults to 443 for HTTPS.

<API> : Specifies the API endpoint used in the request.

--header "X-CSRF-ZOSMF-HEADER;"

Required to establish communication with z/OSMF. Specifies that the client is sending a cross-site request to the REST interface.

https://curl.se/download.html

; : Indicates that the header has no value. (Not all commands require a value.)

To pass an additional header with a value, use a colon to separate the key and value. For example: --header "X-IBM-Data-Type:

binary" .

--insecure

Use --insecure with a trusted server that does not require verification before a data transfer.

For example, this bypasses SSL certificate verification for servers with self-signed certificates.

--user "<ID>:<PASSWORD>"

Required and displays as plain text. Also possible to use an environment variable.

<ID> : Specifies the z/OSMF user identification.

<PASSWORD> : Specifies the user password for z/OSMF.

NOTE: To be prompted for a password instead of displaying it in plain text, omit the password from the command and enter --user

"<ID>" .

Comparing commands
To troubleshoot, run a Zowe API request with Zowe CLI and cURL commands, then compare responses.

When both responses include the same error, that may indicate there could be a problem with z/OSMF.

If an API call fails with the Zowe CLI command but not cURL, this can mean the problem lies with Zowe CLI.

The following APIs illustrate some common examples of comparing commands that you can use to troubleshoot with cURL.

z/OSMF Info API

The z/OSMF Info API uses a GET request to obtain basic information from z/OSMF, such as the version, available services, and other

details.

Submitting the cURL command:

Run the following example command using your information:

A successful cURL response follows the format below:

Submitting the Zowe CLI command:

Run the following example command using your information:

A successful Zowe CLI response follows the format below:

z/OSMF Files API

https://docs.zowe.org/stable/user-guide/cli-using-using-environment-variables
https://www.ibm.com/docs/en/zos/2.5.0?topic=service-retrieve-zosmf-information

The z/OSMF Files API uses a PUT request to upload a file to a data set via z/OSMF.

Submitting the cURL command:

Run the following example command using your information:

A successful cURL response is empty without any error messages.

Submitting the Zowe CLI command:

Run the following example command using your information:

A successful Zowe CLI response follows the format below:

z/OSMF Jobs API

The z/OSMF Jobs API uses a PUT request to submit a job from a data set via z/OSMF.

Submitting the cURL command:

Run the following example command using your information:

A successful cURL response folllows the format below:

Submitting the Zowe CLI command:

Run the following example command using your information:

A successful Zowe CLI response follows the format below:

https://www.ibm.com/docs/en/zos/2.5.0?topic=interface-write-data-zos-data-set-member
https://www.ibm.com/docs/en/zos/2.5.0?topic=interface-submit-job

Version: v2.17.x LTS

z/OSMF troubleshooting
The core command groups use the z/OSMF REST APIs which can experience any number of problems.

If you encounter HTTP 500 errors with the CLI, consider gathering the following information:

1. The IZU* (IZUSVR and IZUANG) joblogs (z/OSMF server)

2. z/OSMF USS logs (default location: /global/zosmf/data/logs - but may change depending on installation)

If you encounter HTTP 401 errors with the CLI, consider gathering the following information:

1. Any security violations for the TSO user in SYSLOG

Alternative methods
At times, it may be beneficial to test z/OSMF outside of the CLI. You can use the CLI tool curl or a REST tool such as "Postman" to
isolate areas where the problem might be occurring (CLI configuration, server-side, etc.).

Example curl command to GET /zosmf/info :

Version: v2.17.x LTS

Troubleshooting Zowe CLI credentials

Secure credentials

Authentication mechanisms

You can troubleshoot a failed log-in to a mainframe service by reviewing the authentication mechanisms used by Zowe CLI.

Zowe CLI accepts various methods, or mechanisms, of authentication when communicating with the mainframe, and the method that
the CLI ultimately follows is based on the service it is communicating with.

However, some services can accept multiple methods of authentication. When multiple methods are provided (in a profile or
command) for a service, the CLI follows an order of precedence to determine which method to apply.

To find the authentication methods used for different services and their order of precedence, see the table in Authentication
mechanisms.

PEM certificate files

PEM certificate files are used by Zowe CLI to authenticate to the API Mediation Layer. To be accepted, these certificate files must first
be recorded in the service's keyring/trust-store on the mainframe before they are used by Zowe CLI.

Some users choose to secure PEM certificates by placing them in a password protected container, such as a PGP file, a ZIP file, or a
password protected PKCS12 file (a.k.a. a PFX file). However, Zowe CLI does not currently support any certificate files that require a
password for use.

NOTE

These client certificate files are different from the certificates generated or imported during Zowe server configuration. For more
information, see Using Certificates.

To log into the API Mediation Layer with a PEM certificate file, refer to this workaround.

Symptom:

When using a password protected certificate to log in to API ML, an error message displays.

Sample message:

Solution:

Create a new PEM certificate file with no password requirement to log in to API ML.

https://docs.zowe.org/stable/extend/extend-cli/cli-devTutorials#authentication-mechanisms
https://docs.zowe.org/stable/user-guide/use-certificates/

Version: v2.17.x LTS

Known Zowe CLI issues
The following topics contain information that can help you troubleshoot problems when you encounter unexpected behavior
installing and using Zowe™ CLI.

Zowe commands fail with secure credential errors
Valid on Windows, macOS, and Linux

Symptoms:

After you install Zowe CLI, and the installation appears to complete successfully, Zowe commands that load the secure credential store
return error messages. For example, the following commands return error messages:

zowe config init

zowe config secure

zowe profiles create

Most Zowe commands that access your mainframe environment

This behavior occurs under the following conditions:

npm version 8.11.0 or 8.12.0 is running on your computer.

The computer on which you installed Zowe CLI cannot access the Internet or it has limited access to the Internet. Your site does
not allow connections to https://github.com/.

You installed Zowe CLI from a local package or from an NPM public online registry

Solution:

1. Define the npm_config_global environment variable. Issue the command that corresponds with your operating system:

Windows Command Prompt: set npm_config_global=true

Windows PowerShell: $env:npm_config_global="true"

macOS/Linux Bash: export npm_config_global=true

2. Install or reinstall Zowe CLI using your preferred installation method.

3. After the Zowe CLI installation completes, reset the npm_config_global environment variable. Issue the command that

corresponds with your operating system:

Windows Command Prompt: set npm_config_global=

Windows PowerShell: $env:npm_config_global=""

macOS/Linux Bash: export npm_config_global=

4. Continue configuring Zowe CLI. Or, reissue a Zowe command that returned an error message. You should no longer get an error
message.

https://github.com/

Chain commands fail in a batch script
Valid on Windows

Symptom: When invoking Zowe CLI in a batch script (.bat or .cmd file), subsequent commands in the script do not run.

Solution:

To prevent the Zowe executable from taking control and stopping the execution of the script it is called from, add call in front of

each Zowe CLI command.

In the example below, the script never prints "hello" to the terminal:

To fix this, add call before the Zowe CLI command.

For multiple Zowe CLI commands, see the following example:

Command not found message displays when issuing npm install
commands
Valid on all supported platforms

Symptom:

When you issue NPM commands to install the CLI, the message command not found displays. The message indicates that Node.js and
NPM are not installed on your computer, or that PATH does not contain the correct path to the NodeJS folder.

Solution:

To correct this behavior, verify the following:

Node.js and NPM are installed.

PATH contains the correct path to the NodeJS folder.

More Information: System requirements for Zowe CLI

EACCESS error when issing npm install command

Valid on Windows, Mac, or Linux

Symptom:

An EACCESS error is returned when you issue the npm install -g command to install a package from Zowe.org or npm.

Solution:

To resolve the issue, follow the steps described in Resolving EACCESS permissions errors when installing packages globally in the npm
documentation.

https://docs.zowe.org/stable/user-guide/systemrequirements-cli
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally

Installation fails on Oracle Linux 6
Valid on Oracle Linux 6

Symptom:

You receive error messages when you attempt to install the product on an Oracle Linux 6 operating system.

Solution:

Install the product on Oracle Linux 7 or another Linux or Windows OS. Zowe CLI is not compatible with Oracle Linux 6.

Node.js commands do not respond as expected
Valid on Windows or Linux

Symptom:

You attempt to issue node.js commands and you do not receive the expected output.

Solution:

There might be a program that is named node on your path. The Node.js installer automatically adds a program that is named node to
your path. When there are pre-existing programs that are named node on your computer, the program that appears first in the path is
used. To correct this behavior, change the order of the programs in the path so that Node.js appears first.

npm install -g command fails due to an EPERM error

Valid on Windows

Symptom:

This behavior is due to a problem with Node Package Manager (npm). There is an open issue on the npm GitHub repository to fix the
defect.

Solution:

If you encounter this problem, some users report that repeatedly attempting to install Zowe CLI yields success. Some users also report
success using the following workarounds:

Issue the npm cache clean command.

Uninstall and reinstall Zowe CLI. For more information, see Install Zowe CLI.

Add the --no-optional flag to the end of the npm install command.

npm install -g command fails due to npm ERR! Cannot read property
'pause' of undefined error

https://docs.zowe.org/stable/user-guide/cli-installcli

Valid on Windows or Linux

Symptom:

You receive the error message npm ERR! Cannot read property 'pause' of undefined when you attempt to install the product.

Solution:

This behavior is due to a problem with Node Package Manager (npm). If you encounter this problem, revert to a previous version of
npm that does not contain this defect. To revert to a previous version of npm, issue the following command:

Paths converting in Git Bash
Valid on Windows

Symptom:

When issuing a command with an absolute directory path that begins with a forward slash, Git Bash converts it into an invalid path
that does not exist.

If a command includes a path similar to the following example:

Git Bash can erroneously convert the root directory to a drive letter, as in the example below:

Note: Depending on the root directory, the Git Bash conversion can add other directories it assumes to be included in the path.

Solutions:

Replace the single slash in front of a path with double slashes (//). This stops Git Bash from remapping the path.

To avoid conversion in the example above, edit the path in the following manner:

Set the environment variable MSYS_NO_PATHCONV to 1 in one of the following ways:

Use the export command.

While running commands in a terminal, run the export command once during that terminal session. If writing a script, run the
command once at the top of the script.

The export command is included in the following example:

Set the environment variable in your ~/.bashrc file to define it permanently.

The better option depends on particular circumstances. Using double forward slashes is a good choice when defining system-wide
environment variables could cause problems with other applications. On the other hand, the environment variable helps avoid
rewriting paths on every CLI command that uses them.

Sudo syntax required to complete some installations

Valid on Linux and macOS

Symptom:

The installation fails on Linux or macOS.

Solution:

Depending on how you configured Node.js on Linux or macOS, you might need to add the prefix sudo before the npm install -g
command or the npm uninstall -g command. This step gives Node.js write access to the installation directory.

Version: v2.17.x LTS

Raising a CLI issue on GitHub
When necessary, you can raise GitHub issues against the Zowe™ CLI repository here. It is suggested that you use either the bug or
enhancement template.

Raising a bug report
Please provide as much of the information listed on Troubleshooting CLI as is reasonable. Anyone working on the issue might need to
request this and other information if it is not supplied initially. A description of the error and how it can be reproduced is the most
important information.

Raising an enhancement report
Enhancement reports are just as important to the Zowe project as bug reports. Enhancement reports should be clear and detailed
requirements for a potential enhancement.

https://github.com/zowe/zowe-cli/issues
https://docs.zowe.org/stable/troubleshoot/cli/troubleshoot-cli

Version: v2.17.x LTS

Troubleshooting Zowe CLI plug-ins

When there is a problem
If a plug-in for Zowe™ CLI is experiencing a problem, there are steps you can take to find a potential solution.

Error codes

For help with error codes from a back-end vendor, refer to the vendor’s help documentation.

Reaching out for support

1. Is there already a GitHub issue (open or closed) that covers the problem? Check the following repositories:

IBM CICS Plug-in issues

IBM Db2 Database Plug-in issues

IBM MQ Plug-in issues

IBM z/OS FTP Plug-in issues

If there is no issue on the problem, file an issue in the repository for the respective plug-in so the dev team can review it.

2. Try searching for the issue using the Zowe Docs Search bar.

3. Use the Zowe CLI Slack channel to reach the Zowe CLI community for assistance.

https://github.com/zowe/cics-for-zowe-client/issues
https://github.com/zowe/zowe-cli-db2-plugin/issues
https://github.com/zowe/zowe-cli-mq-plugin/issues
https://github.com/zowe/zowe-cli-ftp-plugin/issues
https://docs.zowe.org/
https://openmainframeproject.slack.com/archives/CC8AALGN6

Version: v2.17.x LTS

IBM Db2 Database Plug-in troubleshooting
As part of the IBM Db2 Database Plug-in installation, the ODBC driver is automatically installed. The driver is required to connect to
Db2, but installation can fail due to security restrictions.

When the ODBC driver installation fails, Zowe CLI displays an error message. To resolve this, the user can manually download and
install the driver.

Symptom:

The ODBC driver installation fails when installing the IBM Db2 Database Plug-in.

Sample:

The ODBC driver installation can fail due to several factors, displaying the following error when the zowe plugins install command

is issued:

To identify the cause of the error and get more details to troubleshoot, run the following command:

The response includes an error message, which could specify a timeout or unpacking error.

Timeout error

Network restrictions can prevent the ODBC driver from downloading, resulting in a timeout error:

To troubleshoot a timeout error, see Downloading the ODBC driver manually.

Unpacking error

If the driver downloads successfully, security settings can still prompt an unpacking error.

In the following example, the ODBC driver is downloaded manually and the environment variable IBM_DB_INSTALLER_URL is set.

To troubleshoot a packaging error, see Fixing a failed extraction.

Solution:

Downloading the ODBC driver manually

To manually download the ODBC driver, see instructions in Downloading the ODBC driver.

Fixing a failed extraction

1. Manually extract the ODBC driver binaries from the build.zip file which is bundled with the ibm_db package. The build.zip

archive can also be downloaded from GitHub.

2. Open the build/Release folder and copy the binary for your Node version (for example, odbc_bindings.node.18.18.2 if you

have Node 18) into the Db2 plug-in folder (C:\Users\username\.zowe\plugins\installed\node_modules\@zowe\db2-for-

zowe-cli\node_modules\ibm_db\build\Release).

https://docs.zowe.org/stable/user-guide/cli-db2plugin#downloading-the-odbc-driver
https://www.npmjs.com/package/ibm_db
https://github.com/ibmdb/node-ibm_db/blob/master/build.zip

3. Rename the file to odbc_bindings.node . This is the name used by the Db2 plug-in.

You successfully extracted the ODBC driver.

NOTE

The preceding steps extract the driver binary to fix a broken installation of the IBM Db2 Database Plug-in. When installing a new
version of the plug-in, perform the workaround again to fix a failed extraction.

Version: v2.17.x LTS

Troubleshooting Zowe Explorer
As a Zowe Explorer user, you may encounter problems when using Visual Studio Code extension functions. Review Zowe Explorer
known issues and troubleshooting solutions here.

Before reaching out for support
1. Is there already a GitHub issue (open or closed) that covers the problem? Check Zowe Explorer Issues.

2. Review the current list of Known issues in documentation. Also, try searching using the Zowe Docs search bar (keyboard shortcut
ctrl + k).

3. Collect the following information to help diagnose the issue:

The Zowe Explorer and Visual Studio Code versions installed

See Checking your Zowe version release number for information.

Node.js and NPM versions installed

Whether you have Zowe CLI and the Secure Credential Store (SCS) Zowe CLI plug-in installed

NOTE

Zowe CLI V2 does not require the SCS plug-in to manage security. Security is now managed by Zowe CLI core
functionality.

Your operating system

Zowe Logs, which usually can be found in C:\Users\userID\.vscode\extensions\zowe.vscode-extension-for-zowe-

X.Y.Z\logs

NOTE

In some cases, this path can differ. On operating systems such Linux or Mac, the default path is
~/.vscode/extensions/zowe.vscode-extension-for-zowe-X.Y.Z/logs . In a non-standard installation of Visual

Studio Code, extensions could be stored under a different directory.

Use the Slack channel to reach the Zowe Explorer community for assistance.

Connection issues with Zowe Explorer
If you’re using Zowe Explorer at a site that uses an Internet proxy but cannot connect to a mainframe, ensure that the Proxy Support
setting in Visual Studio Code is properly configured. Your system administrator can provide information on which option works best
for your network environment.

Note that Zowe Explorer cannot bypass this setting as it would circumvent the VS Code setting applied to all other extensions.

https://github.com/zowe/zowe-explorer-vscode/issues
https://docs.zowe.org/stable/troubleshoot/ze/known-ze
https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-check-your-zowe-version/#zowe-explorer-for-visual-studio-code
https://app.slack.com/client/T1BAJVCTY/CUVE37Z5F

To access the Proxy Support setting in VS Code:

1. Open VS Code and select the Manage icon on the Side Bar.

2. Select the Settings option from the context menu.

3. In the Settings view, open the Application menu and select Proxy.

4. Find the Proxy Support drop-down menu and select the appropriate option.

In addition, VS Code allows users and administrators to configure proxy options on launch. See Network Connections in Visual Studio
Code for more information on proxy server support.

System administrators can also add IP addresses, IP ranges, or DNS hostnames for each system inaccessible by proxy to the NO_PROXY
environment variable. VS Code uses this variable for outgoing requests.

Resolving invalid profiles
A problem with a configuration file can make Zowe Explorer unable to read your configurations.

Zowe Explorer displays an error message advising it cannot read the configuration file when either:

A Zowe v1 profile is invalid.

A Zowe v2 configuration file fails to load.

Possible problems in the file could include a syntax error, or an invalid keyword or symbol.

To fix the configuration file causing the error:

1. Click the Show Config button in the message window.

This opens the file in an Editor tab.

2. Modify the file as needed and save the changes.

3. Reload Visual Studio Code to confirm that Zowe Explorer can read the updated file.

Missing write access to VS Code extensions folder

In some environments, the path for VS Code extensions (typically ~/.vscode/extensions) can be read-only. This can happen when

an environment has developers sharing a common read-only extensions folder that is managed by an admin with write access.

In these cases, Zowe Explorer fails to activate because it cannot write to the logs and temp folders in the extension path. When Zowe

Explorer launches, an EACCES: permission denied error displays. See the following examples.

https://code.visualstudio.com/docs/setup/network#_proxy-server-support

logs folder write access error:

temp folder write access error:

To avoid this, change the logs and temp folder locations:

1. In VS Code, select the File menu, select Preferences, and click on Settings.

2. In either the User or Workspace tab, click on the Extensions option to open the menu.

3. Select Zowe Explorer.

4. Enter the new path in the Logs Folder or Temporary Downloads Folder fields. For examples:

logs folder setting:

Log files include information about Zowe Explorer and connections it makes to the mainframe. These files can be used for
troubleshooting and to analyze errors.

temp folder setting:

Temporary files are local copies of data sets or USS files downloaded from the mainframe to edit in VS Code. These files last
until VS Code closes and all changes have been uploaded to the mainframe.

After a new path is entered, Zowe Explorer writes logs and temporary files using the corresponding path.

Version: v2.17.x LTS

Known Zowe Explorer issues
The following topics contain information that can help you troubleshoot problems when you encounter unexpected behavior when
using Zowe Explorer.

Bidirectional languages
Files written in languages primarily read from right to left (Arabic, Hebrew, many Asian languages) can include portions of text that are
written and read left to right, such as numbers.

These bidirectional (BiDi) languages are not currently supported in Visual Studio Code. See Issue #86667 for more information.

As a result, VS Code extensions like Zowe Explorer, Zowe Explorer CICS Extension, and Zowe Explorer FTP Extension are not able to
support BiDi languages in files.

Client certificate support
Some Zowe Explorer users prefer to use certificates to access the API Mediation Layer. This can be the case in sites that use credentials
such as passwords and multifactor authentication, which might only be valid for a short period of time. On the other hand, certificates
can be valid for much longer.

Zowe Explorer does not support authenticating to the API ML using client certificates. However, it is possible to use Zowe CLI to
authenticate to the API ML using client certificates and receive a token that Zowe Explorer can use for API ML access.

To use a client certificate to generate an API ML token:

1. Open a command line window and issue the following command:

<APIML Host>

Specifies the API ML host.

<APIML Port>

Specifies the API ML port.

<PEM Public Certificate Path>

Specifies the path for the PEM public certificate.

<PEM Private Certificate Path>

Specifies the path to the PEM private certificate.

Zowe CLI procures a security token from the API ML and adds that token to the base profile in the applicable configuration file.

2. Open Zowe Explorer, or reload it if already open.

https://github.com/microsoft/vscode/issues/86667

Zowe Explorer can access the API ML token in the base profile for authentication.

NOTE

If you have multiple types of configuration files and base profiles, see How configuration files and profiles work together to
learn which configuration and profile would be used to store the API ML token.

Data Set creation error
Symptom:

Data set creation fails.

Sample message:

Error running command zowe.createDataset: z/OSMF REST API Error: http(s) request error event called Error: self signed certificate in
certificate chain. This is likely caused by the extension that contributes zowe.createDataset.

Solution:

Set the value of the Reject-Unauthorized parameter to false . Use the profile edit function to change profile's parameters.

Opening binary files error
Symptom:

When opening a binary file, an error message appears.

Sample messages:

Solution:

There is no solution or workaround at this time.

Theia mainframe connection error
Symptom:

When performing an action that requires a mainframe connection (such as searching for data sets), you get a proxy error.

Sample message:

"z/OSMF REST API Error" that includes the message Failed to establish a socket connection to proxies , as in the following

image:

https://docs.zowe.org/stable/user-guide/cli-using-understand-profiles-configs#how-configuration-files-and-profiles-work-together

Solution:

In Theia settings, search for proxy and change the http.proxySupport setting to off , as in the following image:

Version: v2.17.x LTS

Known Zowe Explorer limitations

Mismatched credentials when using Zowe Explorer and Zowe CLI

Limitation

Mismatching credentials can potentially lock you out from using Zowe CLI and Zowe Explorer in Visual Studio Code with either
Windows Subsystem for Linux (WSL) or Remote Secure Shell (SSH).

WSL allows developers to run a Linux environment on Windows without the need for a separate virtual machine or dual booting.
When using Zowe Explorer with WSL, two parallel processes take place: VS Code runs on the Windows operating system, while code
execution and tooling happen within the Linux environment.

With Remote SSH, the network protocol provides users with a secure connection to a remote computer. When using this protocol with
Zowe Explorer, you can securely connect to a remote machine or a remote development environment.

Both WSL and Remote SSH provide more tools for mainframe developers, but they also have limitations when it comes to credentials.

Authentication information used in Zowe Explorer — such as usernames and passwords, SSH keys, API Mediation Layer tokens —
resides on the developer’s local machine, not the Linux environment or the remote server or virtual machine. This is because credential
storage is managed by VS Code, which stores them using the host's operating system credential manager.

Using the VS Code integrated terminal with virtual machines does not include access to the credentials stored by Zowe Explorer in the
local machine. Zowe CLI, for example, is not able to retrieve credentials saved on a developer’s PC when accessing the mainframe.
Instead, Zowe CLI attempts to use any credentials stored in the virtual machine.

This can lead to confusion and inconsistencies when authenticating and accessing resources.

Workaround

It is crucial to ensure that credentials are carefully managed between the local machine and the remote server to maintain proper
authentication.

To avoid any potential issues (such as being locked out) caused by credential mismatch or discrepancies, credentials in both local and
virtual/remote machines should match.

Version: v2.17.x LTS

Raising a Zowe Explorer issue on GitHub
You can raise GitHub issues against the Zowe Explorer repository. It is suggested that you use either the bug or feature request.

Raising a bug report
Please provide as much of the information listed on Troubleshooting Zowe Explorer as is reasonable. Anyone working on the issue
might need to request this and other information if it is not supplied initially. A description of the error and how it can be reproduced
is the most important information.

Submitting a feature request
Feature requests are just as important to the Zowe project as bug reports. Feature requests should contain clearly formulated ideas
that can improve user experience.

https://github.com/zowe/zowe-explorer-vscode/issues
https://docs.zowe.org/stable/troubleshoot/ze/troubleshoot-ze

Version: v2.17.x LTS

Troubleshooting Zowe Chat
As a Zowe Chat user, you might encounter some issues with how Zowe Chat works. This section lists some solutions to help you.

Check the chatServer.log
When you run into some errors, you can check the server log which can be found in $ZOWE_CHAT_HOME/log/chatServer.log .

Note: You need to set rejectUnauthorized to false in chatServer.yaml to access the log.

Raising a Zowe Chat issue on GitHub
When necessary, you can reach out for troubleshooting support via GitHub. You can raise GitHub issues against the Zowe Chat
repository. You could either use it for a bug report or feature request.

Contacting support via Slack
You can also reach out for support through the Zowe Chat Slack channel.

https://github.com/zowe/zowe-chat
https://openmainframeproject.slack.com/archives/C03NNABMN0J

Version: v2.17.x LTS

Troubleshooting Zowe IntelliJ plug-in
As a Zowe IntelliJ plug-in user, you may encounter problems with how the plug-in functions.

Before reaching out for support,

1. Is there already a GitHub issue (open or closed) that covers the problem? Check Zowe IntelliJ plug-in Issues.

2. Try searching using the Zowe Docs search bar.

When necessary, you can use the Slack channel to reach the Zowe IntelliJ squad for assistance.

https://github.com/zowe/zowe-explorer-intellij/issues
https://openmainframeproject.slack.com/archives/C020BGPSU0M

Version: v2.17.x LTS

Contributing to Zowe
You are welcome to contribute to Zowe in many forms and help make this project better! We want to make it as easy as possible for
you to become a Zowe contributor. This topic outlines the different ways that you can get involved and provides some of the
resources that are available to help you get started. All feedback is welcome.

Report bugs and enhancements

Fix issues

Send a Pull Request

Report security issues

Contribution guidelines

Promote Zowe

Helpful resources

Report bugs and enhancements
Report bugs: Download and try one of the latest Zowe builds. Report any bugs you find by creating a Zowe bug report in GitHub.

Report enhancements: Got an idea for a feature? Or something you're already using could be improved? Post an enhancement
request in GitHub!

Upvote enhancements and bugs: You can show us that an issue matters to you by applying the thumbs-up emoji for a specific
issue. See this link to view the list of issues sorted by the most upvotes. This information is taken into account when planning the
upcoming PI.

If you have an issue that is specific to a sub-project or community team, feel free to submit an issue against a specific repo.

Fix issues
There are many issues and bugs with the label Good first issue in the Zowe GitHub repositories to help you get familiar with

the contribution process. Check out the following list of GitHub repos to make your contribution!

Zowe sub-projects repositories

Zowe operations squads repositories

When you decide to work on an issue, check the comments on that issue to ensure that it's not taken by anyone. If nobody is
working on it, comment on that issue to let others know that you want to work on it to avoid duplicate work. The squad can
assign that issue to you and provide guidance as well.

You can also reach out to the Zowe squads on Slack to check with the squads if there is any good starter issue that you can work
on.

Send a Pull Request
All code in Zowe aligns with the established licensing and copyright notice guidelines.

https://github.com/zowe/community/issues/new?assignees=&labels=bug&template=bug_report.md&title=
https://github.com/zowe/community/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=
https://github.com/zowe/api-layer/issues?q=is%3Aissue+is%3Aopen+sort%3Areactions-%2B1-desc
https://github.com/zowe/
https://github.com/zowe/community/blob/master/README.md#zowe-sub-projects
https://github.com/zowe/community/blob/master/README.md#zowe-operations-squads
https://github.com/zowe/community/blob/master/README.md#slack
https://github.com/zowe/zlc/blob/master/process/LicenseAndCopyrightGuidance.md

Before submitting a Pull Request, review the general Zowe Pull Request Guidelines and make sure that you provide the information
that is required in the Pull Request template in that specific repo.

All Zowe commits need to be signed by using the Developer’s Certificate of Origin 1.1 (DCO), which is the same mechanism that the
Linux® Kernel and many other communities use to manage code contributions. You need to add a Signed-off-by line as a part of

the commit message. Here is an example Signed-off-by line, which indicates that the submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@hisdomain.com>

You can find more information about DCO signoff in the zac repo.

Report security issues
Please direct all security issues to zowe-security@lists.openmainframeproject.org . A member of the security team will reply to

acknowledge receipt of the vulnerability and coordinate remediation with the affected project.

Contribution guidelines
Check out the contribution guidelines for different components and squads to learn how to participate.

Zowe CLI

Zowe API Mediation Layer

Zowe Application Framework

Zowe Explorer

Zowe Client SDKs

Zowe IntelliJ plug-in

Zowe Docs

Promote Zowe
Contribute a blog about Zowe. Read the Zowe blog guidelines to get started.

Present Zowe on conferences and social channels

Helpful resources
General code guidelines

UI guidelines

Zowe learning resources

https://github.com/zowe/community#pull-request-guidelines
https://developercertificate.org/
https://github.com/zowe/zac/blob/master/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md
https://github.com/zowe/api-layer/blob/master/CONTRIBUTING.md
https://github.com/zowe/zlux
https://github.com/zowe/zowe-explorer-vscode/blob/master/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/SDKGuidelines.md
https://github.com/zowe/zowe-explorer-intellij/blob/main/CONTRIBUTING.md
https://docs.zowe.org/stable/contribute/roadmap-contribute/contributing
https://github.com/zowe/community/blob/master/blogging/blog_guidelines.md
https://docs.zowe.org/stable/contribute/roadmap-contribute/guidelines-code/categories
https://docs.zowe.org/stable/contribute/roadmap-contribute/guidelines-ui/ui
https://docs.zowe.org/stable/contribute/getting-started/zowe-resources

Version: v2.17.x LTS

Code categories
The Zowe™ codebase consists of a few key areas, with both unique and shared guidelines that define how to write new code. A few
such areas are:

Server Core

Server Security

Microservices

Zowe Desktop Applications

Zowe Application Framework

Zowe CLI and CLI Plug-ins

Imperative CLI Framework

Programming languages
For each area of the codebase, there are established and favored programming languages. Each repository in Github identifies the
primary language used. Some of the basic skills needed to contribute to the project include:

CLI - Node.js, TypeScript

Desktop UI - Node.js, JavaScript

APIs - C, Assembler, Java, Spring

API Mediation Layer - Java, Spring

Note: JavaScript is not recommended and should be avoided in favor of Typescript to utilize typing.

Component-specific guidelines and tutorials
This "Code Guidelines" section provides high-level best practices. Each component may have more specific contribution guidelines.
Look for a CONTRIBUTING.md file in the component's GitHub repository for specific details.

To learn more about how to develop Zowe applications and plug-ins or extending Zowe with APIs, see Extending.

https://docs.zowe.org/stable/extend/extend-apiml/onboard-overview

Version: v2.17.x LTS

General code style guidelines
All code written in the languages described in Code categories should adhere to the following guidelines to facilitate collaboration
and understanding.

Note: Uncertainties, unimplemented but known future action-items, and odd/specific constants should all be accompanied with a
short comment to make others aware of the reasoning that went into the code.

Whitespaces
Do not use tabs for whitespace. Use 2 spaces per tab instead.

Naming Conventions
Self-documenting code reduces the need for extended code comments. It is encouraged to use names as long as necessary to
describe what is occurring.

Functions and methods

Methods should be named as verbs (for example, get or set), while Objects/Classes should be nouns.

Objects and functions should be CamelCase. Methods on Objects should be dromedaryCase.

Variables

Constants should be CAPITALIZED_AND_UNDERSCORED for clarity, while variables can remain dromedaryCase.

Avoid non-descriptive variable names such as single letters (except for iteration in loops such as i or j) and variable names that have
been arbitrarily shortened (Don't strip vowels; long variable names are OK).

https://docs.zowe.org/stable/contribute/guidelines-code/categories

Version: v2.17.x LTS

Pull requests guidelines
The Zowe™ source code is stored in GitHub repositories under the Zowe GitHub project. You contribute to the project through Pull
Requests in GitHub.

Each pull request is made against a repository that has assigned "maintainers". Pull requests cannot be merged without the approval
of at least one maintainer, who will review Pull Requests to ensure that they meet the following criteria:

The code in the pull request must adhere to the General Code Style Guidelines.

The code must compile/transpile (where applicable) and pass a smoke-test such that the code is not known to break the current
state of Zowe.

The pull request must describe the purpose and implementation to the extent that the maintainer understands what is being
accomplished. Some pull requests need less details than others.

The pull request must state how to test this change, if applicable, such that the maintainer or a QA team can check correctness.
The explanation may simply be to run included test code.

If a pull request depends upon a pull request from the same/another repository that is pending, this must be stated such that
maintainers know in which order to merge open pull requests.

https://github.com/zowe
https://docs.zowe.org/stable/contribute/guidelines-code/general

Version: v2.17.x LTS

Documentation Guidelines
Documentation of Zowe™ comes in various forms depending on the subject being detailed. In general, consider how you can help
end users and contributors through external documentation, in-product help, error messages, etc... and open an issue in zowe/docs-
site if you need assistance.

Contributing to external documentation
The external documentation for the Zowe project, Zowe Docs, is completely open-source. See How to contribute for more information
about contributing to the documentation.

Consider: Release Notes, Install/Config/User Guides, Developer Tutorials, etc...

Component Categories
Provide the following documentation depending on the component that you contribute to:

Server Core

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs site. Code
documentation follows language-specific formats.

Server Security

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs site. Code
documentation follows language-specific formats.

Microservices

Microservices implement a web API, and therefore must be documented for understanding and testing. These web APIs must be
accompanied with documentation in the Swagger (https://swagger.io/) format. These documents must be Swagger 2.0, .yaml

extension files. Zowe Application Framework plug-ins that implement microservices should store these files within the /doc/swagger
folder.

Zowe Desktop Applications

Zowe Desktop applications should include documentation that explains how to use them, such that this documentation can integrate
with a Zowe Desktop documentation reader. This is not strictly API documentation, but rather user guides that can display within the
Desktop GUI. The preferred documentation format is a .md extension file that exists in the /doc/guide folder of an App.

Web Framework

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on Zowe Docs site. Code
documentation follows language-specific formats.

https://github.com/zowe/docs-site
https://docs.zowe.org/
https://docs.zowe.org/stable/contribute/contributing
https://swagger.io/

CLI Plugins

Provide a readme.md file for developers (overview, build, test) as well as end-user documentation for your plug-in on Zowe Docs site.

For more information, see the CLI documentation contribution guidelines.

Core CLI Imperative CLI Framework

Contributions that affect end users of the CLI should be documented on Zowe Docs site.

Contributions that affect the underlying Imperative CLI Framework should be documented in the GitHub Wiki for future developers
using the framework.

Code documentation follows language-specific formats.

Programming Languages
Each of the common languages in Zowe have code-documentation-generation tools, each with their own in-code comment style
requirements to adhere to in order to generate readable API references. Objects and functions of interest should be commented in
accordance to the language-specific tools to result in output that serves as the first point of documentation for APIs.

Typescript

When writing TypeScript code, comment objects and functions in compliance with JSDoc. If you are writing in an area of the codebase
that does not yet have a definition file for JSDoc, define a configuration file that can be used for future documentation of that code.

Java

When writing TypeScript code, comment objects and functions in the Javadoc format.

C

When writing C code, comment functions and structures in compliance with Doxygen.

https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md#documentation-guidelines
https://github.com/zowe/imperative/wiki
https://jsdoc.app/

Version: v2.17.x LTS

UI Guidelines

Introduction
This style guide is the visual language that represents Zowe™. It is a living document that will be updated based on the needs of our
users and software requirements.

Clear
Our users rely on our software to help them be efficient in their work. The interfaces and experiences that we design should be clear
so that there is never confusion about where to click or how to take the next step. Users should always feel confident in their actions.

Consistent
Users should be able to look at Zowe software products and know that they are in a family. Each software product is different, but
should use similar patterns, icons, and interactions. If a user switches to a new product within Zowe, it should feel familiar.

Smart
Our users are intelligent, and they need smart software. Zowe design patterns should always compliment the user’s intelligence and
reflect the user’s complex work environment. Designs should align with the Zowe design language by putting the human needs of the
user first.

Version: v2.17.x LTS

Colors
Color brings a design to life. Color is versatile; it's used to express emotion and tone, as well as place emphasis and create
associations. Color should always be used in meaningful and intentional ways to create patterns and visual cues.

Color palette
The Zowe™ color palette is designed and implemented in a theme-able manner. The universal color variables are determined by
common roles and usage; it is not based singularly on a color value (i.e. unique hex code). The same color value might be assigned to
multiple variables in a theme's palette when the values have distinctly different roles.

A universal variable can also have multiple associated roles when the color is consistently used across those roles. This allows for
uniform color application across themes, while giving each theme the freedom to express its own individuality at a more detailed level.

Light theme

Dark theme

Color contrast | WCAG AA standards
Type colors

All type color combinations on Zowe must pass WCAG AA standards of 4.5:1 for normal text and 3:1 for large text. For larger text,
if the font weight is light (300) or normal (400) the text should be no smaller than 24px. If the font weight is Semi-Bold (600) then
the large text should be no smaller than 19px.

Body Text (4.5:1)

Large Text (3:1): at least 24px / 19px semi-bold

WCAG guidelines: https://www.w3.org/WAI/standards-guidelines/wcag/

Contrast Checker Tool: https://webaim.org/resources/contrastchecker/

https://www.w3.org/WAI/standards-guidelines/wcag/
https://webaim.org/resources/contrastchecker/

Version: v2.17.x LTS

Typography
Typography is used to create clear hierarchies, useful organizations, and purposeful alignments that guide users through the product
and experience. It is the core structure of any well designed interface.

Typeface
Title typeface: Roboto Condensed

Body typeface: Roboto

Sample:

Font weight
Font weight is an important typographic style that can add emphasis and is used to differentiate content hierarchy. Font weight and
size pairings must be carefully balanced. A bold weight will always have more emphasis than a lighter weight font of the same size.
However, a lighter weight font can rank hierarchically higher than a bold font if the lighter weight type size is significantly larger than
the bold.

Roboto font family provides a wide range of weights. However, only SemiBold, Regular, Light should be used for product design.

Font-weight: 300 / Light

Should only be used at sizes greater than or equal to 18px / 1.125rem

Font-weight: 400 / Normal

Font-weight: 500 / Semi-bold

Body copy
We recommended that you use two sizes for body copy. The first size is UI specific. To maximize screen real estate we chose a smaller
14px / 0.875rem body copy size for the standard UI console. However, for areas that have prolonged reading, such as Documentation,
we use a larger body copy size of 16px / 1rem to enhance readability.

Line scale
1.333 Perfect Fourth-type scale - desktop

1.2 Minor Third type-scale - mobile

Line-height
Line-height, traditionally known as leading, is one of several factors that directly contribute to readability and pacing of copy. Line-
heights are based on the size of the font itself. Ideal line-heights for standard copy have a ratio of 1:1.5 (typesize : line-height). For
example, a type at 16px / 1rem would have a line-height of 1.5rem / 24px (16 x 1.5). The exception to this rule are headings, which
need less spacing and therefore have a line-height ratio of 1:1.25.

Embed font
To embed your selected fonts into a web page, copy the following code into the <head> of your HTML document:

Import font

Specify in CSS

Use the following CSS rules to specify these families:

Version: v2.17.x LTS

Grid
Grid systems are used for creating page layouts through a series of rows and columns that house your content. Zowe™ uses a
responsive, mobile-first, fluid grid system that appropriately scales up to 12 columns as the device or view port size increases.

12 column grid
A 12 column grid is recommended. 12 is a well-distributed division that provides a good range of widths to assign to content. It is
dividable by 2, 3, 4 and 6, which allows flexibility. Many frameworks, such as Bootstrap and Pure, use a 12 column grid by default.
Other grid systems like a 5 column grid can reduce flexibility, balance, and consistency.

Gutters
Columns create gutters (gaps between column content) through padding. For devices with a screen width greater than 768px, the
column padding is 20px. For devices with a screen width less than 768px, the column padding is 10px.

Screen width ≥ 768px = 20px gutters

Screen width 768px = 10px gutters

Columns
Zowe designs should be limited to 12 columns. If designers feel that they need fewer columns in their grid, they can specify the
number of 12 available columns they wish to span.

This can translate to percentages of the twelve columns. Using this method, a designer can create a folded, less granular grid. For
example, if your component spans three equal columns, that is equal to 25% of twelve columns.

Column count: 12

Margins
The 12 column grid does not have a maximum width. It has a width of 100%, with built in margins that create padding between
column count and the edges of the viewport.

In devices with a screen width greater than 768px, the margins are 5% on the left, and 5% on the right.

In devices with a screen width less than 768px, the margins are 3% on the left, and 3% on the right.

Example: Screen Width > 768px

5% left = 38px (rounded to nearest whole pixel) 5% right = 38px (rounded to nearest whole pixel) 12 columns + gutters = 768px -
38px - 38px = 692px (rounded to nearest whole pixel)

Example: Screen Width 320px

3% left = 10px (rounded to nearest whole pixel) 3% right = 10px (rounded to nearest whole pixel) 12 columns + gutters = 320px -
10px - 10px = 300px (rounded to nearest whole pixel)

Version: v2.17.x LTS

Iconography
Icons are key component for a successful UI design because they are a visual way to help add meaning to elements.

Font Awesome is a robust icon library that allows for an easy addition to any web project. Scalable vector icons that can instantly be
customized — size, color, drop shadow, and anything that can be done with the power of CSS.

One Font, Hundreds of Icons – In a single collection, Font Awesome is a pictographic language of web-related actions.

No JavaScript Required – Fewer compatibility concerns because Font Awesome doesn’t require JavaScript.

Infinite Scalability – Scalable vector graphics means every icon looks awesome at any size.

Free, as in Speech – Font Awesome is completely free for commercial use. Check out the license.

CSS Control – Easily style icon color, size, shadow, and anything that’s possible with CSS.

Perfect on Retina Displays – Font Awesome icons are vectors, which mean they’re gorgeous on high-resolution displays.

Plays Well with Others – Originally designed for Bootstrap, Font Awesome works great with all frameworks.

Desktop Friendly – To use on the desktop or for a complete set of vectors, check out the cheatsheet.

Accessibility-minded – Font Awesome loves screen readers and helps make your icons accessible on the web.

https://fontawesome.com/

To learn more or download the library go to www.fontawesome.com

http://www.fontawesome.com/

Version: v2.17.x LTS

Application icon

General rules
Embrace simplicity. Use a simple, unique shape or element that represents the essence of the application. Avoid excessive details and
redundant shading.

Use the Zowe™ color palette. Avoid using a monochromatic palette for your icons. Use the Zowe color palette to ensure that the
icons have a consistent look.

Use unique shapes and design elements. Avoid using single commonly used design elements, such as the gear, document, or folder.
These elements can reduce recognizability. Do not use photos and screenshots. Keep icons simple and abstract.

Avoid labels and text. Short, commonly used abbreviations are acceptable, if necessary. Remember that all icons have center-aligned
labels beneath them.

Use brand identity. If your Zowe application has a brand identity element such as a logo, you can use it. Remember to include the
copyright symbol.

Shape, size, and composition
Use a flat design style. Flat design focuses on open space, bright colors, and flat graphics or illustrations. Our minimalistic design
approach puts the emphasis on usability.

A flat icon has clean, crisp edges and a flat dimensional layout.

Use solid fill shapes. Most Zowe App icons have solid fill shapes, which are more readable on dark backgrounds.

Use the circle shape for the background application icons. Set the outer corners to 100% opacity. Create an image file that is 87x87
pixels, and save the file in PNG format.

Maintain consistent visual proportions.

Colors and shades

Verify the contrast

Verify that the background color of the icon provides enough contrast against the desktop.

Use the Zowe palette

To ensure that your app icons are clear and consistent, use the Zowe color palette. If you need to use well-established brand identity
elements, you can use the colors that are associated with the brand.

Layer Shadows

Use smooth shadows to represent that some elements are on different layers and should be visually separated. Avoid using too many
layers because they can overcomplicate the icon.

https://docs.zowe.org/stable/contribute/guidelines-ui/colors#color-palette

Use the long shadow for consistency.

Although the long shadow effect does not have any semantic meaning, it adds focus to the main icon shape and identifies the
central,most meaningful element.

Use the gradient shadow settings shown in the following image, or use a flat non-gradient shadow with 20% opacity and #000000
color.

Version: v2.17.x LTS

Contributing to Zowe Documentation
You are welcome to contribute to the Zowe™ documentation repository. Anyone can open an issue about documentation, or
contribute a change with a pull request (PR) to the zowe/docs-site GitHub repository.

Before You Get Started
Before contributing a documentation change to the repository, you should be familiar with:

Git and GitHub: To learn about git and GitHub, refer to the Github Guides.

Slack: The Zowe Documentation team communicates using the Slack application. To learn about Slack, refer to the Slack Help
Center. The Zowe team is part of the Open Mainframe Project channel.

Markdown Language: The Zowe documentation is written in Markdown language. To learn about Markdown, refer to The
Markdown Guide.

In addition to being familiar with the Zowe community and how we work together, you will need to sign the CNCF Contributor License
Agreement. The Contributor License Agreement defines the terms under which you contribute to Zowe documentation. Contributions
to Zowe documentation are reviewed before being committed to the repository. Committing changes to the Zowe repository requires
additional access rights. See https://github.com/zowe/community/blob/master/COMMITTERS.md. Also see Participating in Zowe
Documentation for more details about roles and permissions.

Getting started checklist
If you are ready to get started contributing to the Zowe Documentation repository:

Verify that you are familiar with the concepts in Before You Get Started.

Familiarize yourself with the Zowe documentation repository.

Verify that you can open a pull request and review changes.

Open an issue for Zowe documentation if you find a problem.

Read the documentation style guide.

The Zowe documentation repository
The Zowe documentation is managed in a GitHub repository.

Review the site's overall organization and structure

Review the help files related to your planned changes or addition

Sending a GitHub Pull Request
You can provide suggested edits to any documentation page by using the Edit this page link on top of each page. After you make the
changes, you submit updates in a pull request for the Zowe documentation team to review and merge.

https://github.com/zowe/docs-site/
https://guides.github.com/
https://slack.com/help
https://openmainframeproject.slack.com/
https://www.markdownguide.org/
https://github.com/zowe/community/blob/master/COMMITTERS.md
https://github.com/zowe/docs-site

Follow these steps:

1. Click Edit this page on the page that you want to update.

2. Make the changes to the file.

3. Scroll to the end of the page and enter a brief description about your change.

4. Optional: Enter an extended description.

5. Select Propose file change.

6. Select Create pull request.

Opening an issue for Zowe documentation
You can request the documentation to be improved or clarified, report an error, or submit suggestions and ideas by opening an issue
in GitHub for the Zowe documentation team to address. The team tracks the issues and works to address your feedback.

Follow these steps:

1. Click the Open doc issue link at the top of the page.

2. Enter the details of the issue.

3. Click Submit new issue.

Documentation style guide
This section gives writing style guidelines for the Zowe documentation.

Headings and titles

Use sentence-style capitalization for headings

Capitalize only the initial letter of the first word in the text and other words that require capitalization, such as proper nouns. Examples
of proper nouns include the names of specific people, places, companies, languages, protocols, and products.

Example: Verifying that your system meets the software requirements.

For tasks and procedures, use gerunds for headings

Example:

Building an API response

Setting the active build configuration

For conceptual and reference information, use noun phrases for headings

Example:

Query language

Platform and application integration

Use headline-style capitalization for only these items

Titles of books, CDs, videos, and stand-alone information units.

Example:

Installation and User's Guide

Quick Start Guides or discrete sets of product documentation

Technical elements

Variables

Style:

Italic when used outside of code examples,

Example: myHost

If wrap using angle brackets <> within code examples, italic font is not supported.

Example:

put <pax-file-name>.pax

Where pax-file-name is a variable that indicates the full name of the PAX file you download. For example, zoe-0.8.1.pax.

Message text and prompts to the user

Style: Put messages in quotation marks.

Example: "The file does not exist."

Code and code examples

Style: Monospace

Example: java -version

Command names, and names of macros, programs, and utilities that you can type as commands

Style: Monospace

Example: Use the BROWSE command.

Interface controls

Categories: check boxes, containers, fields, folders, icons, items inside list boxes, labels (such as Note:), links, list boxes, menu choices,
menu names, multicolumn lists, property sheets, push buttons, radio buttons, spin buttons, and Tabs

Style: Bold

Example: From the Language menu, click the language that you want to use. The default selection is English.

Directory names

Style: Monospace

Example: Move the install.exe file into the newuser directory.

File names, file extensions, and script names

Style: Monospace

Example:

Run the install.exe file.

Extract all the data from the .zip file.

Search or query terms

Style: Monospace

Example: In the Search field, enter Zowe .

Citations that are not links

Categories: Chapter titles and section titles, entries within a blog, references to industry standards, and topic titles in IBM Knowledge
Center

Style: Double quotation marks

Example:

See the "Measuring the true performance of a cloud" entry in the blog.

For installation information, see "Installing the product".

Tone

Use simple present tense rather than future or past tense, as much as possible

Example:

✔️ The API returns a promise.

❌ The API will return a promise.

Use simple past tense if past tense is needed

Example:

✔️ The limit was exceeded.

❌ The limit has been exceeded.

Use active voice as much as possible

Example:

✔️ In the Limits window, specify the minimum and maximum values.

❌ The Limits window is used to specify the minimum and maximum values.

Exceptions: Passive voice is acceptable when any of these conditions are true:

The system performs the action.

It is more appropriate to focus on the receiver of the action.

You want to avoid blaming the user for an error, such as in an error message.

The information is clearer in passive voice.

Example:

✔️ The file was deleted.

❌ You deleted the file.

Using second person such as "you" instead of first person such as "we" and "our"

In most cases, use second person ("you") to speak directly to the reader.

End sentences with prepositions selectively

Use a preposition at the end of a sentence to avoid an awkward or stilted construction.

Example:

✔️ Click the item that you want to search for.

❌ Click the item for which you want to search.

Avoid anthropomorphism

Focus technical information on users and their actions, not on a product and its actions.

Example:

✔️ User focus: On the Replicator page, you can synchronize your local database with replica databases.

❌ Product focus: The Replicator page lets you synchronize your local database with replica databases.

Avoid complex sentences that overuse punctuation such as commas and semicolons.

Release notes

Release notes should be written in a consistent style that is easy to read and provides relevant information to users.

To help ensure these best practices are followed, see CHANGELOG and release notes formatting and Writing style for release notes
entries.

Word usage and punctuation

Note headings such as Note, Important, and Tip should be formatted using the lower case and bold format

Examples:

Note:

Important!

Tip:

Use of "following"

For whatever list or steps we are introducing, the word "following" should precede a noun.

Examples:

Before a procedure, use "Follow these steps:"

The <component_name> supports the following use cases:

Before you install Zowe, review the following prerequisite installation tasks:

Avoid ending the sentence with "following".

Examples:

✔️ Complete the following tasks.

❌ Complete the following.

Use a consistent style for referring to version numbers

When talking about a specific version, capitalize the first letter of Version.

Examples:

✔️ Java Version 8.1 or Java V8.1

❌ Java version 8.1, Java 8.1, or Java v8.1

When just talking about version, use "version" in lower case.

Example: Use the latest version of Java.

Avoid "may"

Use "can" to indicate ability, or use "might" to indicate possibility.

Examples:

Indicating ability:

https://github.com/zowe/docs-site/blob/master/release-handbook/release_notes_guide.md#changelog-and-release-notes-formatting
https://github.com/zowe/docs-site/blob/master/release-handbook/release_notes_guide.md#writing-style-for-release-notes-entries

✔️ You can use the command line interface to update your application."

❌ "You may use the command line interface to update your application."

Indicating possibility:

✔️ "You might need more advanced features when you are integrating with another application. "

❌ "You may need more advanced features when you are integrating with another application."

Use "issue" when you want to say "run"/"enter" a command

Example: At a command prompt, issue the following command:

Use of slashes

Avoid spaces when using a slash in between words.

Examples:

Indicating or (on/off), and or (document/file), per (millions of instructions/second):

✔️ Save the document/file in your desktop folder.

❌ Save the document / file in your desktop folder.

Punctuation in lists

Use punctuation (periods, commas) in bulleted and numbered lists when appropriate. Do not use conjunctions (and, or) to separate
list items.

Use periods for list items when the items are complete sentences, or the introductory text is a sentence fragment and each item completes the
sentence

Examples:

✔️ You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

Order the SMP/E edition through your IBM representative if that is your standard way to order IBM software.

Order the SMP/E edition through IBM Shopz with optional paid support available.

Download PAX file format at ibm.com/products/sdk-nodejs-compiler-zos. IBM defect Support is not available for this format.

❌ Through customization, you can change attributes such as:

Enabling or disabling components so you only run what you need

Changing the network ports Zowe runs on to suit your environment

Customizing the behavior of a component, such as turning on optional features or logging

Use periods for list items when the items are complete sentences, or the introductory text is a sentence fragment and each item completes the
sentence

Examples:

✔️ You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

Order the SMP/E edition through your IBM representative if that is your standard way to order IBM software.

Order the SMP/E edition through IBM Shopz with optional paid support available.

Download PAX file format at ibm.com/products/sdk-nodejs-compiler-zos. IBM defect Support is not available for this format.

❌ Through customization, you can change attributes such as:

Enabling or disabling components so you only run what you need

Changing the network ports Zowe runs on to suit your environment

Customizing the behavior of a component, such as turning on optional features or logging

Do not use punctuation or conjunctions (and, or) in bullet lists when the list items are not complete sentences, when the bullet item has three
or fewer words, or when the bullet items are UI labels, headings, strings, or similar

Examples:

✔️ The z/OSMF configuration process occurs in three stages, and in the following order:

Security setup

Configuration

Server initialization

❌ The Zowe runtime, which consists of a number of components including:

Zowe Application Framework.

Zowe API Mediation Layer.

Z Secure Services (ZSS).

Do not use conjuctions (and, or) in bullet lists

Examples:

✔️ Integrated development environments:

VS Code 1.53.2+

Eclipse Che

Red Hat CodeReady Workspaces

Theia 1.18+

❌ Before continuing with the installation, you should be familiar with the following topics:

Zowe's hardware and software requirements, and

The zwe utility used for installing, configuring, and managing Zowe, and

The configuration file used for Zowe, zowe.yaml .

Punctuation in numbered lists

Abbreviations

Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the spelled-out form of the
term

Examples:

✔️ The tutorials are available as PDF files.

❌ The tutorials are available as PDFs. [portable document formats]

Do not use abbreviations as verbs

Examples:

✔️ You can use the FTP command to send the files to the server.

❌ You can FTP the files to the server.

Do not use Latin abbreviations

Use their English equivalents instead. Latin abbreviations are sometimes misunderstood.

Latin English equivalent

e.g. for example

etc.
and so on.
When you list a clear sequence of elements such as "1, 2, 3, and so on" and "Monday, Tuesday, Wednesday, and so on."
Otherwise, rewrite the sentence to replace "etc." with something more descriptive such as "and other output."

i.e. that is

Spell out the full name and its abbreviation when the word appears for the first time. Use abbreviations in the texts that
follow

Example: Mainframe Virtual Desktop (MVD)

Structure and format

Add "More information" to link to useful resources or related topics at the end of topics where necessary.

Word usage

The following table alphabetically lists the common used words and their usage guidelines.

Do Don't

application app

Capitalize "Server" when it's part of the product name

file name filename (unless it's a property written as one word)

Java java

keyboard shortcut hotkey

IBM z/OS Management Facility (z/OSMF)
z/OSMF

zosmf (unless used in syntax)

ID id

PAX pax

personal computer
PC
server

machine

later
higher
Do not use to describe versions of software or fix packs.

macOS MacOS

Node.js
node.js
Nodejs

plug-in plugin

REXX Rexx

UNIX System Services
z/OS UNIX System Services

USS

zLUX
ZLUX
zLux

Version: v2.17.x LTS

Zowe CLI command reference guide
View detailed documentation on commands, actions, and options in Zowe CLI. You can read an interactive online version, download a
PDF document, or download a ZIP file containing the HTML for the online version.

Currently, this reference documentation only contains the web help for the Zowe CLI core component and CLI plug-ins maintained by
Zowe. As third-party plug-ins are approved under the Zowe V2 LTS Conformance Program and contribute their web help to Zowe, we
will update the documentation accordingly. To view the web help for V1 conformant plug-ins, click the version drop-menu on the top
right corner of this page and click the link to any previous v1.xx.x version of this page.

Browse online

Download CLI reference in PDF format

Download CLI reference in ZIP format

https://docs.zowe.org/stable/web_help/index.html
https://docs.zowe.org/stable/CLIReference_Zowe.pdf
https://docs.zowe.org/stable/zowe_web_help.zip

Version: v2.17.x LTS

Zowe API reference
Find and learn about the Zowe APIs that you can use.

REST API for the Data sets and z/OS Unix Files Services

REST API for the API Gateway service

REST API for the JES Jobs Service

REST API for ZLUX Plug-in

REST API for ZSS

https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/datasets.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/gateway.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/jobs.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/zlux-plugin.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/swagger-zss.json

Version: v2.17.x LTS

ZWE Server Command Reference
zwe is the management utility for Zowe server components.

It is a Unix command that is installed via a download of the Zowe server components.

When installed, you can find it within the zowe runtime directory's "bin" subdirectory.

This command can be accessed directly from that location, or you can save that location to your Unix PATH environment variable so
that it's accessible at all times just by typing zwe .

zwe has several useful features, and more are added often.

Using the zwe command

With the zwe command you can:

Install/initialize a Zowe instance

Install/upgrade Zowe extensions

Validate the configuration against a schema

Diagnose a message

Collect support information

Accessing zwe help

Every zwe subcommand, and the zwe command itself, has built-in help that is accessible by adding --help to the command.

To access the help content:

The built-in help goes over the following topics:

What the current command does

What subcommands exist

What parameters exist

Example uses of the current command

This zwe command reference includes the same content as the built-in help. In the sections that follow, you can find all zwe help

information.

Version: v2.17.x LTS

zwe
zwe

zwe [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
certificate

components

config

diagnose

init

install

internal

migrate

sample

start

stop

support

version

Description
A command line utility helps you managing Zowe instance.

You can issue --help or -h to find information for all commands it supports.

Examples

Parameters

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-diagnose
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe-migrate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-stop
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-version

Full name Alias Type Required Help message

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

Error code
Exit
code

Error message

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate keyring-jcl clean
zwe > certificate > keyring-jcl > clean

zwe certificate keyring-jcl clean [parameter [parameter]...]

Description
Remove Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--ds-prefix string yes Dataset prefix where Zowe is installed.

--jcllib string yes JCLLIB data set name where the JCL will be placed.

--security-dry-run boolean no Whether to dry run security related setup.

--security-product string no Security product. Can be a value of RACF, ACF2 or TSS.

--keyring-owner string yes Owner of the keyring.

--keyring-name string yes Name of the keyring.

--alias -a string yes Certificate alias name.

--ca-alias -ca string yes Certificate authority alias name.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean/zwe-certificate-keyring-jcl-clean

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0176E 176 Failed to clean up Zowe keyring "%s".

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit
code

Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

Error code
Exit
code

Error message

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate keyring-jcl connect
zwe > certificate > keyring-jcl > connect

zwe certificate keyring-jcl connect [parameter [parameter]...]

Description
Connect existing certificate to Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--
ds-prefix

string yes Dataset prefix where Zowe is installed.

--jcllib string yes JCLLIB data set name where the JCL will be placed.

--security-dry-run boolean no Whether to dry run security related setup.

--security-product string no Security product. Can be a value of RACF, ACF2 or TSS.

--keyring-owner string yes Owner of the keyring.

--keyring-name string yes Name of the keyring.

--trust-cas string no
Labels of extra certificate authorities should be trusted, separated by
comma (Maximum 2).

--connect-user string yes Certificate owner. Can be SITE or a user ID.

--connect-label string yes Certificate label to connect.

--trust-zosmf boolean no Whether to trust z/OSMF CA.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-connect/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-connect/zwe-certificate-keyring-jcl-connect

Full name Alias Type Required Help message

--zosmf-ca string no
Labels of z/OSMF root certificate authorities. Specify _auto_ to let Zowe

to detect automatically. This works for RACF and TSS.

--zosmf-user string no
z/OSMF user name. This is used to automatically detect z/OSMF root
certificate authorities.

--ignore-security-
failures

boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0175E 175 Failed to connect existing certificate to Zowe keyring "%s".

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

Error code
Exit
code

Error message

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit
code

Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate keyring-jcl generate
zwe > certificate > keyring-jcl > generate

zwe certificate keyring-jcl generate [parameter [parameter]...]

Description
Generate new set of certificate in Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--
ds-prefix

string yes Dataset prefix where Zowe is installed.

--jcllib string yes JCLLIB data set name where the JCL will be placed.

--security-dry-run boolean no Whether to dry run security related setup.

--security-product string no Security product. Can be a value of RACF, ACF2 or TSS.

--keyring-owner string yes Owner of the keyring.

--keyring-name string yes Name of the keyring.

--domains -d string yes
Domain and IP for the certificate separated by comma. (Please note
RACDCERT is limited to only have one domain and one IP.)

--alias -a string yes Certificate alias name.

--ca-alias -ca string yes Certificate authority alias name.

--common-name -cn string no Common name of certificate and certificate authority.

--org-unit string no Organization unit of certificate and certificate authority.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-generate/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-generate/zwe-certificate-keyring-jcl-generate

Full name Alias Type Required Help message

--org string no Organization of certificate and certificate authority.

--locality string no Locality of certificate and certificate authority.

--state string no State of certificate and certificate authority.

--country string no Country of certificate and certificate authority.

--validity string no Validity days of certificate.

--trust-cas string no
Labels of extra certificate authorities should be trusted, separated by
comma (Maximum 2).

--trust-zosmf boolean no Whether to trust z/OSMF CA.

--zosmf-ca string no
Labels of z/OSMF root certificate authorities. Specify _auto_ to let Zowe
to detect automatically. This works for RACF and TSS.

--zosmf-user string no
z/OSMF user name. This is used to automatically detect z/OSMF root
certificate authorities.

--ignore-security-
failures

boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0174E 174 Failed to generate certificate in Zowe keyring "%s".

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit
code

Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate keyring-jcl import-ds
zwe > certificate > keyring-jcl > import-ds

zwe certificate keyring-jcl import-ds [parameter [parameter]...]

Description
Import certificate stored in MVS data set into Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--
ds-prefix

string yes Dataset prefix where Zowe is installed.

--jcllib string yes JCLLIB data set name where the JCL will be placed.

--security-dry-run boolean no Whether to dry run security related setup.

--security-product string no Security product. Can be a value of RACF, ACF2 or TSS.

--keyring-owner string yes Owner of the keyring.

--keyring-name string yes Name of the keyring.

--alias -a string yes Certificate alias name.

--trust-cas string no
Labels of extra certificate authorities should be trusted, separated by
comma (Maximum 2).

--trust-zosmf boolean no Whether to trust z/OSMF CA.

--zosmf-ca string no
Labels of z/OSMF root certificate authorities. Specify _auto_ to let Zowe

to detect automatically. This works for RACF and TSS.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-import-ds/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-import-ds/zwe-certificate-keyring-jcl-import-ds

Full name Alias Type Required Help message

--zosmf-user string no
z/OSMF user name. This is used to automatically detect z/OSMF root
certificate authorities.

--import-ds-name string yes Name of the data set holds certificate to import into keyring.

--import-ds-
password

string yes Password of the data set holds certificate to import.

--ignore-security-
failures

boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0173E 173 Failed to import certificate to Zowe keyring "%s".

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

Error code
Exit
code

Error message

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

Error code
Exit
code

Error message

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate keyring-jcl
zwe > certificate > keyring-jcl

zwe certificate keyring-jcl [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
clean

connect

generate

import-ds

Description
Manage z/OS Keyring with JCL.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-connect
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-generate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-import-ds

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

Error code
Exit
code

Error message

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate pkcs12 create ca
zwe > certificate > pkcs12 > create > ca

zwe certificate pkcs12 create ca [parameter [parameter]...]

Description
Create a new PKCS12 format certificate authority.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no Allow overwritten existing MVS data set.

--alias -a string yes Certificate authority alias name.

--password -p string yes Password of the certificate authority keystore.

--common-name -cn string no Common name of certificate authority.

--org-unit string no Organization unit of certificate authority.

--org string no Organization of certificate authority.

--locality string no Locality of certificate authority.

--state string no State of certificate authority.

--country string no Country of certificate authority.

--validity string no Validity days of certificate authority.

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-ca/zwe-certificate-pkcs12-create
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-ca/zwe-certificate-pkcs12-create-ca

Full name Alias Type Required Help message

--keystore-dir -d string yes Keystore directory.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten during configuration.

ZWEL0158E 158 %s already exists.

ZWEL0168E 168 Failed to create certificate authority %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit
code

Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

Error code
Exit
code

Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate pkcs12 create cert
zwe > certificate > pkcs12 > create > cert

zwe certificate pkcs12 create cert [parameter [parameter]...]

Description
Create a new PKCS12 format certificate.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

--keystore -k string yes PKCS12 keystore name.

--alias -a string yes Certificate alias name.

--password -p string yes Password of the certificate keystore.

--common-name -cn string no Common name of certificate.

--domains -d string no Domain list of certificate Subject Alternative Name (SAN).

--ca-alias string yes
Alias name of the certificate authority which is used to sign
CSR.

--ca-password string yes
Password of the certificate authority keystore which is used
to sign CSR.

--org-unit string no Organization unit of certificate.

--org string no Organization of certificate.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-cert/zwe-certificate-pkcs12-create
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-cert/zwe-certificate-pkcs12-create-cert

Full name Alias Type Required Help message

--locality string no Locality of certificate.

--state string no State of certificate.

--country string no Country of certificate.

--validity string no Validity days of certificate.

--key-usage string no Key usage of certificate.

--extended-key-usage string no Extended key usage of certificate.

Inherited from parent command

Full name Alias Type Required Help message

--keystore-dir -d string yes Keystore directory.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten during configuration.

ZWEL0158E 158 %s already exists.

ZWEL0169E 169 Failed to create certificate "%s".

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit
code

Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate pkcs12 create
zwe > certificate > pkcs12 > create

zwe certificate pkcs12 create [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
ca

cert

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore-dir -d string yes Keystore directory.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create/zwe-certificate-pkcs12-create
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-ca
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-cert

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

Error code
Exit
code

Error message

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate pkcs12 export
zwe > certificate > pkcs12 > export

zwe certificate pkcs12 export [parameter [parameter]...]

Description
Export PKCS12 keystore as PEM files.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore -f string yes PKCS12 keystore file name.

--password -p string yes Password of the certificate keystore.

--private-keys string no Private keys should also be exported.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-export/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-export/zwe-certificate-pkcs12-export

Full name Alias Type Required Help message

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0178E 178 Failed to export PKCS12 keystore %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit
code

Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate pkcs12 import
zwe > certificate > pkcs12 > import

zwe certificate pkcs12 import [parameter [parameter]...]

Description
Import certificate and/or certificate authorities into PKCS12 keystore.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore -f string yes Destination PKCS12 keystore file name.

--password -p string yes Password of the destination PKCS12 keystore.

--alias -a string no
Alias in the destination PKCS12 keystore after imported.\nRequired if --source-
alias is specified.

--source-
keystore

-sf string no Source PKCS12 keystore file name.

--source-
password

-sp string no Password of the source PKCS12 keystore.

--source-alias -sa string no Private keys should also be exported.

--trust-cas string no
PEM files of extra certificate authorities should be trusted, separated by
comma.

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-import/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-import/zwe-certificate-pkcs12-import

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0179E 179 Failed to import certificate (authorities) into keystore %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit
code

Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

Error code
Exit
code

Error message

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate pkcs12 lock
zwe > certificate > pkcs12 > lock

zwe certificate pkcs12 lock [parameter [parameter]...]

Description
This command will lock the keystore directory to only be accessible by specified user group.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore-dir -d string yes Keystore directory.

--user string yes Owner of the keystore directory.

--group string yes Group of the keystore directory.

--group-permission string no Group permission. Can be <empty> for no permission, or read , write .

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-lock/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-lock/zwe-certificate-pkcs12-lock

Full name Alias Type Required Help message

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0177E 177 Failed to lock keystore directory %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

Error code
Exit
code

Error message

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate pkcs12 trust-service
zwe > certificate > pkcs12 > trust-service

zwe certificate pkcs12 trust-service [parameter [parameter]...]

Description
This command can detect and trust any service by importing the certificate into truststore.

NOTE: the service must be online and accessible.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--service-name -n string yes Service name.

--keystore-dir -d string yes Keystore directory.

--keystore -k string yes PKCS12 keystore name.

--password -p string yes Password of the certificate keystore.

--host string yes Host name of the service.

--port string yes Port of the service.

--alias -a string yes Certificate alias name for the imported the certificate.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-trust-service/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-trust-service/zwe-certificate-pkcs12-trust-service

Full name Alias Type Required Help message

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten during configuration.

ZWEL0170E 170 Failed to trust service "%s".

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit
code

Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

Error code
Exit
code

Error message

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate pkcs12
zwe > certificate > pkcs12

zwe certificate pkcs12 [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
create

export

import

lock

trust-service

Description

Manage PKCS12 format keystore and truststore.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-export
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-import
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-lock
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-trust-service

Full name Alias Type Required Help message

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit
code

Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate verify-service
zwe > certificate > verify-service

zwe certificate verify-service [parameter [parameter]...]

Description
This command can verify if the service certificate is valid by checking the certificate Common Name (CN) and Subject Alternate Name
(SAN).

NOTE: the service must be online and accessible.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--host string yes Host name of the service.

--port string yes Port of the service.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate-verify-service/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate-verify-service/zwe-certificate-verify-service

Full name Alias Type Required Help message

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0171E 171 Failed to verify certificate (CN and SAN) of service "%s".

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit
code

Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe certificate
zwe > certificate

zwe certificate [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
keyring-jcl

pkcs12

verify-service

Description
Set of commands to help you manage certificates.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate/zwe-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate-verify-service

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit
code

Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components install extract
zwe > components > install > extract

zwe components install extract [parameter [parameter]...]

Description
Extract module package and lay down to target directory.

NOTE: this sub-command will be automatically executed by zwe components install , so usually you don't need to execute this

manually.

Examples

Parameters

Full name Alias Type Required Help message

--component-file,--component -o string yes Path to the component package or directory.

--auto-encoding -e string no If we want to automatically tagging the module files.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-extract/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-extract/zwe-components-install-extract

Errors

Error code
Exit
code

Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0153E 153 Cannot install Zowe component to system root directory.

ZWEL0154E 154 Temporary directory is empty.

ZWEL0155E 155
Component %s already exists in %s. If you meant to upgrade this component, run the command 'zwe
components upgrade' instead.

ZWEL0167E 167 Cannot find component name from %s package manifest.

ZWEL0204E 204 Symlink creation failure, error=%s

ZWEL0313E 313 Cannot file component file %s.

Inherited from parent command

Error code
Exit
code

Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180 Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe YAML configuration file.

ZWEL0304E 304 Handler install failure, cannot continue.

ZWEL0305E 305 Could not find one of the components' directories.

ZWEL0314E 314 Cannot install with component=all. This option only exists for upgrade.

ZWEL0315E 315 Handler (-handler or zowe.extensionRegistry.defaultHandler) required but not specified.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit
code

Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

Error code
Exit
code

Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components install process-hook
zwe > components > install > process-hook

zwe components install process-hook [parameter [parameter]...]

Description
Process module install hook if exists.

NOTE: this sub-command will be automatically executed by zwe components install , so usually you don't need to execute this

manually.

Examples

Parameters

Full name Alias Type Required Help message

--component-name -n string yes Component name.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-process-hook/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-process-hook/zwe-components-install-process-hook

Inherited from parent command

Error code
Exit
code

Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180 Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe YAML configuration file.

ZWEL0304E 304 Handler install failure, cannot continue.

ZWEL0305E 305 Could not find one of the components' directories.

ZWEL0314E 314 Cannot install with component=all. This option only exists for upgrade.

ZWEL0315E 315 Handler (-handler or zowe.extensionRegistry.defaultHandler) required but not specified.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit
code

Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components install
zwe > components > install

zwe components install [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
extract

process-hook

Description
Install a Zowe component, given a component archive, component directory, or component name. When a component name is given
instead of a path, the installation will be performed against a Zowe package registry if one is configured. Archives can be in the .tar,
.zip, or pax format where a component is at the root of the archive.

Components are the packaging standard of Zowe. Zowe has core Components, but extensions are also delivered as Components. You
can read more about them here: https://docs.zowe.org/stable/extend/packaging-zos-extensions/

IMPORTANT NOTES, by default, this command will enable the component globally by modifying your YAML configuration. You can
pass --skip-enable to disable this behavior.

Examples

Parameters only for this command

Full name Alias Type Required Help message

--component-file,--
component

-o string yes
Either a path or component name. The path must be to a component
package or directory. If a name is specified instead, install checks the
zowe package registry.

--auto-encoding -e string no If we want to automatically tagging the module files.

--skip-enable boolean no Install component without enabling it for use.

--registry -r string no
Specifies the registry to searh within instead of the default. The registry
must be compatible with the manager used.

--handler string no Specifies the registry handler name used with the package registry,
instead of the default. The handler must be compatible with the registry

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-extract
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-process-hook
https://docs.zowe.org/stable/extend/packaging-zos-extensions/

Full name Alias Type Required Help message

used.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180 Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe YAML configuration file.

ZWEL0304E 304 Handler install failure, cannot continue.

ZWEL0305E 305 Could not find one of the components' directories.

ZWEL0314E 314 Cannot install with component=all. This option only exists for upgrade.

ZWEL0315E 315 Handler (-handler or zowe.extensionRegistry.defaultHandler) required but not specified.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit
code

Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components disable
zwe > components > disable

zwe components disable [parameter [parameter]...]

Description
Disable a Zowe component.

IMPORTANT NOTES, this command will modify your YAML configuration.

Examples

Parameters

Full name Alias Type Required Help message

--component-name,--component -o string yes Component name to be disabled.

--ha-instance -i string no Zowe high availability instance ID from zowe.yaml.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable/zwe-components-disable

Error code Exit code Error message

ZWEL0152E 152 Cannot find component %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit
code

Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components enable
zwe > components > enable

zwe components enable [parameter [parameter]...]

Description
Enable a Zowe component.

IMPORTANT NOTES, this command will modify your YAML configuration.

Examples

Parameters

Full name Alias Type Required Help message

--component-name,--component -o string yes Component name to be enabled.

--ha-instance -i string no Zowe high availability instance ID from zowe.yaml.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable/zwe-components-enable

Error code Exit code Error message

ZWEL0152E 152 Cannot find component %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit
code

Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components search
zwe > components > search

zwe components search [parameter [parameter]...]

Description
Search for a Zowe component within a Zowe package registry.

This command requires you have a registry manager set up for zowe's use already, such as npm or conda.

Examples

Parameters

Full name Alias Type Required Help message

--component-name,--
component

-o string no Component name to search for.

--component-id,--id -d string no Component id to search for.

--registry -r string no
Specifies the registry to search within instead of the default. The registry
must be compatible with the manager used.

--handler string no
Specifies the registry handler name used with the package registry,
instead of the default. The handler must be compatible with the registry
used.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-search/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-search/zwe-components-search

Full name Alias Type Required Help message

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0310E 310 Component name (-name

ZWEL0311E 311 Handler (-handler,-h or zowe.extensionRegistry.defaultHandler) required but not specified.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

Error code
Exit
code

Error message

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit
code

Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components uninstall
zwe > components > uninstall

zwe components uninstall [parameter [parameter]...]

Description
Uninstall a Zowe component, given its name.

Examples

Parameters

Full name Alias Type Required Help message

--component-name,-
-component

-o string yes The name of an installed component.

--registry -r string no
Specifies the registry to search within instead of the default. The
registry must be compatible with the manager used.

--handler string no
Specifies the registry handler name used with the package registry,
instead of the default. The handler must be compatible with the
registry used.

--dry-run -d boolean no
Whether or not to perform the upgrade versus just checking if an
upgrade is available

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-uninstall/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-uninstall/zwe-components-uninstall

Full name Alias Type Required Help message

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit
code

Error message

ZWEL0306W 306 Component %s cannot be uninstalled, because it is not currently installed.

ZWEL0307E 307
Component %s cannot be uninstalled, because it is a core component. If you do not want to use it,
disable it instead.

ZWEL0308W 308 Component directory %s could not be removed, rc=%s.

ZWEL0309W 309 Skipping removal of component %s because it is a core component.

ZWEL0312W 312 Component %s marked for removal but is not installed.

ZWEL????E ??? Command requires zowe.useConfigmgr=true to use.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

Error code
Exit
code

Error message

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

Error code
Exit
code

Error message

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components upgrade
zwe > components > upgrade

zwe components upgrade [parameter [parameter]...]

Description
Upgrade a Zowe component from a Zowe package registry when given a component name or "all" to upgrade all components. The
upgrade will only be performed if a Zowe package registry is configured.

Examples

Parameters

Full name Alias Type Required Help message

--component-file,--
component

-o string yes
Either a path or component name. The path must be to a component
package or directory. If a name is specified instead, install checks the
zowe package registry.

--registry -r string no
Specifies the registry to search within instead of the default. The registry
must be compatible with the manager used.

--handler string no
Specifies the registry handler name used with the package registry,
instead of the default. The handler must be compatible with the registry
used.

--dry-run -d boolean no
Whether or not to perform the upgrade versus just checking if an
upgrade is available

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-upgrade/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-upgrade/zwe-components-upgrade

Full name Alias Type Required Help message

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180 Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe YAML configuration file.

ZWEL0304E 304 Handler install failure, cannot continue.

ZWEL0305E 305 Could not find one of the components' directories.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit
code

Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

Error code
Exit
code

Error message

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe components
zwe > components

zwe components [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
disable

enable

install

search

uninstall

upgrade

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components/zwe-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-search
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-uninstall
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/components/zwe-components-upgrade

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit
code

Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe config get
zwe > config > get

zwe config get [parameter [parameter]...]

Description
Return value of a configuration defined in YAML configuration. This command requires zowe.useConfigmgr=true or --configmgr to be
used.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

--path -p string yes Path of the configuration. For example, components.gateway.port .

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-get/zwe-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-get/zwe-config-get

Error code Exit code Error message

ZWEL0303E 303 Invalid config path syntax for %s. Get only supports single period delimiters between values.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit
code

Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe config validate
zwe > config > validate

zwe config validate [parameter [parameter]...]

Description
Runs schema validation upon given zowe yaml configuration files. This command can be used to prove that the zowe configuration is
good before starting zowe. It requires that zowe.useConfigmgr=true or --configmgr are set. This command can optionally validate
enabled components or all components, but otherwise would only validate the zowe core configuration.

Examples

Parameters

Full name Alias Type Required Help message

--components boolean no Turns on validation for enabled components.

--all boolean no Turns on validation for all components, even disabled ones.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-validate/zwe-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-validate/zwe-config-validate

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit
code

Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe config
zwe > config

zwe config [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
get

validate

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config/zwe-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-get
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/config/zwe-config-validate

Error code
Exit
code

Error message

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit
code

Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe init apfauth
zwe > init > apfauth

zwe init apfauth [parameter [parameter]...]

Description
This command will APF authorize load library for you.

NOTE: You require proper permission to run APF authorize command.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWEAUTH data set is installed.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If it's not defined, SZWEAUTH from

zowe.setup.dataset.prefix data set will be APF authorized.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe ZIS plugins into this load library.

Examples

Parameters

Full name Alias Type Required Help message

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth/zwe-init-apfauth

Full name Alias Type Required Help message

--update-config boolean no
Whether to update YAML configuration file with
initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

Error code
Exit
code

Error message

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

Error code
Exit
code

Error message

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe init certificate
zwe > init > certificate

zwe init certificate [parameter [parameter]...]

Description
This command will generate certificate used by Zowe services.

If you specify --update-config with this command, these configurations could be written back to your Zowe YAML configuration file:

zowe.certificate based on your zowe.setup.certificate configuration.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.certificate.type is the type of certificate. Valid values are "PKCS12" (USS keystore) or "JCEKS", "JCECCAKS",

"JCERACFKS", "JCECCARACFKS", and "JCEHYBRIDRACFKS (z/OS keyring).

zowe.setup.certificate.dname is the distinguished name of the certificate. You can define caCommonName , commonName ,

orgUnit , org , locality , state , and / or country . These configurations are optional.

zowe.setup.certificate.validity is the validity days of the certificate. This is optional.

zowe.setup.certificate.san is the Subject Alternative Name (s) of the certificate if they are different from

zowe.externalDomains . Please note, for JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , and JCEHYBRIDRACFKS type, with

limitation of RACDCERT command, this should contain exact one hostname (domain) and one IP address.

zowe.setup.certificate.importCertificateAuthorities is the list of certificate authorities will be imported to Zowe PKCS12

keystore or keyring. Please note, for keyring type, only maximum 2 CAs is supported. If you are using PKCS12 certificate, this

should be USS files in PEM format. If you are using JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , or JCEHYBRIDRACFKS
certificate, this should be certificate labels on the z/OS system.

zOSMF.host and zOSMF.port is the z/OSMF service information. This is required if you are using z/OSMF as authentication
service.

zowe.verifyCertificates indicates how Zowe should validate the certificate of services registered under Zowe APIML. Valid

values are "STRICT", "NONSTRICT" or "DISABLED". If this is "STRICT", this command will try to validate the z/OSMF service
certificate if z/OSMF is defined.

For PKCS12 certificate users,

zowe.setup.certificate.pkcs12.directory is the directory where you plan to store the PKCS12 keystore and truststore. This
is required if zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock is a boolean configuration to tell if we should lock the PKCS12 keystore directory only

for Zowe runtime user and group. Default value is true.

zowe.setup.security.groups.admin and zowe.setup.security.users.zowe will be the default owner of keystore directory.

You can also define name , password , caAlias and caPassword under zowe.setup.certificate.pkcs12 to customized

keystore and truststore. These configurations are optional, but it is recommended to update them from default values.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate/zwe-init-certificate

Define zowe.setup.certificate.pkcs12.import.keystore if you already acquired certificate from other CA, stored them in

PKCS12 format, and want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password is the password for keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore . After imported, the certificate will be saved as alias specified in

zowe.setup.certificate.pkcs12.name .

For keyring certificate users,

zowe.setup.certificate.keyring.owner is the keyring owner. It's optional and default value is

zowe.setup.security.users.zowe . If it's also not defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name is the keyring name will be created on z/OS. This is required if

zowe.setup.certificate.type is one of JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , or JCEHYBRIDRACFKS .

If you want to let Zowe to generate new certificate,
You can also customize label and caLabel under zowe.setup.certificate.keyring if you want to generate new

certificate. Default value of label is localhost and default value of caLabel is localca .

If you want to import certificate stored in MVS data set into Zowe keyring,
zowe.setup.certificate.keyring.connect.dsName is required in this case. It tells Zowe the data set where the certificate

stored.

zowe.setup.certificate.keyring.connect.password is the password when importing the certificate.

The certificate will be imported with label defined in zowe.setup.certificate.keyring.label .

If you want to connect existing certificate into Zowe keyring,
zowe.setup.certificate.keyring.connect.user is required and tells Zowe the owner of existing certificate. This field can

have value of SITE .

zowe.setup.certificate.keyring.connect.label is also required and tells Zowe the label of existing certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided, Zowe will try to trust z/OSMF

certificate.
If you are using RACF security manager, Zowe will try to automatically detect the z/OSMF CA based on certificate owner

specified by zowe.setup.certificate.keyring.zOSMF.user . Default value of this field is IZUSVR . If the automatic

detection failed, you will need to define zowe.setup.certificate.keyring.zOSMF.ca indicates what is the label of z/OSMF

root certificate authority.

If you are using ACF2 or TSS (Top Secret) security manager, zowe.setup.certificate.keyring.zOSMF.ca is required to

indicates what is the label of z/OSMF root certificate authority.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

--update-config boolean no
Whether to update YAML configuration file with
initialization result.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with
initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

Error code Exit code Error message
ZWEL0164E 164 Value of %s (%s) defined in Zowe YAML configuration file is invalid. Valid values are %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

Error code
Exit
code

Error message

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe init mvs
zwe > init > mvs

zwe init mvs [parameter [parameter]...]

Description
This command will prepare Zowe custom data sets.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP and SZWEAUTH data sets are installed.

Below data sets will be initialized by this command:

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may generate sample PARMLIB

members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate sample JCLs and put into this data

set.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this is defined, members of

SZWEAUTH will be copied over to this data set. This loadlib requires APF authorize.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe ZIS plugins into this load library.

This loadlib requires APF authorize.

NOTE: Existing members in custom data sets will not be overwritten by default. You can pass --allow-overwrite parameters to force

update.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no Allow overwritten existing MVS data set.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs/zwe-init-mvs

Full name Alias Type Required Help message

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with
initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. This data set member will be overwritten during configuration.

ZWEL0301W %s already exists and will not be overwritten. For upgrades, you must use --allow-overwrite.

ZWEL0158E 158 %s already exists.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

Error code
Exit
code

Error message

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

Error code
Exit
code

Error message

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe init security
zwe > init > security

zwe init security [parameter [parameter]...]

Description
This command will run ZWESECUR jcl.

NOTE: You require proper permission to run security configuration.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed,

zowe.setup.dataset.jcllib is the custom JCL library. Zowe will create customized ZWESECUR JCL here before applying it.

zowe.setup.security.product is security product. Can be RACF , ACF2 , or TSS . This configuration is optional. Default value is

RACF .

zowe.setup.security.groups.admin is the group for Zowe administrators. This configuration is optional. Default value is

ZWEADMIN .

zowe.setup.security.groups.stc is the group for Zowe started tasks. This configuration is optional. Default value is ZWEADMIN .

zowe.setup.security.groups.sysProg is system programmer user ID/group. This configuration is optional. Default value is

ZWEADMIN .

zowe.setup.security.users.zowe is the userid for Zowe started task. This configuration is optional. Default value is ZWESVUSR .

zowe.setup.security.users.zis is userid for ZIS started task. This configuration is optional. Default value is ZWESIUSR .

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional. Default value is ZWESASTC .

Examples

Parameters

Full name Alias Type Required Help message

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security/zwe-init-security

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with
initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

ZWEL0161E 161 Failed to run JCL %s.

ZWEL0161W Failed to run JCL %s.

ZWEL0162E 162 Failed to find job %s result.

ZWEL0162W Failed to find job %s result.

Error code Exit code Error message

ZWEL0163E 163 Job %s ends with code %s.

ZWEL0163W Job %s ends with code %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit
code

Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe init stc
zwe > init > stc

zwe init stc [parameter [parameter]...]

Description
This command will copy Zowe started tasks ZWESLSTC , ZWESISTC , ZWESASTC to your target procedure library.

NOTE: You require proper permission to write to target procedure library.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed,

zowe.setup.dataset.proclib shows what is the target procedure library.

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may generate sample PARMLIB

members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe will create temporary started tasks here before putting into target

procedure library.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this is not defined, SZWEAUTH from

zowe.setup.dataset.prefix data set will be used as STEPLIB in STCs.

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional. Default value is ZWESASTC .

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no Allow overwritten existing MVS data set.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-stc/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-stc/zwe-init-stc

Full name Alias Type Required Help message

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with
initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. This data set member will be overwritten during configuration.

ZWEL0301W %s already exists and will not be overwritten. For upgrades, you must use --allow-overwrite.

ZWEL0143E 143 Cannot find data set member %s. You may need to re-run zwe install .

ZWEL0158E 158 %s already exists.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit
code

Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe init vsam
zwe > init > vsam

zwe init vsam [parameter [parameter]...]

Description
This command will run ZWECSVSM jcl to create VSAM data set for Zowe APIML Caching Service.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed,

zowe.setup.dataset.jcllib is the custom JCL library. Zowe will create customized ZWESECUR JCL here before applying it.

zowe.setup.vsam.mode indicates whether the VSAM will utilize Record Level Sharing (RLS) services or not. Valid value is RLS or

NONRLS .

zowe.setup.vsam.volume indicates the name of volume. This field is required if VSAM mode is NONRLS .

zowe.setup.vsam.storageClass indicates the name of RLS storage class. This field is required if VSAM mode is RLS .

components.caching-service.storage.mode indicates what storage Zowe Caching Service will use. Only if this value is VSAM ,

this command will try to create VSAM data set.

components.caching-service.storage.vsam.name defines the VSAM data set name.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no Allow overwritten existing MVS data set.

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam/zwe-init-vsam

Full name Alias Type Required Help message

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with
initialization result.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. This data set member will be overwritten during configuration.

ZWEL0301W %s already exists and will not be overwritten. For upgrades, you must use --allow-overwrite.

ZWEL0158E 158 %s already exists.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

ZWEL0161E 161 Failed to run JCL %s.

ZWEL0162E 162 Failed to find job %s result.

ZWEL0163E 163 Job %s ends with code %s.

ZWEL0301W 0 Zowe Caching Service is not configured to use VSAM. Command skipped.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit
code

Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe init
zwe > init

zwe init [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
apfauth

certificate

mvs

security

stc

vsam

Description
Init Zowe instance based on zowe.yaml configuration.

You can find an example zowe.yaml in Zowe runtime directory folder.

This command will run these sub-commands in sequence:

zwe init mvs

zwe init vsam

zwe init apfauth

zwe init security

zwe init certificate

zwe init stc

If you pass --skip-security-setup with this command, zwe init apfauth and zwe init security steps will be skipped.

If you pass --update-config with this command, these configurations could be written back to your Zowe YAML configuration file:

zowe.runtimeDirectory based on where your zwe command is located, and if it is not defined,

zowe.certificate based on your zowe.setup.certificate configuration,

java.home based on your current JAVA_HOME or automatic detection,

node.home based on your current NODE_HOME or automatic detection.

IMPORTANT, if you modify any of the values below, it's suggested to re-run relevant zwe init command to make them taking

effect.

These Zowe YAML configurations showing with sample values are used:

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init/zwe-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-security
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-stc
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam

zowe.setup.dataset.prefix shows where the SZWEAUTH data set is installed.

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may generate sample PARMLIB

members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate sample JCLs and put into this data

set.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this is defined, members of

SZWEAUTH will be copied over to this data set and it will be APF authorized. If it's not defined, SZWEAUTH from

zowe.setup.dataset.prefix data set will be APF authorized.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe ZIS plugins into this load library.

This loadlib requires APF authorize.

zowe.setup.security.product is security product. Can be RACF , ACF2 , or TSS . This configuration is optional. Default value is

RACF .

zowe.setup.security.groups.admin is the group for Zowe administrators. This configuration is optional. Default value is

ZWEADMIN .

zowe.setup.security.groups.stc is the group for Zowe started tasks. This configuration is optional. Default value is ZWEADMIN .

zowe.setup.security.groups.sysProg is system programmer user ID/group. This configuration is optional. Default value is

ZWEADMIN .

zowe.setup.security.users.zowe is the userid for Zowe started task. This configuration is optional. Default value is ZWESVUSR .

zowe.setup.security.users.zis is userid for ZIS started task. This configuration is optional. Default value is ZWESIUSR .

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional. Default value is ZWESASTC .

zowe.setup.certificate.type is the type of certificate. Valid values are "PKCS12" (USS keystore) or "JCEKS", "JCECCAKS",

"JCERACFKS", "JCECCARACFKS", and "JCEHYBRIDRACFKS (z/OS keyring).

zowe.setup.certificate.dname is the distinguished name of the certificate. You can define caCommonName , commonName ,

orgUnit , org , locality , state , and / or country . These configurations are optional.

zowe.setup.certificate.validity is the validity days of the certificate. This is optional.

zowe.setup.certificate.san is the Subject Alternative Name (s) of the certificate if they are different from

zowe.externalDomains . Please note, for JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , and JCEHYBRIDRACFKS type, with

limitation of RACDCERT command, this should contain exact one hostname (domain) and one IP address.

zowe.setup.certificate.importCertificateAuthorities is the list of certificate authorities will be imported to Zowe PKCS12

keystore or keyring. Please note, for keyring type, only maximum 2 CAs is supported. If you are using PKCS12 certificate, this

should be USS files in PEM format. If you are using JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , or JCEHYBRIDRACFKS
certificate, this should be certificate labels on the z/OS system.

For PKCS12 certificate users,

zowe.setup.certificate.pkcs12.directory is the directory where you plan to store the PKCS12 keystore and truststore. This

is required if zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock is a boolean configuration to tell if we should lock the PKCS12 keystore directory only

for Zowe runtime user and group. Default value is true.

You can also define name , password , caAlias and caPassword under zowe.setup.certificate.pkcs12 to customized

keystore and truststore. These configurations are optional, but it is recommended to update them from default values.

Define zowe.setup.certificate.pkcs12.import.keystore if you already acquired certificate from other CA, stored them in

PKCS12 format, and want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password is the password for keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore . After imported, the certificate will be saved as alias specified in

zowe.setup.certificate.pkcs12.name .

For keyring certificate users,

zowe.setup.certificate.keyring.owner is the keyring owner. It's optional and default value is

zowe.setup.security.users.zowe . If it's also not defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name is the keyring name will be created on z/OS. This is required if

zowe.setup.certificate.type is one of JCEKS , JCECCAKS , JCERACFKS , JCECCARACFKS , or JCEHYBRIDRACFKS .

If you want to let Zowe to generate new certificate,

You can also customize label and caLabel under zowe.setup.certificate.keyring if you want to generate new

certificate. Default value of label is localhost and default value of caLabel is localca .

If you want to import certificate stored in MVS data set into Zowe keyring,

zowe.setup.certificate.keyring.connect.dsName is required in this case. It tells Zowe the data set where the certificate

stored.

zowe.setup.certificate.keyring.connect.password is the password when importing the certificate.

The certificate will be imported with label defined in zowe.setup.certificate.keyring.label .

If you want to connect existing certificate into Zowe keyring,

zowe.setup.certificate.keyring.connect.user is required and tells Zowe the owner of existing certificate. This field can
have value of SITE .

zowe.setup.certificate.keyring.connect.label is also required and tells Zowe the label of existing certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided, Zowe will try to trust z/OSMF

certificate.

If you are using RACF security manager, Zowe will try to automatically detect the z/OSMF CA based on certificate owner

specified by zowe.setup.certificate.keyring.zOSMF.user . Default value of this field is IZUSVR . If the automatic

detection failed, you will need to define zowe.setup.certificate.keyring.zOSMF.ca indicates what is the label of z/OSMF
root certificate authority.

If you are using ACF2 or TSS (Top Secret) security manager, zowe.setup.certificate.keyring.zOSMF.ca is required to
indicates what is the label of z/OSMF root certificate authority.

zowe.setup.vsam.mode indicates whether the VSAM will utilize Record Level Sharing (RLS) services or not. Valid value is RLS or

NONRLS .

zowe.setup.vsam.volume indicates the name of volume. This field is required if VSAM mode is NONRLS .

zowe.setup.vsam.storageClass indicates the name of RLS storage class. This field is required if VSAM mode is RLS .

zowe.verifyCertificates indicates how Zowe should validate the certificate of services registered under Zowe APIML. Valid
values are "STRICT", "NONSTRICT" or "DISABLED". If this is "STRICT", this command will try to validate the z/OSMF service
certificate if z/OSMF is defined.

zOSMF.host and zOSMF.port is the z/OSMF service information. This is required if you are using z/OSMF as authentication
service.

components.caching-service.storage.mode indicates what storage Zowe Caching Service will use. Only if this value is VSAM ,
this command will try to create VSAM data set.

components.caching-service.storage.vsam.name defines the VSAM data set name.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

--skip-security-setup boolean no Whether should skip security related setup.

--security-dry-run boolean no Whether to dry run security related setup.

--ignore-security-failures boolean no Whether to ignore security setup job failures.

--update-config boolean no
Whether to update YAML configuration file with
initialization result.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

Error code
Exit
code

Error message

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

Error code
Exit
code

Error message

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal config get
zwe > internal > config > get

zwe internal config get [parameter [parameter]...]

Description
Return value of a configuration defined in YAML configuration.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

--path -p string yes Path of the configuration. For example, components.gateway.port .

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-get/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-get/zwe-internal-config-get

Errors

Error code Exit code Error message

ZWEL0303E 303 Invalid config path syntax for %s. Get only supports single period delimiters between values.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit
code

Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal config set
zwe > internal > config > set

zwe internal config set [parameter [parameter]...]

Description
Set value of a configuration and write back to the YAML configuration.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-
instance

-i string no Zowe high availability instance ID.

--path -p string yes Path of the configuration. For example, components.gateway.port .

--value -e string no New value of the configuration.

--string boolean no
When specified, the value is treated as a string even if it looks like a number or
boolean

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-set/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-set/zwe-internal-config-set

Full name Alias Type Required Help message

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

Error code
Exit
code

Error message

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal config
zwe > internal > config

zwe internal config [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
get

set

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-get
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-set

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit
code

Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal container cleanup
zwe > internal > container > cleanup

zwe internal container cleanup [parameter [parameter]...]

Description
Clean up Kubernetes runtime.

Currently this command will remove all outdated static definitions.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-cleanup/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-cleanup/zwe-internal-container-cleanup

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit
code

Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal container init
zwe > internal > container > init

zwe internal container init [parameter [parameter]...]

Description
Initialize special runtime environment required by Zowe containerization.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-init/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-init/zwe-internal-container-init

Error code
Exit
code

Error message

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

Error code
Exit
code

Error message

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal container prestop
zwe > internal > container > prestop

zwe internal container prestop [parameter [parameter]...]

Description
Actions will be executed before a service is stopped.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-prestop/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-prestop/zwe-internal-container-prestop

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit
code

Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal container
zwe > internal > container

zwe internal container [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
cleanup

init

prestop

Description
Internal commands to help manager workloads in Zowe containers.

NOTE: these internal commands are only used by Zowe Containerization use scenario.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-cleanup
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-init
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-prestop

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

Error code
Exit
code

Error message

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal start component
zwe > internal > start > component

zwe internal start component [parameter [parameter]...]

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--component -o string yes Component to start.

--run-in-background boolean no Whether to start this component in background.

Inherited from parent command

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-component/zwe-internal-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-component/zwe-internal-start-component

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit
code

Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal start prepare
zwe > internal > start > prepare

zwe internal start prepare [parameter [parameter]...]

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code
Exit
code

Error message

ZWEL0141E 141 User %s does not have write permission on %s.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-prepare/zwe-internal-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-prepare/zwe-internal-start-prepare

Error code
Exit
code

Error message

ZWEL0302W
You are running the Zowe process under user id IZUSVR. This is not recommended and may impact
your z/OS MF server negatively.

ZWEL0317E Component %s commands.configure ended with rc=%s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit
code

Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal start
zwe > internal > start

zwe internal start [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
component

prepare

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start/zwe-internal-start
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-component
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-prepare

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

Error code
Exit
code

Error message

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal get-launch-components
zwe > internal > get-launch-components

zwe internal get-launch-components [parameter [parameter]...]

Description
Return component list should be started in specified HA instance.

NOTE: This command only returns a list of enabled components with start command.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal-get-launch-components/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal-get-launch-components/zwe-internal-get-launch-components

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

Error code
Exit
code

Error message

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe internal
zwe > internal

zwe internal [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
config

container

get-launch-components

start

Description

Commands will be executed internally by other Zowe commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal/zwe-internal
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/zwe-internal-get-launch-components
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

Error code
Exit
code

Error message

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe migrate for kubernetes
zwe > migrate > for > kubernetes

zwe migrate for kubernetes [parameter [parameter]...]

Description
Migrate your YAML configuration on z/OS for Kubernetes.

This script will create zowe-config ConfigMap and zowe-certificates-secret Secret for Kubernetes deployment.

To manually create zowe-config ConfigMap , the data section should contain a key zowe.yaml with string value of your zowe.yaml
used on z/OS.

To manually create zowe-certificates-secret Secret , you need 2 entries under data section:

keystore.p12 : which is base64 encoded PKCS#12 keystore,

truststore.p12 : which is base64 encoded PKCS#12 truststore.

And 3 entries under stringData section:

keystore.key : is the PEM format of certificate private key,

keystore.cer : is the PEM format of the certificate,

ca.cer : is the PEM format of the certificate authority.

In order to make certificates working in Kubernetes, the certificate you are using should have these domains defined in certificate
Subject Alt Name (SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster,

*.[k8s-namespace].svc.[k8s-cluster-name]

*.discovery-service.[k8s-namespace].svc.[k8s-cluster-name]

*.gateway-service.[k8s-namespace].svc.[k8s-cluster-name]

*.[k8s-namespace].pod.[k8s-cluster-name]

[k8s-namespace] is the Kubernetes Namespace you installed Zowe into. And [k8s-cluster-name] is the Kubernetes cluster name,
which usually should be cluster.local .

Without the additional domains in SAN, you may see warnings/errors related to certificate validation.

If you cannot add those domains into certificate Subject Alt Name (SAN), you can change zowe.verifyCertificates to NONSTRICT
mode. Zowe components will not validate domain names but will continue to validate certificate chain, validity and whether it's
trusted in Zowe truststore.

IMPORTANT: It's not recommended to disable zowe.verifyCertificates .

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes/zwe-migrate-for
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes/zwe-migrate-for-kubernetes

NOTES: With below conditions, this migration script will re-generate a new set of certificate for you with proper domain names listed
above.

you use zwe init command to initialize Zowe,

use PKCS#12 format keystore by defining zowe.setup.certificate.type: PKCS12

did not define zowe.setup.certificate.pkcs12.import.keystore and let zwe command to generate PKCS12 keystore for you

enabled STRICT mode zowe.verifyCertificates .

Parameters

Full name Alias Type Required Help message

--domains -d string no Domain list of certificate Subject Alternative Name (SAN).

--external-port string no Port number to access APIML Gateway running in Kubernetes.

--k8s-namespace string no Kubernetes namespace.

--k8s-cluster-name string no Kubernetes cluster name.

--alias -a string no Certificate alias name.

--password -p string no Password of the certificate keystore.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit
code

Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe migrate for
zwe > migrate > for

zwe migrate for [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
kubernetes

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for/zwe-migrate-for
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes

Error code
Exit
code

Error message

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit
code

Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe migrate
zwe > migrate

zwe migrate [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
for

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/zwe-migrate/zwe-migrate
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for

Error code
Exit
code

Error message

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit
code

Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe sample sub deep
zwe > sample > sub > deep

zwe sample sub deep [parameter [parameter]...]

Description
Sample of deep embedded sub-command.

Also inherit parameters from upper level.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined in this

command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--another-parameter -p boolean no Every command level can have their own parameters.

Inherited from parent command

Full name Alias Type Required Help message

--target-dir,--
target

-d string yes This parameter is required.

--auto-encoding -e string no
This parameter has default value.\nThis help message has multiple lines.\n
- another line

--help -h boolean no Display this help.

--debug,-- -v boolean no Enable verbose mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-deep/zwe-sample-sub
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-deep/zwe-sample-sub-deep

Full name Alias Type Required Help message

verbose

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

Error code
Exit
code

Error message

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Error code
Exit
code

Error message

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe sample sub second
zwe > sample > sub > second

zwe sample sub second [parameter [parameter]...]

Description
Sample of second sub-command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined in this

command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--target-dir,--
target

-d string yes This parameter is required.

--auto-encoding -e string no
This parameter has default value.\nThis help message has multiple lines.\n
- another line

--help -h boolean no Display this help.

--debug,--
verbose

-v boolean no Enable verbose mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-second/zwe-sample-sub
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-second/zwe-sample-sub-second

Full name Alias Type Required Help message

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

Error code
Exit
code

Error message

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe sample sub
zwe > sample > sub

zwe sample sub [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
deep

second

Description
A sample sub-command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined in this

command and sub-commands.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--target-dir,--
target

-d string yes This parameter is required.

--auto-encoding -e string no
This parameter has default value.\nThis help message has multiple lines.\n -
another line

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub/zwe-sample-sub
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-deep
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-second

Full name Alias Type Required Help message

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

Error code
Exit
code

Error message

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe sample test
zwe > sample > test

zwe sample test [parameter [parameter]...]

Description
A sample command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined in this

command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample-test/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample-test/zwe-sample-test

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit
code

Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe sample
zwe > sample

zwe sample [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
sub

test

Description
This is a sample command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful functionalities defined in this

command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample/zwe-sample
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/sample/zwe-sample-test

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

Error code
Exit
code

Error message

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe support verify-fingerprints
zwe > support > verify-fingerprints

zwe support verify-fingerprints [parameter [parameter]...]

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--target-dir string no
Target directory where the support package will be created.\nIf it is not
specified, system temporary directory will be used.

--help -h boolean no Display this help.

--debug,--
verbose

-v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0113E 113 Failed to find Zowe version. Please validate your Zowe directory.

ZWEL0150E 150 Failed to find file %s. Zowe runtimeDirectory is invalid.

ZWEL0151E 151 Failed to create temporary file %s. Please check permission or volume free space.

ZWEL0181E 181 Failed to verify Zowe file fingerprints.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints/zwe-support
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints/zwe-support-verify-fingerprints

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit
code

Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe support
zwe > support

zwe support [sub-command [sub-command]...] [parameter [parameter]...]

Sub-commands
verify-fingerprints

Description
Collect and package Zowe runtime information for support purpose.

This command will collect these information:

Environment
z/OS version

Java version

Node.js version

Zowe configurations
Zowe manifest.json

Zowe configuration file

Zowe installation logs

Zowe PKCS#12 keystore if used

Zowe temporary configuration files under " zowe.workspaceDirectory /.env"

Zowe APIML static registration files under " zowe.workspaceDirectory /api-mediation/api-defs"

Zowe runtime
Active running Zowe processes

Zowe job log

Zowe fingerprints and validation result

Parameters

Full
name

Alias Type Required Help message

--target-
dir

string no
Target directory where the support package will be created.\nIf it is not specified,
system temporary directory will be used.

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support/zwe-support
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

Error code
Exit
code

Error message

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit
code

Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe diagnose
zwe > diagnose

zwe diagnose [parameter [parameter]...]

Description
Display the message corresponding to the error code.

Examples

Parameters

Full name Alias Type Required Help message

--error-code -e string yes Error Code.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-diagnose/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-diagnose/zwe-diagnose

Error code Exit code Error message

ZWEL0102E 102 Invalid parameter %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit
code

Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe install
zwe > install

zwe install [parameter [parameter]...]

Description
After you extract Zowe convenience build, you can run this command to install MVS data sets.

If you are using SMPE build, you can skip this command since MVS data sets are already prepared during SMPE install.

These Zowe YAML configurations showing with sample values are used:

Expected outputs:

Will create these data sets under zowe.setup.dataset.prefix definition:

SZWEAUTH contains few Zowe load modules (++PROGRAM).

SZWESAMP contains several sample configurations.

SZWEEXEC contains few utilities used by Zowe.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-
overwritten

boolean no Allow overwritten existing MVS data set.

--dataset-prefix,--ds-prefix string no
Install Zowe to this dataset prefix. If you specify this value, --

config is not required.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-install/zwe-install

Full name Alias Type Required Help message

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. Members in this data set will be overwritten.

ZWEL0301W %s already exists and will not be overwritten. For upgrades, you must use --allow-overwrite.

ZWEL0158E 158 %s already exists.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit
code

Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

Error code
Exit
code

Error message

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe start
zwe > start

zwe start [parameter [parameter]...]

Description
Start Zowe with main started task.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is ZWESLSTC .

zowe.job.name is the optional customized job name to start Zowe. If it's empty, the start command will not pass JOBNAME=
option to S command.

haInstances.[ha-instance].sysname is the SYSNAME of the target HA instance. If you pass --ha-instance parameter, this is

the SYSNAME the start command will be routed to.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-start/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-start/zwe-start

Full name Alias Type Required Help message

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0165E 165 Failed to start job %s: %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit
code

Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe stop
zwe > stop

zwe stop [parameter [parameter]...]

Description
Stop Zowe main job.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. Default value is ZWESLSTC .

zowe.job.name is the optional customized job name to start Zowe. If it's empty, the stop command will try to use value of

zowe.setup.security.stcs.zowe as job name to stop.

haInstances.[ha-instance].sysname is the SYSNAME of the target HA instance. If you pass --ha-instance parameter, this is

the SYSNAME the start command will be routed to.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no Zowe high availability instance ID.

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-stop/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-stop/zwe-stop

Full name Alias Type Required Help message

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0166E 166 Failed to stop job %s: %s.

Inherited from parent command

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit
code

Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

zwe version
zwe > version

zwe version [parameter [parameter]...]

Description
Display Zowe version.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no Display this help.

--debug,--verbose -v boolean no Enable verbose mode.

--trace -vv boolean no Enable trace level debug mode.

--silent -s boolean no Do not display messages to standard output.

--log-dir,--log -l string no Write logs to this directory.

--config -c string no Path to Zowe configuration zowe.yaml file.

--configmgr boolean no Enable use of configmgr capabilities.

Errors

Error code Exit code Error message

ZWEL0150E 150 Failed to find file %s. Zowe runtimeDirectory is invalid.

Inherited from parent command

https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-version/zwe
https://docs.zowe.org/stable/appendix/zwe_server_command_reference/zwe/zwe-version/zwe-version

Error code
Exit
code

Error message

100 If the user pass --help or -h parameter, the zwe command always exits with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not same as where zwe
command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112 Zowe runtime environment must be prepared first with "zwe internal start prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

Error code
Exit
code

Error message

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with trusting z/OSMF option
enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

ZWEL0316E Command requires zowe.useConfigmgr=true to use.

Version: v2.17.x LTS

Zowe Chat command reference overview
Welcome to Zowe Chat!

Zowe Chat currently supports users to perform interactions with Zowe Chat bot.

Check out the commands that Zowe Chat supports.

z/OS commands

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/zowe-chat-command-reference/zos-article

Version: v2.17.x LTS

zos commands
Manages z/OS resources including jobs, data sets, USS files, and mounted filesystems.

Resources
job - Manage z/OS jobs

dataset - Manage z/OS data sets

file - Manage z/OS USS files

command - Perform z/OS console commands

help - Request help for z/OS commands

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/zos-article/job/job-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/zos-article/dataset/dataset-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/zos-article/file/file-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/zos-article/command/command-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/zos-article/help/help-article

Version: v2.17.x LTS

zos job
zos > job

Manage z/OS jobs.

Usage

zos job list status [jobID] --owner | -o <owner> --prefix | -p <prefix> --limit <limit>

Action

list

Positional Arguments
zos job list status

jobID

Options
zos job list status

Full name Alias Type

--owner -o string

--prefix -p string

--limit number

Examples

All three commands can list all jobs with default settings. The command returns jobs owned by your user ID with any job name.

Both the two commands can list all jobs owned by the users who have IDs starting with 'zow' and job names starting with 'myjo'.

Show the job with job ID "TSU15026".

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/job-article/job-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/job-article/list/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/job-article/list/zos-job-list-status#positional-arguments
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/job-article/list/zos-job-list-status#options

Version: v2.17.x LTS

zos job list
zos > job > list

List job status.

Usage

zos job list status [jobID] --owner | -o <owner> --prefix | -p <prefix> --limit <limit>

Object
status

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/list/job-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/list/list-article/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/list/list-article/zos-job-list-status

Version: v2.17.x LTS

zos job list status
zos > job > list > status

Show status or detail of jobs.

Usage

zos job list status [jobID] --owner | -o <owner> --prefix | -p <prefix> --limit <limit>

Positional Arguments

jobID

Specify the job ID to narrow down the results.

Options

owner | o (string)

Specify the owner of the jobs you want to list. The owner is the individual/user who submitted the job OR the user ID
assigned to the job. The command does not prevalidate the owner. You can specify a wildcard according to the z/OSMF Jobs
REST endpoint documentation, which is usually in the form "USER*"

prefix | p (string)

Specify the job name prefix of the jobs you want to list. The command does not prevalidate the owner. You can specify a
wildcard according to the z/OSMF Jobs REST endpoint documentation, which is usually in the form "JOB*".

--limit (number)

Specify the number of the jobs to display.

Examples
All three commands can list all jobs with default settings. The command returns jobs owned by your user ID with any job name.

Both the two commands can list all jobs owned by the users who have IDs starting with 'zow' and job names starting with 'myjo'.

Show the job with job ID "TSU15026".

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/list/job-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/list/zos-job-list-status/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/job/list/zos-job-list-status/zos-job-list-status

Version: v2.17.x LTS

zos dataset
zos > dataset

Manages z/OS data sets.

Usage

zos dataset list status [datasetName*] --dsname-level | --dl <dsnamelevel> --volume-serial | --vs <volumeserial>

--start | -s <firstDatasetName> --limit <limit>

zos dataset list member [datasetMemberName*] --dataset-name | --dn <datasetName> --limit <limit>

Action

list

Positional Arguments
zos dataset list status

datasetName*

zos dataset list member

datasetMemberName*

Options
zos dataset list status

Full name Alias Type

--dsname-level --dl string

--volume-serial --vs string

--start -s string

--limit number

zos dataset list member

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/dataset-article/dataset-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/dataset-article/list/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/dataset-article/list/zos-dataset-list-status#positional-arguments
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/dataset-article/list/zos-dataset-list-member#positional-arguments
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/dataset-article/list/zos-dataset-list-status#options
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/dataset-article/list/zos-dataset-list-member#options

Full name Alias Type

--dataset-name --dn string

--limit number

Examples
Show the data set "user.asm".

Show all data sets of the user "user".

Show members of the data set "user.asm".

Version: v2.17.x LTS

zos dataset list
zos > dataset > list

Show status of data sets.

Usage

zos dataset list status [datasetName*] --dsname-level | --dl <dsnamelevel> --volume-serial | --vs

<volumeserial> --start | -s <firstDatasetName> --limit <limit>

zos dataset list member [datasetMemberName*] --dataset-name | --dn <datasetName> --limit <limit>

Object
status

member

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/dataset-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/list-article/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/list-article/zos-dataset-list-status
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/list-article/zos-dataset-list-member

Version: v2.17.x LTS

zos dataset list status
zos > dataset > list > status

Show status or details of data sets.

Usage

zos dataset list status [datasetName*] --dsname-level | --dl <dsnamelevel> --volume-serial | --vs <volumeserial>

--start | -s <firstDatasetName> --limit <limit>

Positional Arguments

datasetName*

Specify the data set name to narrow down the results. Wildcard is supported, please refer to the z/OSMF Dataset REST
endpoint documentation

Options

--dsname-level (string)

Specify the name or pattern of the data set. Wildcard is supported, please refer to the z/OSMF Dataset REST endpoint
documentation.

--volume-serial (string)

Specify the volume serial (VOLSER) where the data set resides.

--start (string)

Specify the first data set name to return.

--limit (number)

Specify the number of the data sets to display.

Examples
Show the data set "user.asm".

Show all data sets of the user "user".

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/dataset-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/zos-dataset-list-status/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/zos-dataset-list-status/zos-dataset-list-status

Version: v2.17.x LTS

zos dataset list member
zos > dataset > list > member

Show all members of a partitioned data set.

Usage

zos dataset list member [datasetMemberName*] --dataset-name | --dn <datasetName> --limit <limit>

Positional Arguments

datasetMemberName*

Specify the member name to narrow down the results. Wildcard character is supported, please refer to the z/OSMF Dataset
REST endpoint documentation.

Options

--dataset-name (string)

Specify the name of the data set of which you want to list the members. Wildcard character is supported, please refer to the
z/OSMF Dataset REST endpoint documentation.

--limit (number)

Specify the number of the data set members to display.

Examples
List all data set members with default settings. The command returns data set members owned by your HLQ name.

Show members of the data set "user.asm".

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/dataset-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/zos-dataset-list-member/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/dataset/list/zos-dataset-list-member/zos-dataset-list-member

Version: v2.17.x LTS

zos file
zos > file

Manage USS files in a z/OS system.

Usage

zos file list status [fileName*] --path | -p <path> --limit <limit>

zos file list mounts [fileSystemName*] --mount-point | --mp <mount-point-path> --limit <limit>

Action

list

Positional Argument
zos file list status

fileName*

zos file list mounts

fileSystemName*

Option
zos file list status

Full name Alias Type

--path -p string

--limit number

zos file list mounts

Full name Alias Type

--mount-point --mp string

--limit number

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/file-article/file-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/file-article/list/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/file-article/list/zos-file-list-status#positional-arguments
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/file-article/list/zos-file-list-mounts#positional-arguments
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/file-article/list/zos-file-list-status#options
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/file-article/list/zos-file-list-mounts#options

Examples
Show the files and directories in path '/u/user'.

Show the files and directories whose names start with clean in path '/u/user'.

Show all mounted filesystems.

Show filesystems which are mounted to a specific path.

Show mounted filesystems with name starting with 'sac'.

Version: v2.17.x LTS

zos file list
zos > file > list

Usage

zos file list status [fileName*] --path | -p <path> --limit <limit>

zos file list mounts [fileSystemName*] --mount-point | --mp <mount-point-path> --limit <limit>

Objects
status

mounts

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/file-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/list-article/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/list-article/zos-file-list-status
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/list-article/zos-file-list-mounts

Version: v2.17.x LTS

zos file list status
zos > file > list > status

Show status or details of USS files.

Usage

zos file list status [fileName*] --path | -p <path> --limit <limit>

Positional Arguments

fileName*

Specify the file name to narrow down the results. Wildcard character * and ? is supported.

Options

--path (string)

Specify the directory that contains the files and directories to be listed.

--limit (number)

Specify the number of the files to display.

Examples
Show the files and directories in path '/u/user'.

Show the files and directories whose names start with clean in path '/u/user'.

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/file-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/zos-file-list-status/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/zos-file-list-status/zos-file-list-status

Version: v2.17.x LTS

zos file list mounts
zos > file > list > mounts

Show status or details of mounted z/OS file systems.

Usage

zos file list mounts [fileSystemName*] --mount-point | --mp <mount-point-path> --limit <limit>

Positional Arguments

fileSystemName*

Specify the file system name to narrow down the results. Wildcard character * and ? is supported.

Options

--mount-point (string)

Specify the path that the file system is mounted.

--limit (number)

Specify the number of the file systems to display.

Examples
Show all mounted filesystems.

Show filesystems which are mounted to a specific path.

Show mounted filesystems with name starting with 'sac'.

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/file-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/zos-file-list-mounts/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/file/list/zos-file-list-mounts/zos-file-list-mounts

Version: v2.17.x LTS

zos command
zos > command

Interact with z/OS command related services, including z/OSMF Console services, etc.

Usage

zos command issue console [commandString] --console-name | --cn <consoleName> --system-name | --sn <systemName>

Action

issue

Positional Arguments

zos command issue console

commandString

Options
zos command issue console

Full name Alias Type

--console-name --cn string

--system-name --sn string

Examples
Issue a simple command.

Issue a z/OS console command with a console name.

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/command-article/command-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/command-article/issue/issue-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/command-article/issue/zos-command-issue-console#positional-arguments
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/command-article/issue/zos-command-issue-console#options

Version: v2.17.x LTS

zos command issue
zos > command

Issue z/OS commands.

Usage

zos command issue console [commandString] --console-name | --cn <consoleName> --system-name | --sn <systemName>

Object
console

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/issue/command-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/issue/issue-article/zos-command-issue-console

Version: v2.17.x LTS

zos command issue console
zos > command > issue > console

Issue a z/OS console command and print the response. In general, when issuing a z/OS console command, z/OS applications route
responses to the originating console. Zowe Chat attempts to get the solicited messages immediately after the command is issued. If
there is no message available within a certain time interval, approximately 3 seconds if your system workload is not high, Zowe Chat
returns null. Usually it means that there is no command response. However, it is possible that the command response arrives after 3
seconds. In this case, you can click the command response URL in the response to retrieve the command response.

Usage

zos command issue console [commandString] --console-name | --cn <consoleName> --system-name | --sn <systemName>

Positional Arguments

commandString

The z/OS console command to issue.

Options

--console-name (null|string)

The name of the z/OS extended MCS console to direct the command. The name must be between 2 and 8 characters long
and cannot start with a digit. Characters are alphanumeric and can also include symbols like #, $, and @.

--system-name (null|string)

Specify the z/OS system name in the current SYSPLEX (where your target z/OSMF resides) to route the z/OS console
command. Default is the local system.

Examples
Issue a simple command.

Issue a z/OS console command with a console name.

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/issue/command-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/issue/zos-command-issue-console/issue-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/command/issue/zos-command-issue-console/zos-command-issue-console

Version: v2.17.x LTS

zos help
zos > help

Show help information of commands.

Usage

zos help

zos help list command [resourceName]

Action

list

Positional Arguments
zos help list command

fileName

Examples
All three commands can list all supported Zowe Chat commands.

Show usage and examples of job commands.

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/help-article/help-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/help-article/list/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/help-article/list/zos-help-list-command#positional-arguments

Version: v2.17.x LTS

zos help list
zos > help > list

List help information of the command.

Usage

zos help list command [resourceName]

Object

command

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/list/help-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/list/list-article/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/list/list-article/zos-help-list-command

Version: v2.17.x LTS

zos help list command
zos > help > list > command

List help information of the command.

Usage

zos help list command [resourceName]

Positional Arguments

fileName

Specify the command resource to narrow down the results.

Examples

All three commands can list all supported Zowe Chat commands.

Show usage and examples of job commands.

https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/zos-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/list/help-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/list/zos-help-list-command/list-article
https://docs.zowe.org/stable/appendix/zowe-chat-command-reference/zos/help/list/zos-help-list-command/zos-help-list-command

Version: v2.17.x LTS

Zowe YAML server configuration file reference
Zowe v2 uses a YAML configuration file for server installation, configuration, and runtime. This file is usually referred to as the Zowe
configuration YAML file or the zowe.yaml file. YAML is a human-friendly data serialization language for all programming languages.
To learn more about YAML specifications, see https://yaml.org/. For a free, offline YAML validator to help validate your syntax,
download the Red Hat's VS Code YAML extension.

Content within the YAML file is documented by and validated against schema files which are shipped within Zowe and extended by
Zowe extensions. For details on the schema technology and where to find the schema files within our source code, see Using the
Configuration Manager.

NOTE

In the following sections, we refer to configuration keys by using the concatenation of key names and dots. For example, if you
want to update the configuration key zowe.certificate.keystore.type with value PKCS12 , you should set value for this entry
in the zowe.yaml :

Table of Contents

High-level overview of YAML configuration file

Extract sharable configuration out of zowe.yaml

Configuration override

YAML configurations - certificate

YAML configurations - zowe

YAML configurations - java

YAML configurations - node

YAML configurations - zOSMF

YAML configurations - components
Configure component gateway

Configure component discovery

Configure component api-catalog

Configure component caching-service

Configure component app-server

Configure component zss

Configure component jobs-api

Configure component files-api

Configure component explorer-jes

Configure component explorer-mvs

Configure component explorer-uss

Configure external extension

YAML configurations - haInstances

https://yaml.org/
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml
https://docs.zowe.org/stable/user-guide/configmgr-using#json-schema-validation

Auto-generated environment variables

Troubleshooting your YAML with the Red Hat VSCode extension

High-level overview of YAML configuration file

The YAML configuration file has few high-level sections:

zowe

Defines global configurations specific to Zowe, including default values.

java

Defines Java configurations used by Zowe components.

node

Defines node.js configurations used by Zowe components.

zOSMF

Tells Zowe your z/OSMF configurations.

components

Defines detailed configurations for each Zowe component or extension. Each component or extension may have a key entry
under this section. For example, components.gateway is configuration for the API Mediation Layer Gateway service.

haInstances

Defines customized configurations for each High Availability (HA) instance. You should predefine all Zowe HA instances you want
to start within your Sysplex.

Extract sharable configuration out of zowe.yaml

The Zowe YAML configuration file supports splitting into several files or PARMLIB members when "zowe.useConfigmgr" is set to true.
This can help simplify grouping configuration changes by type or owner. More details can be found in the configmgr documentation.

Creating portable references

The Zowe YAML configuration file has template logic for relating one value to another, a system environment variable or symbol, or
even to add conditional behavior. This feature is available when "zowe.useConfigmgr" is set to true, and it can help to make your
configuration portable between systems that need slightly different behavior while retaining the same configuration file. More details
can be found in the configmgr documentation.

Configuration override

Inside zowe.yaml , you can define default values and they may be overridden in more granular level configurations. This can happen
in several ways:

The component can override the default certificate configuration. For the specific entry of certification configuration, if it's not
overridden, it falls back to default configurations.

Example:

App Server will use the certificate alias app-server instead of localhost from the same keystore defined in

zowe.certificate.keystore.file . And it will use the exact same truststore defined in zowe.certificate.truststore.file .

https://docs.zowe.org/stable/user-guide/configmgr-using#splitting-configuration-into-multiple-storage-types
https://docs.zowe.org/stable/user-guide/configmgr-using#configuration-templates

Zowe high availability (HA) instance component configuration haInstances.<ha-instance>.components.<component> can

override global level component configurations components.<component> . Any configuration you can find in components.

<component> level can be overridden in haInstances.<ha-instance>.components.<component> level. For example, in this
configuration:

App Server on lpar2a HA instance will not be started. On lpar2b HA instance, it will be started but on port 28544.

YAML configurations - certificate

In Zowe YAML configuration, certificate definition shares the same format and this format can be used in several configuration entries.
For example, zowe.certificate , components.<component>.certificate , and haInstances.<ha-instance>.components.

<component>.certificate . The certificate definition may include the following entries:

keystore.type

Defines the type of the keystore. If you are using keystore, this value usually should be PKCS12 . If you are using keyring, this value

should be JCERACFKS .

keystore.file

Defines the path of the keystore file. If you are using keyring, this should look like safkeyring://<keyring-owner>/<keyring-

name> . For example, safkeyring://ZWESVUSR/ZoweKeyring .

keystore.password

Defines the password of the keystore.

keystore.alias

Represents the alias name of the certificate stored in keystore. If you are using keyring, this is the certificate label connected to
the keyring.

truststore.type

Defines the type of the truststore file. If you are using keystore, this value usually should be PKCS12 . If you are using keyring, this

value should be JCERACFKS .

truststore.file

Defines the path to the truststore file. If you are using keyring, this should look like safkeyring://<keyring-owner>/<keyring-
name> , usually will be the same value of keystore.file .

truststore.password

Defines the password of the truststore.

pem.key

Defines the private key file in PEM format. This can be used by applications that do not support either PKCS12 keystore format or
z/OS keyring.

pem.certificate

Defines the public key file in PEM format. This can be used by applications that do not support either PKCS12 keystore format or
z/OS keyring.

pem.certificateAuthorities

Defines certificate authorities in PEM format. This can be used by applications that do not support either PKCS12 keystore format
or z/OS keyring.

YAML configurations - zowe

The high-level configuration zowe supports these definitions:

Directories

zowe.runtimeDirectory

Tells Zowe the runtime directory where it's installed.

zowe.logDirectory

Some Zowe components write logs to file system. This tells Zowe which directory should be used to store log files.

zowe.workspaceDirectory Tells Zowe components where they can write temporary runtime files.

zowe.extensionDirectory

Tells Zowe where you put the runtime of all your extensions.

Zowe Job

zowe.job.name

Defines the Zowe job name for the ZWESLSTC started task.

zowe.job.prefix

Defines the Zowe address space prefix for Zowe components.

Domain and port to access Zowe

zowe.externalDomains

Defines a list of external domains that will be used by the Zowe instance. This configuration is an array of domain name strings. In
Sysplex deployment, this is the DVIPA domain name defined in Sysplex Distributor. For example,

In Kubernetes deployment, this is the domain name you will use to access your Zowe running in Kubernetes cluster.

zowe.externalPort

Defines the port that will be exposed to external Zowe users. By default, this value is set based on Zowe APIML Gateway port. In
Sysplex deployment, this is the DVIPA port defined in Sysplex Distributor. See Configure Sysplex Distributor for more information.
In Kubernetes deployment, this is the gateway Service port will be exposed to external.

Extra environment variables

zowe.environments

Defines extra environment variables to customize the Zowe runtime. This configuration is a list of key / value pairs. Example:

Please be aware that variables defined here are global to all Zowe components, on all HA instances.

An example use case is to override system-wide environment variables for the Zowe runtime, such as the directory to use for
temporary files.

Certificate

zowe.certificate

Defines the northbound certificate facing Zowe users.

zowe.verifyCertificates Defines how Zowe should validate the certificates used by components or external service(s) like
z/OSMF. It can be a value of:

https://docs.zowe.org/stable/user-guide/configure-sysplex#configuring-sysplex-distributor

STRICT : This is the default value. Zowe will validate if the certificate is trusted in our trust store and if the certificate

Command Name and Subject Alternative Name (SAN)is validated. This is recommended for the best security.

NONSTRICT : Zowe will validate if the certificate is trusted in our trust store. In this mode, Zowe does not validate certificate

Common Name and Subject Alternative Name (SAN). This option does not have the best security but allows you to try out
Zowe when you don't have permission to fix certificate used by external services like z/OSMF.

DISABLED : This will disable certificate validation completely. This is NOT recommended for security purpose.

Launcher and launch scripts

Launcher is the program behind ZWESLSTC started task.

zowe.launcher

The launcher section defines defaults about how the Zowe launcher should act upon components.

zowe.launcher.restartIntervals

An array of positive integers that defines how many times a component should be tried to be restarted if it fails, and how much
time to wait in seconds for that restart to succeed before retrying.

zowe.launcher.minUptime

The minimum amount of time a zowe component should be running in order to be declared as started successfully.

zowe.launcher.shareAs

Whether or not the launcher should start components in the same address space as it. See documentation for _BPX_SHAREAS for
details.

zowe.launchScript.logLevel You can set it to debug or trace to enable different level of debug messages from Zowe launch
scripts. This may help to troubleshoot issues during Zowe start.

Setup

Zowe YAML configuration uses zowe.setup section to instruct how Zowe should be installed and configured. This section is optional
for Zowe runtime but only be used for zwe install and zwe init commands.

zowe.setup.dataset.prefix shows where the SZWEAUTH data set is installed.

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may generate sample PARMLIB

members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate sample JCLs and put into this data

set.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this is defined, members of

SZWEAUTH will be copied over to this data set and it will be APF authorized. If it is not defined, SZWEAUTH from

zowe.setup.dataset.prefix will be APF authorized.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe ZIS plug-ins into this load library.

This loadlib requires APF authorize.

zowe.setup.security.product is the security product. Can be RACF , ACF2 , or TSS . This configuration is optional. The default

value is RACF .

https://www.ibm.com/docs/en/zos/2.4.0?topic=shell-setting-bpx-shareas-bpx-spawn-script

zowe.setup.security.groups.admin is the group for Zowe administrators. This configuration is optional. The default value is

ZWEADMIN .

zowe.setup.security.groups.stc is the group for Zowe started tasks. This configuration is optional. The default value is

ZWEADMIN .

zowe.setup.security.groups.sysProg is system programmer user ID/group. This configuration is optional. The default value is

ZWEADMIN .

zowe.setup.security.users.zowe is the userid for Zowe started task. This configuration is optional. The default value is

ZWESVUSR .

zowe.setup.security.users.zis is userid for ZIS started task. This configuration is optional. Th default value is ZWESIUSR .

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional. The default value is ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. The default value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS AUX started task name. This configuration is optional. The default value is ZWESASTC .

zowe.setup.certificate.type is the type of certificate. Valid values are PKCS1 (USS keystore) or JCERACFKS (z/OS keyring).

zowe.setup.certificate.dname is the distinguished name of the certificate. You can define caCommonName , commonName ,

orgUnit , org , locality , state , and / or country . These configurations are optional.

zowe.setup.certificate.validity is the validity days of the certificate. This is optional.

zowe.setup.certificate.san is the Subject Alternative Name (s) of the certificate if they are different from

zowe.externalDomains . Note that for JCERACFKS type, with limitation of RACDCERT command, this should contain exact one

hostname (domain) and one IP address.

zowe.setup.certificate.importCertificateAuthorities is the list of certificate authorities will be imported to Zowe PKCS12

keystore or JCERACFKS keyring. Please note, for JCERACFKS type, only maximum 2 CAs is supported. If you are using PKCS12
certificate, this should be USS files in PEM format. If you are using JCERACFKS certificate, this should be certificate labels on the

z/OS system.

For PKCS12 certificate users,

zowe.setup.certificate.pkcs12.directory is the directory where you plan to store the PKCS12 keystore and truststore. This

is required if zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock is a boolean configuration to tell if we should lock the PKCS12 keystore directory only

for Zowe runtime user and group. The default value is true.

You can also define name , password , caAlias and caPassword under zowe.setup.certificate.pkcs12 to customized

keystore and truststore. These configurations are optional, but it is recommended to update them from default values.

Define zowe.setup.certificate.pkcs12.import.keystore if you already acquired certificate from other CA, stored them in

PKCS12 format, and want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password is the password for keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore . After imported, the certificate will be saved as alias specified in

zowe.setup.certificate.pkcs12.name .

For JCERACFKS certificate (z/OS keyring) users,

zowe.setup.certificate.keyring.owner is the keyring owner. It's optional and default value is

zowe.setup.security.users.zowe . If it's also not defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name is the keyring name will be created on z/OS. This is required if

zowe.setup.certificate.type is JCERACFKS .

If you want to let Zowe to generate a new certificate:

You can also customize label and caLabel under zowe.setup.certificate.keyring if you want to generate new

certificate. The default value of label is localhost and default value of caLabel is localca .

If you want to import a certificate stored in MVS data set into Zowe keyring:

zowe.setup.certificate.keyring.connect.dsName is required in this case. It tells Zowe the data set where the certificate

stored.

zowe.setup.certificate.keyring.connect.password is the password when importing the certificate.

The certificate will be imported with the label defined in zowe.setup.certificate.keyring.label .

If you want to connect an existing certificate into a Zowe keyring:

zowe.setup.certificate.keyring.connect.user is required and tells Zowe the owner of existing certificate. This field can

have value of SITE .

zowe.setup.certificate.keyring.connect.label is also required and tells Zowe the label of existing certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided, Zowe will try to trust the z/OSMF

certificate.

If you are using RACF security manager, Zowe will try to automatically detect the z/OSMF CA based on certificate owner

specified by zowe.setup.certificate.keyring.zOSMF.user . Default value of this field is IZUSVR . If the automatic

detection failed, you will need to define zowe.setup.certificate.keyring.zOSMF.ca indicates what is the label of the

z/OSMF root certificate authority.

If you are using ACF2 or TSS (Top Secret) security manager, zowe.setup.certificate.keyring.zOSMF.ca is required to

indicates what is the label of the z/OSMF root certificate authority.

zowe.setup.vsam.mode indicates whether the VSAM will utilize Record Level Sharing (RLS) services or not. Valid values are RLS
or NONRLS .

zowe.setup.vsam.volume indicates the name of volume. This field is required if VSAM mode is NONRLS .

zowe.setup.vsam.storageClass indicates the name of RLS storage class. This field is required if VSAM mode is RLS .

YAML configurations - java

The high-level configuration java supports these definitions:

home

Defines the path to the Java runtime directory.

TIP

Ensure the value of node.home in the zowe.yaml is visible to the Zowe STC users, and contains bin/node . Example:

The above value is valid only when the path /usrlppSysplex/nodejs/node-v12.16.1/bin/node exists. If you observe output of

node:...FSUM7351 not found , check to ensure that the value contains bin/node .

YAML configurations - node

The high-level configuration node supports these definitions:

home

Defines the path to the Node.js runtime directory.

YAML configurations - zOSMF

The high-level configuration zOSMF supports these definitions:

zOSMF.host

Defines the hostname of your z/OSMF instance.

zOSMF.port

Defines the port of your z/OSMF instance.

zOSMF.applId

Defines the application ID of your z/OSMF instance.

YAML configurations - components

All Zowe components and extensions can have a dedicated section under the components high-level configuration.

In this section, <component> represents any Zowe components or extensions. For all components and extensions, these are the

common definitions.

components.<component>.enabled

Defines if you want to start this component in this Zowe instance. This allows you to control each component instead of a group.

components.<component>.certificate

You can customize a component to use different certificate from default values. This section follows same format defined in YAML
configurations - certificate. If this is not customized, the component will use certificates defined in zowe.certificate .

components.<component>.launcher

Any component can have a launcher section which overrides the overall Zowe Launcher default defined in zowe.launcher .

Configure component gateway

These configurations can be used under the components.gateway section:

port

Defines the port which the gateway should be started on. This must be a valid port number.

debug

Defines whether to enable debug mode for the Gateway.

apiml.service.allowEncodedSlashes

When this parameter is set to true , the Gateway allows encoded characters to be part of URL requests redirected through the

Gateway.

apiml.service.corsEnabled

When this parameter is set to true , CORS are enabled in the API Gateway for Gateway routes gateway/api/v1/** .

apiml.service.preferIpAddress

Set this parameter to true to advertise a service IP address instead of its hostname.

NOTE

This configuration is deprecated. Zowe start script will ignore this value and always set it to false .

apiml.gateway.timeoutMillis

Specifies the timeout for connection to the services in milliseconds.

apiml.security.x509.enabled

Set this parameter to true to enable the client certificate authentication functionality through ZSS.

apiml.security.x509.externalMapperUrl

Defines the URL where Gateway can query the mapping of client certificates.

apiml.security.auth.provider

Defines the authentication provider used by the API Gateway.

apiml.security.authorization.endpoint.url

Defines the URL to the authorization endpoint. This endpoint tells Gateway if a user has a particular permission on SAF profile. For
example, permission to the APIML.SERVICES profile of ZOWE class.

apiml.security.ssl.verifySslCertificatesOfServices

Defines whether APIML should verify certificates of services in strict mode. Setting to true will enable the strict mode where

APIML will validate if the certificate is trusted in turststore, and also if the certificate Common Name or Subject Alternate Name
(SAN) matches the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices

Defines whether APIML should verify certificates of services in non-strict mode. Setting the value to true will enable the non-

strict mode where APIML will validate if the certificate is trusted in turststore, but ignore the certificate Common Name or

Subject Alternate Name (SAN) check. Zowe will ignore this configuration when strict mode is enabled with
apiml.security.ssl.verifySslCertificatesOfServices .

apiml.server.maxConnectionsPerRoute

Specifies the maximum connections for each service.

apiml.server.maxTotalConnections

Specifies the total connections for all services registered under API Mediation Layer.

Configure component discovery

These configurations can be used under the components.discovery section:

port

Defines the port which discovery should be started on. This may be defined as a valid port number or as an offset from the
Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The offset must start with + or

- .

debug

Defines whether to enable debug mode for the Discovery Service.

apiml.service.preferIpAddress

Set this parameter to true to advertise a service IP address instead of its hostname.

NOTE

This configuration is deprecated. The Zowe start script will ignore this value and always set it to false .

apiml.security.ssl.verifySslCertificatesOfServices

Defines whether APIML should verify certificates of services in strict mode. Setting to true will enable the strict mode where

APIML will validate both if the certificate is trusted in turststore, and also if the certificate Common Name or Subject Alternate
Name (SAN) matches the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices

Defines whether APIML should verify certificates of services in non-strict mode. Setting to true will enable the non-strict
mode where APIML will validate if the certificate is trusted in turststore, but ignore the certificate Common Name or Subject
Alternate Name (SAN) check. Zowe will ignore this configuration if strict mode is enabled with
apiml.security.ssl.verifySslCertificatesOfServices .

alternativeStaticApiDefinitionsDirectories

Specifies the alternative directories of static definitions.

apiml.server.maxTotalConnections

Specifies the total connections for all services registered under API Mediation Layer.

apiml.discovery.serviceIdPrefixReplacer

Modifies the service ID of a service instance before it registers to API Mediation Layer. Using this parameter ensures compatibility
of services that use a non-conformant organization prefix with v2, based on Zowe v2 conformance.

Configure component api-catalog

These configurations can be used under the components.api-catalog section:

port

Defines the port which API Catalog should be started on.

debug

Defines if we want to enable debug mode for the API Catalog. This is equivalent to the APIML_DEBUG_MODE_ENABLED variable but

with better granular level.

environment.preferIpAddress

Set this parameter to true to advertise a service IP address instead of its hostname.

NOTE

This configuration is deprecated. Zowe start script will ignore this value and always set it to false .

Configure component caching-service

These configurations can be used under the components.caching-service section:

port

Defines the port which Caching Service should be started on. This may be defined as a valid port number or as an offset from the
Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The offset must start with + or

- .

debug

Defines if we want to enable debug mode for the Caching Service.

storage.mode

Sets the storage type used to persist data in the Caching Service.

storage.size

Specifies amount of records before eviction strategies start evicting.

storage.evictionStrategy

Specifies eviction strategy to be used when the storage size is achieved.

storage.vsam.name

Specifies the data set name of the caching service VSAM data set.

storage.redis.masterNodeUri

Specifies the URI used to connect to the Redis master instance in the form username:password@host:port .

storage.redis.timeout

Specifies the timeout second to Redis. Defaults to 60 seconds.

storage.redis.sentinel.masterInstance : Specifies the Redis master instance ID used by the Redis Sentinel instances.

storage.redis.sentinel.nodes

Specifies the array of URIs used to connect to a Redis Sentinel instances in the form username:password@host:port .

storage.redis.ssl.enabled

Specifies the boolean flag indicating if Redis is being used with SSL/TLS support. Defaults to true .

storage.redis.ssl.keystore

Specifies the keystore file used to store the private key.

storage.redis.ssl.keystorePassword

Specifies the password used to unlock the keystore.

storage.redis.ssl.truststore

Specifies the truststore file used to keep other parties public keys and certificates.

storage.redis.ssl.truststorePassword

Specifies the password used to unlock the truststore.

environment.preferIpAddress

Set this parameter to true to advertise a service IP address instead of its hostname.

NOTE

This configuration is deprecated. Zowe start script will ignore this value and always set it to false .

apiml.security.ssl.verifySslCertificatesOfServices

Specifies whether APIML should verify certificates of services in strict mode. Set to true will enable strict mode that APIML will

validate both if the certificate is trusted in turststore, and also if the certificate Common Name or Subject Alternate Name (SAN)
match the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices

Defines whether APIML should verify certificates of services in non-strict mode. Setting to true will enable non-strict mode

where APIML will validate if the certificate is trusted in turststore, but ignore the certificate Common Name or Subject Alternate
Name (SAN) check. Zowe will ignore this configuration if strict mode is enabled with
apiml.security.ssl.verifySslCertificatesOfServices .

Configure component app-server

These configurations can be used under the components.app-server section:

port

Defines the port which App Server should be started on. This may be defined as a valid port number or as an offset from the
Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The offset must start with + or

- .

Configure component zss

These configurations can be used under the components.zss section:

port

Defines the port which ZSS should be started on. This may be defined as a valid port number or as an offset from the Gateway
component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The offset must start with + or - .

Configure component jobs-api

These configurations can be used under the components.jobs-api section:

port

Defines the port which Jobs API should be started on. This may be defined as a valid port number or as an offset from the
Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The offset must start with + or

- .

debug

Defines whether to enable debug logging for the Jobs API.

Configure component files-api

These configurations can be used under the components.files-api section:

port

Defines the port which Files API should be started on. This may be defined as a valid port number or as an offset from the

Gateway component's port. To define an offset enter "+{offset}" or "-{offset}" as a string. The offset must start with + or

- .

debug

Defines whether to enable debug logging for the Files API.

Configure external extension

You can define a components.<extension-id> section and use common component configuration entries.

For example, enable my-extension :

YAML configurations - haInstances

All Zowe high availability instances should have a dedicated section under the haInstances high-level configuration.

In this section, <ha-instance> represents any Zowe high availability instance ID.

For all high availability instances, these are the common definitions.

haInstances.<ha-instance>.hostname

Defines the host name where you want to start this instance. This could be the host name of one LPAR in your Sysplex.

haInstances.<ha-instance>.sysname

Defines the system name of the LPAR where the instance is running. Zowe will use ROUTE command to send JES2 start or stop
command to this HA instance.

haInstances.<ha-instance>.components.<component>

Optional settings you can override component configurations for this high availability instance. See Configuration override for
more details.

Auto-generated environment variables

Each line of Zowe YAML configuration will have a matching environment variable during runtime. This is converted based on pre-
defined pattern:

All configurations under zowe , components , haInstances will be converted to a variable with name:

prefixed with ZWE_ ,

any non-alphabetic-numeric characters will be converted to underscore _ ,

and no double underscores like __ .

Calculated configurations of haInstance , which is portion of haInstances.<current-ha-instance> will be converted same

way.

Calculated configurations of configs , which is portion of haInstances.<current-ha-instance>.components.<current-

component> will be converted same way.

All other configuration entries will be converted to a variable with name:
all upper cases,

any non-alphabetic-numeric characters will be converted to underscore _ ,

and no double underscores like __ .

For examples:

ZWE_zowe_runtimeDirectory , parent directory of where zwe server command is located.

ZWE_zowe_workspaceDirectory is the path of user customized workspace directory.

ZWE_zowe_setup_dataset_prefix is the high-level qualifier where Zowe MVS data sets are installed.

ZWE_zowe_setup_dataset_parmlib is the data set configured to store customized version of parameter library members.

ZWE_zowe_setup_dataset_authPluginLib is the data set configured to store APF authorized ZIS plug-ins load library.

ZWE_zowe_setup_security_users_zowe is the name of Zowe runtime user.

ZWE_configs_port is your component port number you can use in your start script. It points to the value of haInstances.
<current-ha-instance>.components.<your-component>.port , or fall back to components.<my-component>.port , or fall back

to configs.port defined in your component manifest.

Troubleshooting your YAML with the Red Hat VS Code extension

After you download the Red Hat VSCode extension for YAML, YAML validation for your files is turned on by default. Syntax mistakes
are highlighted in red. To parse sensitive information, we would highly recommend leaving the data gathering option disabled. To
customize your settings, click on the "Extensions" category in VS Code left-hand side workspace, scroll down to YAML Language
Support by Red Hat, and click on the gear icon and select "Extension Settings".

Version: v2.17.x LTS

Server component manifest file reference
Zowe server component manifest file defines the name and purpose of the component. It also provides information about how this
component should be installed, configured, and started. It can be named as manifest.yaml , manifest.yml , or manifest.json and
should be located in the root directory of the component. Currently, only YAML or JSON format are supported.

The manifest file contains the following properties:

name

(Required) Defines a short, computer-readable name of the component. This component name is used as directory name after it
is installed. The allowed characters in the name are alphabets, numbers, hyphen (-) and underscore (_). For example, explorer-

jes is a valid extension name.

id

(Optional) Defines a long, computer-readable identifier of the component. If the component is hosted as one of the projects in
Open Mainframe Project, the identifier also matches the component path in the Zowe Artifactory. For example,
org.zowe.explorer-jes is a valid identifier. You can locate the component's official releases by looking into the libs-release-

local/org/zowe/explorer-jes/ directory in the Zowe Artifactory.

version :

(Optional but recommended) This is the current version of the component without the prefix of v . For example, 2.0.0 is a valid

version value.

title

(Optional) Defines a short human-readable name for this component. This value will also be used as the default title for API
Catalog tile, or App Framework plug-in title. For example, JES Explorer is a valid title for the explorer-jes component.

description

(Optional) Defines a long human-readable description of this component. There is no restriction on what you can put in the field.

license

(Optional but recommended) Defines the license code of the component. For example, Zowe core components have EPL-2.0
value in this field.

schemas

(Required) Defines the location of json schema files that are compatible with certain portions of Zowe as denoted by each child
property.

configs

(Required) Defines the location of the json schema file which extends the Zowe Component base schema.

https://www.openmainframeproject.org/
https://zowe.jfrog.io/ui/repos/tree/General/libs-release-local%2Forg%2Fzowe%2Fexplorer-jes

build

(Optional but strongly recommended) Defines the build information of the current package, including git commit hash, and so
on. When Zowe core components define manifest file, these fields are left as template variables. The template will be updated
when a publishable package is created. It supports the following subfields:

branch

It indicates which branch this package is built from.

number

You may create multiple packages in the same branch. This is the sequential number of the current package.

commitHash

This is the commit hash of the package that can be used to match the exact source code in the repository. Zowe core
components usually use git rev-parse --verify HEAD to retrieve the commit hash.

timestamp

This is the UNIX timestamp when the package is created.

commands

This defines actions that should be taken when the component is installed, configured, started, or tested. You must issue this
command with one or more subfields as listed below. For example, commands.install . All subfields are optional and usually
should point to a USS command or script.

install

This defines extra steps when installing this component. It will be automatically executed if you install your component with
the zwe components install server command.

validate

This defines extra validations that the component requires other than global validations. It is for runtime purpose, and will be
automatically executed each time Zowe is started.

configure

This defines extra configuration steps before starting the component. It is for runtime purpose, and will be automatically
executed each time Zowe is started.

start

This tells the Zowe launch script how to start the component. It is for runtime purpose, and will be automatically executed
each time Zowe is started.

apimlServices

This section defines how the component will be registered to the API Mediation Layer Discovery Service. All subfields are optional.

dynamic

Array of objects. This information will tell Zowe and users what services you will register under the Discovery service.

serviceId

This defines the service ID registered to the Discovery service.

static

Array of objects. When the component is statically registered under the Discovery service, this tells Zowe where to find these
static definitions. This information is for the Zowe runtime. When Zowe is starting, the launch script will check this field and
put the parse static definition file into the directory defined as ZWE_STATIC_DEFINITIONS_DIR in the Zowe instance.

file

Defines the path to the static definition file. This file is supposed to be a template.

basePackage

Defines the base package name of the extension. It is used to notify the extended service of the location for component scan.

appfwPlugins

Array of objects. This section defines how the component will be registered to the App Framework plug-in. All subfields are
optional.

path

This points to the directory where App Framework pluginDefinition.json file is located. When Zowe is starting, the launch

script will check this field and register the plug-in to Zowe App Framework Server.

gatewaySharedLibs : Array of objects. This section defines the API ML extension(s) attributes which will get installed and used by

API ML.

path

This points to the directory where the JAR files are housed for an extension and later on copied into the API ML extensions
workspace directory. If there is more than 1 extension to a single manifest (say for a product family of multiple extensions),
then multiple path variables can be contained within the manifest denoted by individual folders, for example
path/to/yourextension1/ . Alternatively, path can be the JAR file path rather than a directory path.

zisPlugins

List of ZIS plugin objects. This section defines the ZIS plugin(s) attributes necessary for ZIS plugin installation and automation.

id

This is the unique plugin ID of the ZIS plugin.

path

This points to the directory where the load modules are housed for a plugin, for example zisServer . If there is more than 1

plugin to a single manifest (say for a product family of multiple plugins), then multiple path variables can be contained within
the manifest denoted by individual folders, for example yourplugin1/zisServer . The parameters for the Zowe parmlib are

assumed to be in <PATH>/samplib . The names of the plugin executables are assumed to be in <PATH>/loadlib .

For example,

configs

Component can define it's own configuration in this section in desired hierarchy. This is the brief guidance for component user to
learn what are the configurations and what are the default values. Any configurations defined here can be placed into zowe.yaml

components.<component-name> section for customization.

For example, if the component has this defined in component manifest,

You can choose to put those configurations into components.myextension or haInstance.<ha-

instance>.components.myextension of zowe.yaml like this:

Component can use auto-generate environment variables in lifecycle scripts to learn how the component is configured for current
HA instance. In the preceding use case,

For HA instance lpar1 , ZWE_configs_port value is 14567 , ZWE_configs_another_config value is my-value , which are
default values.

For HA instance lpar2 , ZWE_configs_port value is 24567 , ZWE_configs_another_config value is my-value2 .

From another component, you can find myextension configurations like this,

For HA instance lpar1 , ZWE_components_myextension_port value is 14567 ,

ZWE_components_myextension_another_config value is my-value , which are default values.

For HA instance lpar2 , ZWE_components_myextension_port value is 24567 ,

ZWE_components_myextension_another_config value is my-value2 .

dependencies : (Optional) This section defines the component's dependencies.

zos : Array of objects. This subfield defines components or services from z/OS.

apiml : true or false. Indicates whether the dependency is registered/searchable with the Discovery service

version : This defines the version range of the dependency. Acceptable formats: version , >version , >=version ,

<version , <=version

Note: All paths of directories or files mentioned previously should be relative paths to the root directory where manifest is located.

Version: v2.17.x LTS

Bill of Materials
Zowe™ uses the SPDX SBOM format to represent its bill of materials. To read more about why SBOMs and SPDX are used, see this
blog. The hash codes can be used to validate your download is authentic using a command like openssl dgst -sha1

<downloaded_sbom.zip> . Zowe SBOMs are as follows:

Type Component
SBOM
Link

SHA-1 Hash

Artifact SBOM
Zowe z/OS Components (PAX, SMP/E,
PSWI)

SBOM
Link

3ed80afaadfdabe1112c7063fe297d5f

Artifact SBOM Zowe CLI Standalone Package
SBOM
Link

98b75ca32cc08664574da1886d28c625463cceba

Artifact SBOM Zowe CLI Standalone Plugins Package
SBOM
Link

7d1e06e579b4dcc69c44405a47dfebc386426b0f

Artifact SBOM Zowe Client NodeJS SDK
SBOM
Link

c61bd6b9f78ba2aa67a0f4e53874a097992d8155

Artifact SBOM Zowe Client Python SDK
SBOM
Link

637c5f90f94a88cb534bead7755fac112b509217

Source Code
SBOM

All Zowe's Source Repositories used in final
artifacts

SBOM
Link

19d2b81b0fa2955d165123871c72c2c77ddf73b7

https://www.linuxfoundation.org/blog/spdx-its-already-in-use-for-global-software-bill-of-materials-sbom-and-supply-chain-security/
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_pax_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_cli_standalone_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_cli_standalone_plugins_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_client_node_sdk_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_client_python_sdk_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_sources_sbom.zip

